메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 2563-2581

Kernel analysis of deep networks

Author keywords

Deep networks; Kernel principal component analysis; Representations

Indexed keywords

COMMON KNOWLEDGE; DEEP NETWORKS; KERNEL PRINCIPAL COMPONENT ANALYSIS; LAYER-WISE; LEARNING PROBLEM; NETWORK CONTROL; REPRESENTATIONS;

EID: 80555140085     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (115)

References (38)
  • 1
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Gaston Baudat and Fatiha Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 12(10):2385-2404, 2000.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 5
    • 33847215211 scopus 로고
    • Stochastic gradient learning in neural networks
    • Leon Bottou. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nîmes, 1991.
    • (1991) Proceedings of Neuro-nîmes
    • Bottou, L.1
  • 7
    • 33750713303 scopus 로고    scopus 로고
    • Accurate error bounds for the eigenvalues of the kernel matrix
    • Mikio L. Braun. Accurate bounds for the eigenvalues of the kernel matrix. Journal of Machine Learning Research, 7:2303-2328, 2006. (Pubitemid 44708008)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2303-2328
    • Braun, M.L.1
  • 9
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • Rich Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 11
  • 12
    • 34249753618 scopus 로고
    • Support-vector networks
    • Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 16
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • January
    • David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160:106-154, January 1962.
    • (1962) The Journal of Physiology , vol.160 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 18
    • 0025254722 scopus 로고
    • A time-delay neural network architecture for isolated word recognition
    • Kevin J. Lang, Alex H. Waibel, and Geoffrey E. Hinton. A time-delay neural network architecture for isolated word recognition. Neural Networks, 3(1):23-43, 1990.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 23-43
    • Lang, K.J.1    Waibel, A.H.2    Hinton, G.E.3
  • 20
    • 0342898730 scopus 로고
    • Generalization and network design strategies
    • Elsevier, An extended version was published as a technical report of the University of Toronto
    • Yann LeCun. Generalization and network design strategies. In Connectionism in Perspective. Elsevier, 1989. An extended version was published as a technical report of the University of Toronto.
    • (1989) Connectionism in Perspective
    • LeCun, Y.1
  • 21
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(1):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.1 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 28
    • 0036314487 scopus 로고    scopus 로고
    • Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex
    • Dario L. Ringach. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. The Journal of Neurophysiology, 88(1):455-463, 2002. (Pubitemid 34755364)
    • (2002) Journal of Neurophysiology , vol.88 , Issue.1 , pp. 455-463
    • Ringach, D.L.1
  • 29
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533-536, 1986. (Pubitemid 16025374)
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 32
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 36
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • DOI 10.1016/S0893-6080(98)00032-X, PII S089360809800032X
    • Alex J. Smola, Bernhard Schölkopf, and Klaus-Robert Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11(4):637-649, 1998. (Pubitemid 28400264)
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Scholkopf, B.2    Muller, K.-R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.