메뉴 건너뛰기




Volumn , Issue , 2010, Pages 495-502

3D convolutional neural networks for human action recognition

Author keywords

[No Author keywords available]

Indexed keywords

ACTION RECOGNITION; AUTOMATED RECOGNITION; CNN MODELS; CONVOLUTIONAL NEURAL NETWORK; DEVELOPED MODEL; DOMAIN KNOWLEDGE; FEATURE CONSTRUCTION; FEATURE REPRESENTATION; HUMAN ACTIONS; HUMAN-ACTION RECOGNITION; MOTION INFORMATION; MULTIPLE CHANNELS; REAL WORLD ENVIRONMENTS; TEMPORAL DIMENSIONS;

EID: 77956507967     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (169)

References (29)
  • 1
    • 56749159833 scopus 로고    scopus 로고
    • Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks
    • Ahmed, A., Yu, K., Xu, W., Gong, Y. and Xing, E. Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks. In ECCV, pp. 69-82, 2008.
    • (2008) ECCV , pp. 69-82
    • Ahmed, A.1    Yu, K.2    Xu, W.3    Gong, Y.4    Xing, E.5
  • 3
    • 84959195732 scopus 로고
    • Signature verification using a siamese time delay neural network
    • Bromley, J., Guyon, I., LeCun, Y., Sackinger, B. and Shah, R. Signature verification using a siamese time delay neural network. In NIPS. 1993.
    • (1993) NIPS.
    • Bromley, J.1    Guyon, I.2    LeCun, Y.3    Sackinger, B.4    Shah, R.5
  • 4
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Collobert, R. and Weston, J. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML, pp. 160- 167, 2008.
    • (2008) ICML , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 5
    • 33846622081 scopus 로고    scopus 로고
    • Behavior recognition via sparse spatio-temporal features
    • Dollár, R, Rabaud, V., Cottrell, G. and Belongie, S. Behavior recognition via sparse spatio-temporal features. In ICCV VS-PETS, pp. 65-72, 2005.
    • (2005) ICCV VS-PETS , pp. 65-72
    • Dollár, R.1    Rabaud, V.2    Cottrell, G.3    Belongie, S.4
  • 6
    • 0344983342 scopus 로고    scopus 로고
    • Recognizing action at a distance
    • Efros, A. A., Berg, A. C., Mori, G. and Malik, J. Recognizing action at a distance. In ICCV, pp. 726- 733, 2003.
    • (2003) ICCV , pp. 726-733
    • Efros, A.A.1    Berg, A.C.2    Mori, G.3    Malik, J.4
  • 7
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recogni-tion unaffected by shift in position
    • Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cyb., 36: 193-202, 1980.
    • (1980) Biol. Cyb. , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • July
    • Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 11
    • 50649099025 scopus 로고    scopus 로고
    • A biologically inspired system for action recognition
    • Jhuang, H., Serre, T., Wolf, L. and Poggio, T. A biologically inspired system for action recognition. In ICCV, pp. 1-8, 2007.
    • (2007) ICCV , pp. 1-8
    • Jhuang, H.1    Serre, T.2    Wolf, L.3    Poggio, T.4
  • 13
    • 50649122769 scopus 로고    scopus 로고
    • Retrieving actions in movies
    • Laptev, I. and Pérez, P. Retrieving actions in movies. In ICCV, pp. 1-8, 2007.
    • (2007) ICCV , pp. 1-8
    • Laptev, I.1    Pérez, P.2
  • 14
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • Lazebnik, S., Achmid, C. and Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, pp. 2169- 2178, 2006.
    • (2006) CVPR , pp. 2169-2178
    • Lazebnik, S.1    Achmid, C.2    Ponce, J.3
  • 15
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 16
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • LeCun, Y., Huang, F.-J. and Bottou, L. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, 2004.
    • (2004) CVPR
    • LeCun, Y.1    Huang, F.-J.2    Bottou, L.3
  • 17
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R. and Ng, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, pp. 609-616, 2009a.
    • (2009) ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 18
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Lee, H., Pham, P., Largman, Y. and Ng, A. Unsupervised feature learning for audio classification using convolutional deep belief networks. In NIPS, pp. 1096-1104. 2009b.
    • (2009) NIPS , pp. 1096-1104
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.4
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale invariant keypoints
    • Lowe, D. G. Distinctive image features from scale invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 20
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • Mobahi, H., Collobert, R. and Weston, J. Deep learning from temporal coherence in video. In ICML, pp. 737-744, 2009.
    • (2009) ICML , pp. 737-744
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 21
    • 51149092609 scopus 로고    scopus 로고
    • Object class recognition and localization using sparse features with limited receptive fields
    • October
    • Mutch, J. and Lowe, D. G. Object class recognition and localization using sparse features with limited receptive fields. International Journal of Computer Vision, 80(1):45-57, October 2008.
    • (2008) International Journal of Computer Vision , vol.80 , Issue.1 , pp. 45-57
    • Mutch, J.1    Lowe, D.G.2
  • 22
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial- temporal words
    • Niebles, J. C., Wang, H. and Fei-Fei, L. Unsupervised learning of human action categories using spatial- temporal words. International Journal of Computer Vision, 79(3):299-318, 2008.
    • (2008) International Journal of Computer Vision , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 24
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • Ranzato, M., Huang, F.-J., Boureau, Y. and LeCun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.-J.2    Boureau, Y.3    LeCun, Y.4
  • 25
    • 51949101597 scopus 로고    scopus 로고
    • Action snippets: How many frames does human action recognition require?
    • Schindler, K. and Van Gool, L. Action snippets: How many frames does human action recognition require? In CVPR, 2008.
    • (2008) CVPR
    • Schindler, K.1    Van Gool, L.2
  • 26
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • Schiildt, C., Laptev, I. and Caputo, B. Recognizing human actions: A local SVM approach. In ICPR, pp. 32-36, 2004.
    • (2004) ICPR , pp. 32-36
    • Schiildt, C.1    Laptev, I.2    Caputo, B.3
  • 27
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • Serre, T., Wolf, L. and Poggio, T. Object recognition with features inspired by visual cortex. In CVPR, pp. 994-1000, 2005.
    • (2005) CVPR , pp. 994-1000
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 29
    • 84863393567 scopus 로고    scopus 로고
    • Deep learning with kernel regularization for visual recognition
    • Yu, K., Xu, W. and Gong, Y. Deep learning with kernel regularization for visual recognition. In NIPS, pp. 1889-1896, 2008.
    • (2008) NIPS , pp. 1889-1896
    • Yu, K.1    Xu, W.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.