-
1
-
-
18844481026
-
A marine microbial consortium apparently mediating anaerobic oxidation of methane
-
A. Boetius, K. Ravenschlag, C. J. Schubert et al. , "A marine microbial consortium apparently mediating anaerobic oxidation of methane, " Nature, vol. 407, no. 6804, pp. 623-626, 2000.
-
(2000)
Nature
, vol.407
, Issue.6804
, pp. 623-626
-
-
Boetius, A.1
Ravenschlag, K.2
Schubert, C.J.3
-
2
-
-
0033614388
-
Methane-consuming archaebacteria in marine sediments
-
K.-U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewert, E. F. DeLong, "Methane-consuming archaebacteria in marine sediments, " Nature, vol. 398, no. 6730, pp. 802-805, 1999.
-
(1999)
Nature
, vol.398
, Issue.6730
, pp. 802-805
-
-
Hinrichs, K.-U.1
Hayes, J.M.2
Sylva, S.P.3
Brewert, P.G.4
DeLong, E.F.5
-
3
-
-
0035919654
-
Methane-consuming archaea revealed by directly coupled isotopic, phylogenetic analysis
-
V. J. Orphan, C. H. House, K.-U. Hinrichs, K. D. McKeegan, E. F. DeLong, "Methane-consuming archaea revealed by directly coupled isotopic, phylogenetic analysis, " Science, vol. 293, no. 5529, pp. 484-487, 2001.
-
(2001)
Science
, vol.293
, Issue.5529
, pp. 484-487
-
-
Orphan, V.J.1
House, C.H.2
Hinrichs, K.-U.3
McKeegan, K.D.4
DeLong, E.F.5
-
4
-
-
0003096957
-
The anaerobic oxidation of methane: New insights in microbial ecology, biogeochemistry
-
G. Wefer, D. Billett, D. Hebbeln, B. B. Jørgensen, M. Schlüter, andT. VanWeering, Eds Springer, Berlin, Germany
-
K.-U. Hinrichs, A. Boetius, "The anaerobic oxidation of methane: new insights in microbial ecology, biogeochemistry, " in OceanMargin Systems, G. Wefer, D. Billett, D. Hebbeln, B. B. Jørgensen, M. Schlüter, andT. VanWeering, Eds. , pp. 457-477, Springer, Berlin, Germany, 2002.
-
(2002)
Ocean Margin Systems
, pp. 457-477
-
-
Hinrichs, K.-U.1
Boetius, A.2
-
5
-
-
12244272161
-
Diversity, distribution of methanotrophic archaea at cold seeps
-
K. Knittel, T. Lösekann, A. Boetius, R. Kort, R. Amann, "Diversity, distribution of methanotrophic archaea at cold seeps, " Applied, Environmental Microbiology, vol. 71, no. 1, pp. 467-479, 2005.
-
(2005)
Applied, Environmental Microbiology
, vol.71
, Issue.1
, pp. 467-479
-
-
Knittel, K.1
Lösekann, T.2
Boetius, A.3
Kort, R.4
Amann, R.5
-
6
-
-
70349559191
-
Anaerobic oxidation of methane: Progress with an unknown process
-
K. Knittel, A. Boetius, "Anaerobic oxidation of methane: progress with an unknown process, " Annual Review of Microbiology, vol. 63, pp. 311-334, 2009.
-
(2009)
Annual Review of Microbiology
, vol.63
, pp. 311-334
-
-
Knittel, K.1
Boetius, A.2
-
7
-
-
0035317030
-
Comparative analysis of methane-oxidizing archaea, sulfate-reducing bacteria in anoxic marine sediments
-
V. J. Orphan, K.-U. Hinrichs, W. Ussler III et al. , "Comparative analysis of methane-oxidizing archaea, sulfate-reducing bacteria in anoxic marine sediments, " Applied, Environmental Microbiology, vol. 67, no. 4, pp. 1922-1934, 2001.
-
(2001)
Applied, Environmental Microbiology
, vol.67
, Issue.4
, pp. 1922-1934
-
-
Orphan, V.J.1
Hinrichs, K.-U.2
Ussler, W.3
-
8
-
-
34249660046
-
Diversity, abundance of aerobic, anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea
-
T. Lösekann, K. Knittel, T. Nadalig et al. , "Diversity, abundance of aerobic, anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea, " Applied, EnvironmentalMicrobiology, vol. 73, no. 10, pp. 3348-3362, 2007.
-
(2007)
Applied, EnvironmentalMicrobiology
, vol.73
, Issue.10
, pp. 3348-3362
-
-
Lösekann, T.1
Knittel, K.2
Nadalig, T.3
-
9
-
-
33750329958
-
Novel microbial communities of the HaakonMosby mud volcano, their role as amethane sink
-
H. Niemann, T. Lösekann, D. De Beer et al. , "Novel microbial communities of the HaakonMosby mud volcano, their role as amethane sink, " Nature, vol. 443, no. 7113, pp. 854-858, 2006.
-
(2006)
Nature
, vol.443
, Issue.7113
, pp. 854-858
-
-
Niemann, H.1
Lösekann, T.2
De Beer, D.3
-
10
-
-
33745044981
-
Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough
-
T. Nunoura, H. Oida, T. Toki, J. Ashi, K. Takai, andK. Horikoshi, "Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough, " FEMS Microbiology Ecology, vol. 57, no. 1, pp. 149-157, 2006.
-
(2006)
FEMS Microbiology Ecology
, vol.57
, Issue.1
, pp. 149-157
-
-
Nunoura, T.1
Oida, H.2
Toki, T.3
Ashi, J.4
Takai, K.5
Horikoshi, K.6
-
11
-
-
24644498136
-
Molecular biogeochemistry of sulfate reduction, methanogenesis, the anaerobic oxidation of methane at Gulf of Mexico cold seeps
-
B. Orcutt, A. Boetius, M. Elvert, V. Samarkin, S. B. Joye, "Molecular biogeochemistry of sulfate reduction, methanogenesis, the anaerobic oxidation of methane at Gulf of Mexico cold seeps, "Geochimica et Cosmochimica Acta, vol. 69, no. 17, pp. 4267-4281, 2005.
-
(2005)
Geochimica et Cosmochimica Acta
, vol.69
, Issue.17
, pp. 4267-4281
-
-
Orcutt, B.1
Boetius, A.2
Elvert, M.3
Samarkin, V.4
Joye, S.B.5
-
12
-
-
2142736132
-
Geological, geochemical, microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California
-
V. J. Orphan, W. Ussler III, T. H. Naehr, C. H. House, K.-U. Hinrichs, C. K. Paull, "Geological, geochemical, microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California, " Chemical Geology, vol. 205, no. 3-4, pp. 265-289, 2004.
-
(2004)
Chemical Geology
, vol.205
, Issue.3-4
, pp. 265-289
-
-
Orphan, V.J.1
Ussler, W.2
Naehr, T.H.3
House, C.H.4
Hinrichs, K.-U.5
Paull, C.K.6
-
13
-
-
80052883086
-
Diversity, spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano
-
M. G. Pachiadaki, A. Kallionaki, A. Dählmann, G. J. De Lange, K. A. Kormas, "Diversity, spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano, " Microbial Ecology, vol. 62, no. 3, pp. 655-668, 2011.
-
(2011)
Microbial Ecology
, vol.62
, Issue.3
, pp. 655-668
-
-
Pachiadaki, M.G.1
Kallionaki, A.2
Dählmann, A.3
De Lange, G.J.4
Kormas, K.A.5
-
14
-
-
84875770987
-
Fine-scale community structure analysis of ANME in Nyegga sediments with high, low methane flux
-
I. Roalkvam, H. Dahle, Y. Chen, S. L. Jørgensen, H. Haflidason, I. H. Steen, "Fine-scale community structure analysis of ANME in Nyegga sediments with high, low methane flux, " Frontiers in Microbiology, vol. 3, p. 216, 2012.
-
(2012)
Frontiers in Microbiology
, vol.3
, pp. 216
-
-
Roalkvam, I.1
Dahle, H.2
Chen, Y.3
Jørgensen, S.L.4
Haflidason, H.5
Steen, I.H.6
-
15
-
-
79951976815
-
Niche separation of methanotrophic archaea (ANME-1,-2) in methaneseep sediments of the Eastern Japan Sea offshore Joetsu
-
K. Yanagawa, M. Sunamura, M. A. Lever et al. , "Niche separation of methanotrophic archaea (ANME-1,-2) in methaneseep sediments of the Eastern Japan Sea offshore Joetsu, " Geomicrobiology Journal, vol. 28, no. 2, pp. 118-129, 2011.
-
(2011)
Geomicrobiology Journal
, vol.28
, Issue.2
, pp. 118-129
-
-
Yanagawa, K.1
Sunamura, M.2
Lever, M.A.3
-
16
-
-
44349119350
-
Diverse syntrophic partnerships fromdeep-sea methane vents revealed by direct cell capture, metagenomics
-
A. Pernthaler, A. E. Dekas, C. T. Brown, S. K. Goffredi, T. Embaye, V. J. Orphan, "Diverse syntrophic partnerships fromdeep-sea methane vents revealed by direct cell capture, metagenomics, " Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 19, pp. 7052-7057, 2008.
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.19
, pp. 7052-7057
-
-
Pernthaler, A.1
Dekas, A.E.2
Brown, C.T.3
Goffredi, S.K.4
Embaye, T.5
Orphan, V.J.6
-
17
-
-
84978139594
-
Visualizing in situ translational activity for identifying, sorting slow-growing archaeal?bacterial consortia
-
R. Hatzenpichler, S. A. Connon, D. Goudeau, R. R. Malmstrom, T. Woyke, V. J. Orphan, "Visualizing in situ translational activity for identifying, sorting slow-growing archaeal?bacterial consortia, " Proceedings of the National Academy of Sciences, vol. 113, no. 28, pp. E4069-E4078, 2016.
-
(2016)
Proceedings of the National Academy of Sciences
, vol.113
, Issue.28
, pp. E4069-E4078
-
-
Hatzenpichler, R.1
Connon, S.A.2
Goudeau, D.3
Malmstrom, R.R.4
Woyke, T.5
Orphan, V.J.6
-
18
-
-
84870929180
-
Anaerobic oxidation of methane in hypersaline cold seep sediments
-
L. Maignien, R. J. Parkes, B. Cragg et al. , "Anaerobic oxidation of methane in hypersaline cold seep sediments, " FEMS Microbiology Ecology, vol. 83, no. 1, pp. 214-231, 2013.
-
(2013)
FEMS Microbiology Ecology
, vol.83
, Issue.1
, pp. 214-231
-
-
Maignien, L.1
Parkes, R.J.2
Cragg, B.3
-
19
-
-
0037188554
-
Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments
-
V. J. Orphan, C. H. House, K.-U. Hinrichs, K. D. McKeegan, E. F. DeLong, "Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments, " Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7663-7668, 2002.
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.11
, pp. 7663-7668
-
-
Orphan, V.J.1
House, C.H.2
Hinrichs, K.-U.3
McKeegan, K.D.4
DeLong, E.F.5
-
20
-
-
24644449469
-
Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic)
-
T. Treude, M. Krüger, A. Boetius, B. B. Jørgensen, "Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic), " Limnology, Oceanography, vol. 50, no. 6, pp. 1771-1786, 2005.
-
(2005)
Limnology, Oceanography
, vol.50
, Issue.6
, pp. 1771-1786
-
-
Treude, T.1
Krüger, M.2
Boetius, A.3
Jørgensen, B.B.4
-
21
-
-
71249123618
-
Microbial diversity, community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment
-
G. C. Jagersma, R. J. W. Meulepas, I. Heikamp-De Jong et al. , "Microbial diversity, community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment, " Environmental Microbiology, vol. 11, no. 12, pp. 3223-3232, 2009.
-
(2009)
Environmental Microbiology
, vol.11
, Issue.12
, pp. 3223-3232
-
-
Jagersma, G.C.1
Meulepas, R.J.W.2
Heikamp-De Jong, I.3
-
22
-
-
3342941438
-
Membrane lipid patterns typify distinct anaerobic methanotrophic consortia
-
M. Blumenberg, R. Seifert, J. Reitner, T. Pape, andW. Michaelis, "Membrane lipid patterns typify distinct anaerobic methanotrophic consortia, " Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 30, pp. 11111-11116, 2004.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.30
, pp. 11111-11116
-
-
Blumenberg, M.1
Seifert, R.2
Reitner, J.3
Pape, T.4
Michaelis, W.5
-
23
-
-
84881261186
-
Methanogenic capabilities of ANMEarchaea deduced from 13C-labelling approaches
-
S. Bertram, M. Blumenberg, W. Michaelis, M. Siegert, M. Krüger, R. Seifert, "Methanogenic capabilities of ANMEarchaea deduced from 13C-labelling approaches, " Environmental Microbiology, vol. 15, no. 8, pp. 2384-2393, 2013.
-
(2013)
Environmental Microbiology
, vol.15
, Issue.8
, pp. 2384-2393
-
-
Bertram, S.1
Blumenberg, M.2
Michaelis, W.3
Siegert, M.4
Krüger, M.5
Seifert, R.6
-
24
-
-
80052627969
-
Environmental evidence for net methane production, oxidation in putative ANaerobic MEthanotrophic (ANME) archaea
-
K. G. Lloyd, M. J. Alperin, A. Teske, "Environmental evidence for net methane production, oxidation in putative ANaerobic MEthanotrophic (ANME) archaea, " Environmental Microbiology, vol. 13, no. 9, pp. 2548-2564, 2011.
-
(2011)
Environmental Microbiology
, vol.13
, Issue.9
, pp. 2548-2564
-
-
Lloyd, K.G.1
Alperin, M.J.2
Teske, A.3
-
25
-
-
82555174402
-
A distinct fresh water adapted subgroup of ANME-1 dominates active archaeal communities in terrestrial subsurfaces in Japan
-
M. Takeuchi, H. Yoshioka, Y. Seo et al. , "A distinct freshwateradapted subgroup of ANME-1 dominates active archaeal communities in terrestrial subsurfaces in Japan, " Environmental Microbiology, vol. 13, no. 12, pp. 3206-3218, 2011.
-
(2011)
Environmental Microbiology
, vol.13
, Issue.12
, pp. 3206-3218
-
-
Takeuchi, M.1
Yoshioka, H.2
Seo, Y.3
-
26
-
-
84867630114
-
Evidence for iron-mediated anaerobic methane oxidation in a crude oilcontaminated aquifer
-
R. T. Amos, B. A. Bekins, I. M. Cozzarelli et al. , "Evidence for iron-mediated anaerobic methane oxidation in a crude oilcontaminated aquifer, " Geobiology, vol. 10, no. 6, pp. 506-517, 2012.
-
(2012)
Geobiology
, vol.10
, Issue.6
, pp. 506-517
-
-
Amos, R.T.1
Bekins, B.A.2
Cozzarelli, I.M.3
-
27
-
-
84949257795
-
Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source
-
P. H. Timmers, D. A. Suarez-Zuluaga, M. van Rossem, M. Diender, A. J. Stams, C. M. Plugge, "Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source, " ISME Journal, vol. 10, pp. 1400-1412, 2015.
-
(2015)
ISME Journal
, vol.10
, pp. 1400-1412
-
-
Timmers, P.H.1
Suarez-Zuluaga, D.A.2
Van Rossem, M.3
Diender, M.4
Stams, A.J.5
Plugge, C.M.6
-
28
-
-
84883134016
-
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
-
M. F. Haroon, S. Hu, Y. Shi et al. , "Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage, " Nature, vol. 500, no. 7468, pp. 567-570, 2013.
-
(2013)
Nature
, vol.500
, Issue.7468
, pp. 567-570
-
-
Haroon, M.F.1
Hu, S.2
Shi, Y.3
-
29
-
-
0142060092
-
Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico
-
H. J. Mills, C. Hodges, K. Wilson, I. R. MacDonald, P. A. Sobecky, "Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico, " FEMS Microbiology Ecology, vol. 46, no. 1, pp. 39-52, 2003.
-
(2003)
FEMS Microbiology Ecology
, vol.46
, Issue.1
, pp. 39-52
-
-
Mills, H.J.1
Hodges, C.2
Wilson, K.3
MacDonald, I.R.4
Sobecky, P.A.5
-
30
-
-
33751019178
-
An anaerobic methaneoxidizing community of ANME-1b archaea in hypersaline gulf ofMexico sediments
-
K. G. Lloyd, L. Lapham, A. Teske, "An anaerobic methaneoxidizing community of ANME-1b archaea in hypersaline gulf ofMexico sediments, " Applied, EnvironmentalMicrobiology, vol. 72, no. 11, pp. 7218-7230, 2006.
-
(2006)
Applied, EnvironmentalMicrobiology
, vol.72
, Issue.11
, pp. 7218-7230
-
-
Lloyd, K.G.1
Lapham, L.2
Teske, A.3
-
31
-
-
33645876469
-
A microbial consortium couples anaerobic methane oxidation to denitrification
-
A. A. Raghoebarsing, A. Pol, K. T. Van De Pas-Schoonen et al. , "A microbial consortium couples anaerobic methane oxidation to denitrification, " Nature, vol. 440, no. 7086, pp. 918-921, 2006.
-
(2006)
Nature
, vol.440
, Issue.7086
, pp. 918-921
-
-
Raghoebarsing, A.A.1
Pol, A.2
Pas-Schoonen De Van, K.T.3
-
32
-
-
77950280112
-
Enrichment of denitrifying anaerobic methane oxidizing microorganisms
-
S. Hu, R. J. Zeng, L. C. Burow, P. Lant, J. Keller, Z. Yuan, "Enrichment of denitrifying anaerobic methane oxidizing microorganisms, " Environmental Microbiology Reports, vol. 1, no. 5, pp. 377-384, 2009.
-
(2009)
Environmental Microbiology Reports
, vol.1
, Issue.5
, pp. 377-384
-
-
Hu, S.1
Zeng, R.J.2
Burow, L.C.3
Lant, P.4
Keller, J.5
Yuan, Z.6
-
33
-
-
84916883380
-
Simultaneous enrichment of denitrifying methanotrophs, anammox bacteria
-
Z.-W. Ding, J. Ding, L. Fu, F. Zhang, R. J. Zeng, "Simultaneous enrichment of denitrifying methanotrophs, anammox bacteria, " Applied Microbiology, Biotechnology, vol. 98, no. 24, pp. 10211-10221, 2014.
-
(2014)
Applied Microbiology, Biotechnology
, vol.98
, Issue.24
, pp. 10211-10221
-
-
Ding, Z.-W.1
Ding, J.2
Fu, L.3
Zhang, F.4
Zeng, R.J.5
-
34
-
-
33748887868
-
Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro
-
R. Seifert, K. Nauhaus, M. Blumenberg, M. Krüger, W. Michaelis, "Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro, " Organic Geochemistry, vol. 37, no. 10, pp. 1411-1419, 2006.
-
(2006)
Organic Geochemistry
, vol.37
, Issue.10
, pp. 1411-1419
-
-
Seifert, R.1
Nauhaus, K.2
Blumenberg, M.3
Krüger, M.4
Michaelis, W.5
-
35
-
-
84946486211
-
New primers for detecting, quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches
-
J. Ding, Z.-W. Ding, L. Fu, Y.-Z. Lu, S. H. Cheng, R. J. Zeng, "New primers for detecting, quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches, " AppliedMicrobiology, Biotechnology, vol. 99, no. 22, pp. 9805-9812, 2015.
-
(2015)
AppliedMicrobiology, Biotechnology
, vol.99
, Issue.22
, pp. 9805-9812
-
-
Ding, J.1
Ding, Z.-W.2
Fu, L.3
Lu, Y.-Z.4
Cheng, S.H.5
Zeng, R.J.6
-
36
-
-
84995784291
-
Distribution, activity of the anaerobic methanotrophic community in a nitrogenfertilized Italian paddy soil
-
A. Vaksmaa, C. Lüke, T. van Alen et al. , "Distribution, activity of the anaerobic methanotrophic community in a nitrogenfertilized Italian paddy soil, " FEMS Microbiology Ecology, vol. 92, no. 12, 2016.
-
(2016)
FEMS Microbiology Ecology
, vol.92
, Issue.12
-
-
Vaksmaa, A.1
Lüke, C.2
Van Alen, T.3
-
37
-
-
84944739223
-
Methane metabolismin the archaeal phylumBathyarchaeota revealed by genome-centric metagenomics
-
P. N. Evans, D. H. Parks, G. L. Chadwick et al. , "Methane metabolismin the archaeal phylumBathyarchaeota revealed by genome-centric metagenomics, " Science, vol. 350, no. 6259, pp. 434-438, 2015.
-
(2015)
Science
, vol.350
, Issue.6259
, pp. 434-438
-
-
Evans, P.N.1
Parks, D.H.2
Chadwick, G.L.3
-
38
-
-
84989855219
-
Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota
-
I. Vanwonterghem, P. N. Evans, D. H. Parks et al. , "Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota, " Nature Microbiology, vol. 1, Article ID 16170, 2016.
-
(2016)
Nature Microbiology
, vol.1
-
-
Vanwonterghem, I.1
Evans, P.N.2
Parks, D.H.3
-
39
-
-
84911498515
-
A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities
-
P. Worm, J. J. Koehorst, M. Visser et al. , "A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities, " Biochimica et Biophysica Acta-Bioenergetics, vol. 1837, no. 12, pp. 2004-2016, 2014.
-
(2014)
Biochimica et Biophysica Acta-Bioenergetics
, vol.1837
, Issue.12
, pp. 2004-2016
-
-
Worm, P.1
Koehorst, J.J.2
Visser, M.3
-
40
-
-
84859946336
-
Integrated metagenomic, metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments
-
R. Stokke, I. Roalkvam, A. Lanzen, H. Haflidason, I. H. Steen, "Integrated metagenomic, metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments, " EnvironmentalMicrobiology, vol. 14, no. 5, pp. 1333-1346, 2012.
-
(2012)
Environmental Microbiology
, vol.14
, Issue.5
, pp. 1333-1346
-
-
Stokke, R.1
Roalkvam, I.2
Lanzen, A.3
Haflidason, H.4
Steen, I.H.5
-
41
-
-
77649174627
-
Metagenome, mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group
-
A. Meyerdierks, M. Kube, I. Kostadinov et al. , "Metagenome, mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group, " Environmental Microbiology, vol. 12, no. 2, pp. 422-439, 2010.
-
(2010)
Environmental Microbiology
, vol.12
, Issue.2
, pp. 422-439
-
-
Meyerdierks, A.1
Kube, M.2
Kostadinov, I.3
-
42
-
-
84899480182
-
Methanotrophic archaea possessing diverging methane-oxidizing, electrontransporting pathways
-
F.-P. Wang, Y. Zhang, Y. Chen et al. , "Methanotrophic archaea possessing diverging methane-oxidizing, electrontransporting pathways, " ISME Journal, vol. 8, no. 5, pp. 1069-1078, 2014.
-
(2014)
ISME Journal
, vol.8
, Issue.5
, pp. 1069-1078
-
-
Wang, F.-P.1
Zhang, Y.2
Chen, Y.3
-
43
-
-
84953886208
-
A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea
-
A. Arshad, D. R. Speth, R. M. de Graaf, H. J. Op den Camp, M. S. Jetten, C. U. Welte, "A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea, " Frontiers inMicrobiology, vol. 6, article1423, 2015.
-
(2015)
Frontiers InMicrobiology
, vol.6
-
-
Arshad, A.1
Speth, D.R.2
De Graaf, R.M.3
Op Den Camp, H.J.4
Jetten, M.S.5
Welte, C.U.6
-
44
-
-
4444370893
-
Reversemethanogenesis: Testing the hypothesis with environmental genomics
-
S. J. Hallam, N. Putnam, C. M. Preston et al. , "Reversemethanogenesis: testing the hypothesis with environmental genomics, " Science, vol. 305, no. 5689, pp. 1457-1462, 2004.
-
(2004)
Science
, vol.305
, Issue.5689
, pp. 1457-1462
-
-
Hallam, S.J.1
Putnam, N.2
Preston, C.M.3
-
45
-
-
79959319231
-
Anaerobic oxidation of methane with sulfate: On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis fromCO2
-
R. K. Thauer, "Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis fromCO2, " Current Opinion in Microbiology, vol. 14, no. 3, pp. 292-299, 2011.
-
(2011)
Current Opinion in Microbiology
, vol.14
, Issue.3
, pp. 292-299
-
-
Thauer, R.K.1
-
46
-
-
0029967858
-
Pathways of energy conservation in methanogenic archaea
-
U. Deppenmeier, V. Müller, G. Gottschalk, "Pathways of energy conservation in methanogenic archaea, " Archives of Microbiology, vol. 165, no. 3, pp. 149-163, 1996.
-
(1996)
Archives of Microbiology
, vol.165
, Issue.3
, pp. 149-163
-
-
Deppenmeier, U.1
Müller, V.2
Gottschalk, G.3
-
47
-
-
79952588675
-
Coupling of ferredoxin, heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea
-
A.-K. Kaster, J. Moll, K. Parey, R. K. Thauer, "Coupling of ferredoxin, heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea, " Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 2981-2986, 2011.
-
(2011)
Proceedings of the National Academy of Sciences of the United States of America
, vol.108
, Issue.7
, pp. 2981-2986
-
-
Kaster, A.-K.1
Moll, J.2
Parey, K.3
Thauer, R.K.4
-
48
-
-
47549119041
-
Methanogenic archaea: Ecologically relevant differences in energy conservation
-
R. K. Thauer, A.-K. Kaster, H. Seedorf, W. Buckel, R. Hedderich, "Methanogenic archaea: ecologically relevant differences in energy conservation, " Nature Reviews Microbiology, vol. 6, no. 8, pp. 579-591, 2008.
-
(2008)
Nature Reviews Microbiology
, vol.6
, Issue.8
, pp. 579-591
-
-
Thauer, R.K.1
Kaster, A.-K.2
Seedorf, H.3
Buckel, W.4
Hedderich, R.5
-
49
-
-
2542523843
-
ARB: A software environment for sequence data
-
W. Ludwig, O. Strunk, R. Westram et al. , "ARB: a software environment for sequence data, " Nucleic Acids Research, vol. 32, no. 4, pp. 1363-1371, 2004.
-
(2004)
Nucleic Acids Research
, vol.32
, Issue.4
, pp. 1363-1371
-
-
Ludwig, W.1
Strunk, O.2
Westram, R.3
-
50
-
-
37549027613
-
SILVA: A comprehensive online resource for quality checked, aligned ribosomal RNA sequence data compatible with ARB
-
E. Pruesse, C. Quast, K. Knittel et al. , "SILVA: a comprehensive online resource for quality checked, aligned ribosomal RNA sequence data compatible with ARB, " Nucleic Acids Research, vol. 35, no. 21, pp. 7188-7196, 2007.
-
(2007)
Nucleic Acids Research
, vol.35
, Issue.21
, pp. 7188-7196
-
-
Pruesse, E.1
Quast, C.2
Knittel, K.3
-
51
-
-
84966415554
-
Proteomic stable isotope probing reveals biosynthesis dynamics of slow growing methane based microbial communities
-
J. J. Marlow, C. T. Skennerton, Z. Li et al. , "Proteomic stable isotope probing reveals biosynthesis dynamics of slow growing methane based microbial communities, " Frontiers in Microbiology, vol. 7, article 386, 2016.
-
(2016)
Frontiers in Microbiology
, vol.7
-
-
Marlow, J.J.1
Skennerton, C.T.2
Li, Z.3
-
52
-
-
23044513880
-
Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, reveals an unknown methanogenic pathway
-
P. V. Welander, W. W. Metcalf, "Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, reveals an unknown methanogenic pathway, " Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10664-10669, 2005.
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.30
, pp. 10664-10669
-
-
Welander, P.V.1
Metcalf, W.W.2
-
53
-
-
40449083311
-
Mutagenesis of the C1 oxidation pathway in methanosarcina barkeri: Newinsights into the Mtr/Mer bypass pathway
-
P. V. Welander, W. W. Metcalf, "Mutagenesis of the C1 oxidation pathway in methanosarcina barkeri: newinsights into the Mtr/Mer bypass pathway, " Journal of Bacteriology, vol. 190, no. 6, pp. 1928-1936, 2008.
-
(2008)
Journal of Bacteriology
, vol.190
, Issue.6
, pp. 1928-1936
-
-
Welander, P.V.1
Metcalf, W.W.2
-
54
-
-
27744470399
-
Formaldehyde activating enzyme (Fae), hexulose-6-phosphate synthase (Hps) inMethanosarcinabarkeri: A possible function in ribose-5-phosphate biosynthesis
-
M. Goenrich, R. K. Thauer, H. Yurimoto, N. Kato, "Formaldehyde activating enzyme (Fae), hexulose-6-phosphate synthase (Hps) inMethanosarcinabarkeri: a possible function in ribose-5-phosphate biosynthesis, " Archives of Microbiology, vol. 184, no. 1, pp. 41-48, 2005.
-
(2005)
Archives of Microbiology
, vol.184
, Issue.1
, pp. 41-48
-
-
Goenrich, M.1
Thauer, R.K.2
Yurimoto, H.3
Kato, N.4
-
55
-
-
4644265740
-
Probing the reactivity ofNi in the active site of methylcoenzyme M reductase with substrate analogues
-
M. Goenrich, F. Mahlert, E. C. Duin, C. Bauer, B. Jaun, R. K. Thauer, "Probing the reactivity ofNi in the active site of methylcoenzyme M reductase with substrate analogues, " Journal of Biological Inorganic Chemistry, vol. 9, no. 6, pp. 691-705, 2004.
-
(2004)
Journal of Biological Inorganic Chemistry
, vol.9
, Issue.6
, pp. 691-705
-
-
Goenrich, M.1
Mahlert, F.2
Duin, E.C.3
Bauer, C.4
Jaun, B.5
Thauer, R.K.6
-
56
-
-
77953222884
-
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
-
S. Scheller, M. Goenrich, R. Boecher, R. K. Thauer, B. Jaun, "The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane, " Nature, vol. 465, no. 7298, pp. 606-608, 2010.
-
(2010)
Nature
, vol.465
, Issue.7298
, pp. 606-608
-
-
Scheller, S.1
Goenrich, M.2
Boecher, R.3
Thauer, R.K.4
Jaun, B.5
-
57
-
-
0036045379
-
In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment froma marine gas hydrate area
-
K. Nauhaus, A. Boetius, M. Krüger, F. Widdel, "In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment froma marine gas hydrate area, " Environmental Microbiology, vol. 4, no. 5, pp. 296-305, 2002.
-
(2002)
Environmental Microbiology
, vol.4
, Issue.5
, pp. 296-305
-
-
Nauhaus, K.1
Boetius, A.2
Krüger, M.3
Widdel, F.4
-
58
-
-
74649084843
-
Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor
-
Y. Zhang, J.-P. Henriet, J. Bursens, N. Boon, "Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor, " Bioresource Technology, vol. 101, no. 9, pp. 3132-3138, 2010.
-
(2010)
Bioresource Technology
, vol.101
, Issue.9
, pp. 3132-3138
-
-
Zhang, Y.1
Henriet, J.-P.2
Bursens, J.3
Boon, N.4
-
59
-
-
26844539699
-
Microbial methane turnover in different marine habitats
-
M. Krüger, T. Treude, H. Wolters, K. Nauhaus, A. Boetius, "Microbial methane turnover in different marine habitats, " Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 227, no. 1-3, pp. 6-17, 2005.
-
(2005)
Palaeogeography, Palaeoclimatology, Palaeoecology
, vol.227
, Issue.1-3
, pp. 6-17
-
-
Krüger, M.1
Treude, T.2
Wolters, H.3
Nauhaus, K.4
Boetius, A.5
-
60
-
-
74849085128
-
High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane
-
C. Deusner, V. Meyer, T. G. Ferdelman, "High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane, " Biotechnology, Bioengineering, vol. 105, no. 3, pp. 524-533, 2010.
-
(2010)
Biotechnology, Bioengineering
, vol.105
, Issue.3
, pp. 524-533
-
-
Deusner, C.1
Meyer, V.2
Ferdelman, T.G.3
-
61
-
-
12544250488
-
Environmental regulation of the anaerobic oxidation of methane: A comparison of ANME-I, ANME-II communities
-
K. Nauhaus, T. Treude, A. Boetius, M. Krüger, "Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I, ANME-II communities, " Environmental Microbiology, vol. 7, no. 1, pp. 98-106, 2005.
-
(2005)
Environmental Microbiology
, vol.7
, Issue.1
, pp. 98-106
-
-
Nauhaus, K.1
Treude, T.2
Boetius, A.3
Krüger, M.4
-
62
-
-
34247465976
-
Consumption of methane, CO2 by methanotrophic microbial mats fromgas seeps of the anoxic Black Sea
-
T. Treude, V. Orphan, K. Knittel, A. Gieseke, C. H. House, A. Boetius, "Consumption of methane, CO2 by methanotrophic microbial mats fromgas seeps of the anoxic Black Sea, " Applied, EnvironmentalMicrobiology, vol. 73, no. 7, pp. 2271-2283, 2007.
-
(2007)
Applied, EnvironmentalMicrobiology
, vol.73
, Issue.7
, pp. 2271-2283
-
-
Treude, T.1
Orphan, V.2
Knittel, K.3
Gieseke, A.4
House, C.H.5
Boetius, A.6
-
63
-
-
81855222106
-
Thermophilic anaerobic oxidation of methane by marine microbial consortia
-
T. Holler, F. Widdel, K. Knittel et al. , "Thermophilic anaerobic oxidation of methane by marine microbial consortia, " ISME Journal, vol. 5, no. 12, pp. 1946-1956, 2011.
-
(2011)
ISME Journal
, vol.5
, Issue.12
, pp. 1946-1956
-
-
Holler, T.1
Widdel, F.2
Knittel, K.3
-
64
-
-
62149146647
-
A novel, multilayered methanotrophic microbial mat system growing on the sediment of the Black Sea
-
M. Krüger, M. Blumenberg, S. Kasten et al. , "A novel, multilayered methanotrophic microbial mat system growing on the sediment of the Black Sea, " EnvironmentalMicrobiology, vol. 10, no. 8, pp. 1934-1947, 2008.
-
(2008)
Environmental Microbiology
, vol.10
, Issue.8
, pp. 1934-1947
-
-
Krüger, M.1
Blumenberg, M.2
Kasten, S.3
-
65
-
-
69549113285
-
Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors
-
R. J. W. Meulepas, C. G. Jagersma, J. Gieteling, C. J. N. Buisman, A. J. M. Stams, P. N. L. Lens, "Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors, " Biotechnology, Bioengineering, vol. 104, no. 3, pp. 458-470, 2009.
-
(2009)
Biotechnology, Bioengineering
, vol.104
, Issue.3
, pp. 458-470
-
-
Meulepas, R.J.W.1
Jagersma, C.G.2
Gieteling, J.3
Buisman, C.J.N.4
Stams, A.J.M.5
Lens, P.N.L.6
-
66
-
-
84855489685
-
Carbon, sulfur back flux during anaerobic microbial oxidation ofmethane, coupled sulfate reduction
-
T. Holler, G. Wegener, H. Niemann et al. , "Carbon, sulfur back flux during anaerobic microbial oxidation ofmethane, coupled sulfate reduction, " Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 52, pp. E1484-E1490, 2011.
-
(2011)
Proceedings of the National Academy of Sciences of the United States of America
, vol.108
, Issue.52
, pp. E1484-E1490
-
-
Holler, T.1
Wegener, G.2
Niemann, H.3
-
67
-
-
9144257242
-
Aconspicuous nickel protein in microbial mats that oxidize methane anaerobically
-
M. Krüger, A. Meyerdierks, F. O. Glöckner et al. , "Aconspicuous nickel protein in microbial mats that oxidize methane anaerobically, " Nature, vol. 426, no. 6968, pp. 878-881, 2003.
-
(2003)
Nature
, vol.426
, Issue.6968
, pp. 878-881
-
-
Krüger, M.1
Meyerdierks, A.2
Glöckner, F.O.3
-
68
-
-
49449096406
-
Structure of an F430 variant from archaea associated with anaerobic oxidation of methane
-
S. Mayr, C. Latkoczy, M. Krüger et al. , "Structure of an F430 variant from archaea associated with anaerobic oxidation of methane, " Journal of the American Chemical Society, vol. 130, no. 32, pp. 10758-10767, 2008.
-
(2008)
Journal of the American Chemical Society
, vol.130
, Issue.32
, pp. 10758-10767
-
-
Mayr, S.1
Latkoczy, C.2
Krüger, M.3
-
69
-
-
27844544240
-
Methyl-coenzyme M reductase, the anaerobic oxidation of methane in methanotrophic Archaea
-
S. Shima, R. K. Thauer, "Methyl-coenzyme M reductase, the anaerobic oxidation of methane in methanotrophic Archaea, " Current Opinion in Microbiology, vol. 8, no. 6, pp. 643-648, 2005.
-
(2005)
Current Opinion in Microbiology
, vol.8
, Issue.6
, pp. 643-648
-
-
Shima, S.1
Thauer, R.K.2
-
70
-
-
41349105149
-
Methane as fuel for anaerobic microorganisms
-
R. K. Thauer, S. Shima, "Methane as fuel for anaerobic microorganisms, " Annals of the New York Academy of Sciences, vol. 1125, pp. 158-170, 2008.
-
(2008)
Annals of the New York Academy of Sciences
, vol.1125
, pp. 158-170
-
-
Thauer, R.K.1
Shima, S.2
-
71
-
-
0016870113
-
Solubility of methane in distilled water, seawater
-
S. Yamamoto, J. B. Alcauskas, T. E. Crozier, "Solubility of methane in distilled water, seawater, " Journal of Chemical, Engineering Data, vol. 21, no. 1, pp. 78-80, 1976.
-
(1976)
Journal of Chemical, Engineering Data
, vol.21
, Issue.1
, pp. 78-80
-
-
Yamamoto, S.1
Alcauskas, J.B.2
Crozier, T.E.3
-
72
-
-
84922022072
-
Growth of anaerobic methane-oxidizing archaea, sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor
-
P. H. A. Timmers, J. Gieteling, H. C. A. Widjaja-Greefkes et al. , "Growth of anaerobic methane-oxidizing archaea, sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor, "AppliedandEnvironmentalMicrobiology, vol. 81, no. 4, pp. 1286-1296, 2015.
-
(2015)
Applied and Environmental Microbiology
, vol.81
, Issue.4
, pp. 1286-1296
-
-
Timmers, P.H.A.1
Gieteling, J.2
Widjaja-Greefkes, H.C.A.3
-
73
-
-
38849087235
-
Tracing the slow growth of anaerobic methane-oxidizing communities by 15N-labelling techniques
-
M. Krüger, H. Wolters, M. Gehre, S. B. Joye, andH.-H. Richnow, "Tracing the slow growth of anaerobic methane-oxidizing communities by 15N-labelling techniques, " FEMS Microbiology Ecology, vol. 63, no. 3, pp. 401-411, 2008.
-
(2008)
FEMS Microbiology Ecology
, vol.63
, Issue.3
, pp. 401-411
-
-
Krüger, M.1
Wolters, H.2
Gehre, M.3
Joye, S.B.4
Richnow, H.-H.5
-
74
-
-
69549106490
-
Effect of environmental conditions on sulfate reduction withmethane as electron donor by an Eckernförde Bay enrichment
-
R. J. W. Meulepas, C. G. Jagersma, A. F. Khadem, C. J. N. Buisman, A. J. M. Stams, P. N. L. Lens, "Effect of environmental conditions on sulfate reduction withmethane as electron donor by an Eckernförde Bay enrichment, " Environmental Science, Technology, vol. 43, no. 17, pp. 6553-6559, 2009.
-
(2009)
Environmental Science, Technology
, vol.43
, Issue.17
, pp. 6553-6559
-
-
Meulepas, R.J.W.1
Jagersma, C.G.2
Khadem, A.F.3
Buisman, C.J.N.4
Stams, A.J.M.5
Lens, P.N.L.6
-
75
-
-
82255193064
-
Improved measurement of microbial activity in deep-sea sediments at in situ pressure, methane concentration
-
M. W. Bowles, V. A. Samarkin, S. B. Joye, "Improved measurement of microbial activity in deep-sea sediments at in situ pressure, methane concentration, " Limnology, Oceanography: Methods, vol. 9, pp. 499-506, 2011.
-
(2011)
Limnology, Oceanography: Methods
, vol.9
, pp. 499-506
-
-
Bowles, M.W.1
Samarkin, V.A.2
Joye, S.B.3
-
76
-
-
84855441495
-
Structure of a methylcoenzyme M reductase from Black Sea mats that oxidize methane anaerobically
-
S. Shima, M. Krueger, T. Weinert et al. , "Structure of a methylcoenzyme M reductase from Black Sea mats that oxidize methane anaerobically, " Nature, vol. 481, no. 7379, pp. 98-101, 2012.
-
(2012)
Nature
, vol.481
, Issue.7379
, pp. 98-101
-
-
Shima, S.1
Krueger, M.2
Weinert, T.3
-
77
-
-
84907279948
-
Discovery of multiple modified F-430 coenzymes in methanogens, anaerobic methanotrophic archaea suggests possible new roles for F-430 in nature
-
K. D. Allen, G. Wegener, R. H. White, "Discovery of multiple modified F-430 coenzymes in methanogens, anaerobic methanotrophic archaea suggests possible new roles for F-430 in nature, " Applied, EnvironmentalMicrobiology, vol. 80, no. 20, pp. 6403-6412, 2014.
-
(2014)
Applied, EnvironmentalMicrobiology
, vol.80
, Issue.20
, pp. 6403-6412
-
-
Allen, K.D.1
Wegener, G.2
White, R.H.3
-
78
-
-
84954182240
-
Reversing methanogenesis to capture methane for liquid biofuel precursors
-
V. W. Soo, M. J. McAnulty, A. Tripathi et al. , "Reversing methanogenesis to capture methane for liquid biofuel precursors, " Microbial Cell Factories, vol. 15, article 11, 2016.
-
(2016)
Microbial Cell Factories
, vol.15
-
-
Soo, V.W.1
McAnulty, M.J.2
Tripathi, A.3
-
79
-
-
0034548842
-
New perspectives on anaerobicmethane oxidation
-
D. L. Valentine, W. S. Reeburgh, "New perspectives on anaerobicmethane oxidation, " EnvironmentalMicrobiology, vol. 2, no. 5, pp. 477-484, 2000.
-
(2000)
Environmental Microbiology
, vol.2
, Issue.5
, pp. 477-484
-
-
Valentine, D.L.1
Reeburgh, W.S.2
-
80
-
-
0036417909
-
Biogeochemistry, microbial ecology of methane oxidation in anoxic environments: A review
-
D. L. Valentine, "Biogeochemistry, microbial ecology of methane oxidation in anoxic environments: a review, " Antonie van Leeuwenhoek, International Journal of General andMolecular Microbiology, vol. 81, no. 1-4, pp. 271-282, 2002.
-
(2002)
Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology
, vol.81
, Issue.1-4
, pp. 271-282
-
-
Valentine, D.L.1
-
81
-
-
0018427427
-
Methane formation, methane oxidation by methanogenic bacteria
-
A. J. B. Zehnder, T. D. Brock, "Methane formation, methane oxidation by methanogenic bacteria, " Journal of Bacteriology, vol. 137, no. 1, pp. 420-432, 1979.
-
(1979)
Journal of Bacteriology
, vol.137
, Issue.1
, pp. 420-432
-
-
Zehnder, A.J.B.1
Brock, T.D.2
-
82
-
-
0030620732
-
Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide
-
J. Harder, "Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide, " Marine Geology, vol. 137, no. 1-2, pp. 13-23, 1997.
-
(1997)
Marine Geology
, vol.137
, Issue.1-2
, pp. 13-23
-
-
Harder, J.1
-
83
-
-
20144385037
-
Trace methane oxidation studied in several Euryarchaeota under diverse conditions
-
J. J. Moran, C. H. House, K. H. Freeman, J. G. Ferry, "Trace methane oxidation studied in several Euryarchaeota under diverse conditions, " Archaea, vol. 1, no. 5, pp. 303-309, 2005.
-
(2005)
Archaea
, vol.1
, Issue.5
, pp. 303-309
-
-
Moran, J.J.1
House, C.H.2
Freeman, K.H.3
Ferry, J.G.4
-
84
-
-
34548354509
-
Products of tracemethane oxidation during nonmethyltrophic growth by Methanosarcina
-
J. J. Moran, C. H. House, B. Thomas, K. H. Freeman, "Products of tracemethane oxidation during nonmethyltrophic growth by Methanosarcina, " Journal of Geophysical Research: Biogeosciences, vol. 112, no. 2, 2007.
-
(2007)
Journal of Geophysical Research: Biogeosciences
, vol.112
, Issue.2
-
-
Moran, J.J.1
House, C.H.2
Thomas, B.3
Freeman, K.H.4
-
85
-
-
77949423483
-
Trace methane oxidation, the methane dependency of sulfate reduction in anaerobic granular sludge
-
R. J. W. Meulepas, C. G. Jagersma, Y. Zhang et al. , "Trace methane oxidation, the methane dependency of sulfate reduction in anaerobic granular sludge, " FEMS Microbiology Ecology, vol. 72, no. 2, pp. 261-271, 2010.
-
(2010)
FEMS Microbiology Ecology
, vol.72
, Issue.2
, pp. 261-271
-
-
Meulepas, R.J.W.1
Jagersma, C.G.2
Zhang, Y.3
-
86
-
-
0018869415
-
Anaerobic methane oxidation: Occurrence, ecology
-
A. J. B. Zehnder, T. D. Brock, "Anaerobic methane oxidation: occurrence, ecology, "Applied, Environmental Microbiology, vol. 39, no. 1, pp. 194-204, 1980.
-
(1980)
Applied, Environmental Microbiology
, vol.39
, Issue.1
, pp. 194-204
-
-
Zehnder, A.J.B.1
Brock, T.D.2
-
87
-
-
84863491165
-
Anaerobic oxidation of methane in tropical, boreal soils: Ecological significance in terrestrial methane cycling
-
S. J. Blazewicz, D. G. Petersen, M. P. Waldrop, M. K. Firestone, "Anaerobic oxidation of methane in tropical, boreal soils: ecological significance in terrestrial methane cycling, " Journal of Geophysical Research: Biogeosciences, vol. 117, no. 2, Article ID G02033, 2012.
-
(2012)
Journal of Geophysical Research: Biogeosciences
, vol.117
, Issue.2
-
-
Blazewicz, S.J.1
Petersen, D.G.2
Waldrop, M.P.3
Firestone, M.K.4
-
88
-
-
36849095089
-
Evidence for anaerobic CH4 oxidation in freshwater peatlands
-
K. A. Smemo, J. B. Yavitt, "Evidence for anaerobic CH4 oxidation in freshwater peatlands, " Geomicrobiology Journal, vol. 24, no. 7-8, pp. 583-597, 2007.
-
(2007)
Geomicrobiology Journal
, vol.24
, Issue.7-8
, pp. 583-597
-
-
Smemo, K.A.1
Yavitt, J.B.2
-
89
-
-
77749328125
-
Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic, physical constraints
-
M. J. Alperin, T. M. Hoehler, "Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic, physical constraints, " American Journal of Science, vol. 309, no. 10, pp. 869-957, 2009.
-
(2009)
American Journal of Science
, vol.309
, Issue.10
, pp. 869-957
-
-
Alperin, M.J.1
Hoehler, T.M.2
-
90
-
-
51949095627
-
Anaerobic oxidation ofmethane: Mechanisms, bioenergetics, the ecology of associated microorganisms
-
S. L. Caldwell, J. R. Laidler, E. A. Brewer, J. O. Eberly, S. C. Sandborgh, F. S. Colwell, "Anaerobic oxidation ofmethane: mechanisms, bioenergetics, the ecology of associated microorganisms, " Environmental Science, Technology, vol. 42, no. 18, pp. 6791-6799, 2008.
-
(2008)
Environmental Science, Technology
, vol.42
, Issue.18
, pp. 6791-6799
-
-
Caldwell, S.L.1
Laidler, J.R.2
Brewer, E.A.3
Eberly, J.O.4
Sandborgh, S.C.5
Colwell, F.S.6
-
91
-
-
77953685263
-
Gibbs energies of reaction, microbial mutualism in anaerobic deep subseafloor sediments ofODP Site 1226
-
G. Wang, A. J. Spivack, S. D'Hondt, "Gibbs energies of reaction, microbial mutualism in anaerobic deep subseafloor sediments ofODP Site 1226, " Geochimica et Cosmochimica Acta, vol. 74, no. 14, pp. 3938-3947, 2010.
-
(2010)
Geochimica et Cosmochimica Acta
, vol.74
, Issue.14
, pp. 3938-3947
-
-
Wang, G.1
Spivack, A.J.2
D'Hondt, S.3
-
92
-
-
22144456094
-
Growth, population dynamics of anaerobic methane-oxidizing archaea, sulfate-reducing bacteria in a continuous-flow bioreactor
-
P. R. Girguis, A. E. Cozen, E. F. DeLong, "Growth, population dynamics of anaerobic methane-oxidizing archaea, sulfate-reducing bacteria in a continuous-flow bioreactor, " AppliedandEnvironmentalMicrobiology, vol. 71, no. 7, pp. 3725-3733, 2005.
-
(2005)
Applied and Environmental Microbiology
, vol.71
, Issue.7
, pp. 3725-3733
-
-
Girguis, P.R.1
Cozen, A.E.2
DeLong, E.F.3
-
93
-
-
33846094482
-
In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation ofmethane with sulfate
-
K. Nauhaus, M. Albrecht, M. Elvert, A. Boetius, F. Widdel, "In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation ofmethane with sulfate, " Environmental Microbiology, vol. 9, no. 1, pp. 187-196, 2007.
-
(2007)
Environmental Microbiology
, vol.9
, Issue.1
, pp. 187-196
-
-
Nauhaus, K.1
Albrecht, M.2
Elvert, M.3
Boetius, A.4
Widdel, F.5
-
94
-
-
41849084119
-
On the relationship between methane production, oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico
-
B. Orcutt, V. Samarkin, A. Boetius, S. Joye, "On the relationship between methane production, oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico, " Environmental Microbiology, vol. 10, no. 5, pp. 1108-1117, 2008.
-
(2008)
Environmental Microbiology
, vol.10
, Issue.5
, pp. 1108-1117
-
-
Orcutt, B.1
Samarkin, V.2
Boetius, A.3
Joye, S.4
-
95
-
-
84895465242
-
Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane
-
M. Y. Yoshinaga, T. Holler, T. Goldhammer et al. , "Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane, " Nature Geoscience, vol. 7, no. 3, pp. 190-194, 2014.
-
(2014)
Nature Geoscience
, vol.7
, Issue.3
, pp. 190-194
-
-
Yoshinaga, M.Y.1
Holler, T.2
Goldhammer, T.3
-
96
-
-
20344387441
-
Anaerobic oxidation of methane, sulfate reduction along the Chilean continental margin
-
T. Treude, J. Niggemann, J. Kallmeyer et al. , "Anaerobic oxidation of methane, sulfate reduction along the Chilean continental margin, " Geochimica et Cosmochimica Acta, vol. 69, no. 11, pp. 2767-2779, 2005.
-
(2005)
Geochimica et Cosmochimica Acta
, vol.69
, Issue.11
, pp. 2767-2779
-
-
Treude, T.1
Niggemann, J.2
Kallmeyer, J.3
-
97
-
-
34247860839
-
Biogeochemistry, biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark)
-
R. J. Parkes, B. A. Cragg, N. Banning et al. , "Biogeochemistry, biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark), " EnvironmentalMicrobiology, vol. 9, no. 5, pp. 1146-1161, 2007.
-
(2007)
Environmental Microbiology
, vol.9
, Issue.5
, pp. 1146-1161
-
-
Parkes, R.J.1
Cragg, B.A.2
Banning, N.3
-
98
-
-
69249125416
-
Regulation of anaerobic methane oxidation in sediments of the Black Sea
-
N. J. Knab, B. A. Cragg, E. R. C. Hornibrook et al. , "Regulation of anaerobic methane oxidation in sediments of the Black Sea, " Biogeosciences, vol. 6, no. 8, pp. 1505-1518, 2009.
-
(2009)
Biogeosciences
, vol.6
, Issue.8
, pp. 1505-1518
-
-
Knab, N.J.1
Cragg, B.A.2
Hornibrook, E.R.C.3
-
99
-
-
77954007768
-
Activities, distribution of methanogenic, methane-oxidizing microbes in marine sediments from the Cascadia Margin
-
H. Yoshioka, A. Maruyama, T. Nakamura et al. , "Activities, distribution of methanogenic, methane-oxidizing microbes in marine sediments from the Cascadia Margin, " Geobiology, vol. 8, no. 3, pp. 223-233, 2010.
-
(2010)
Geobiology
, vol.8
, Issue.3
, pp. 223-233
-
-
Yoshioka, H.1
Maruyama, A.2
Nakamura, T.3
-
100
-
-
84962068595
-
Metabolic capabilities of microorganisms involved in, associated with the anaerobic oxidation of methane
-
G. Wegener, V. Krukenberg, S. E. Ruff, M. Y. Kellermann, K. Knittel, "Metabolic capabilities of microorganisms involved in, associated with the anaerobic oxidation of methane, " Frontiers in Microbiology, vol. 7, article 46, 2016.
-
(2016)
Frontiers in Microbiology
, vol.7
-
-
Wegener, G.1
Krukenberg, V.2
Ruff, S.E.3
Kellermann, M.Y.4
Knittel, K.5
-
101
-
-
77955558020
-
Effect of methanogenic substrates on anaerobic oxidation of methane, sulfate reduction by an anaerobic methanotrophic enrichment
-
R. J. W. Meulepas, C. G. Jagersma, A. F. Khadem, A. J. M. Stams, P. N. L. Lens, "Effect of methanogenic substrates on anaerobic oxidation of methane, sulfate reduction by an anaerobic methanotrophic enrichment, " Applied Microbiology, Biotechnology, vol. 87, no. 4, pp. 1499-1506, 2010.
-
(2010)
Applied Microbiology, Biotechnology
, vol.87
, Issue.4
, pp. 1499-1506
-
-
Meulepas, R.J.W.1
Jagersma, C.G.2
Khadem, A.F.3
Stams, A.J.M.4
Lens, P.N.L.5
-
102
-
-
84869882273
-
Zero-valent sulphur is a key intermediate in marine methane oxidation
-
J. Milucka, T. G. Ferdelman, L. Polerecky et al. , "Zero-valent sulphur is a key intermediate in marine methane oxidation, " Nature, vol. 491, no. 7425, pp. 541-546, 2012.
-
(2012)
Nature
, vol.491
, Issue.7425
, pp. 541-546
-
-
Milucka, J.1
Ferdelman, T.G.2
Polerecky, L.3
-
103
-
-
0037047625
-
Microbial reefs in the black sea fueled by anaerobic oxidation ofmethane
-
W. Michaelis, R. Seifert, K. Nauhaus et al. , "Microbial reefs in the black sea fueled by anaerobic oxidation ofmethane, " Science, vol. 297, no. 5583, pp. 1013-1015, 2002.
-
(2002)
Science
, vol.297
, Issue.5583
, pp. 1013-1015
-
-
Michaelis, W.1
Seifert, R.2
Nauhaus, K.3
-
104
-
-
84880919461
-
Archaeal, anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California)
-
A. Vigneron, P. Cruaud, P. Pignet et al. , "Archaeal, anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California), " ISME Journal, vol. 7, no. 8, pp. 1595-1608, 2013.
-
(2013)
ISME Journal
, vol.7
, Issue.8
, pp. 1595-1608
-
-
Vigneron, A.1
Cruaud, P.2
Pignet, P.3
-
105
-
-
77954774120
-
The ongoing mystery of sea-floor methane
-
M. Alperin, T. Hoehler, "The ongoing mystery of sea-floor methane, " Science, vol. 329, no. 5989, pp. 288-289, 2010.
-
(2010)
Science
, vol.329
, Issue.5989
, pp. 288-289
-
-
Alperin, M.1
Hoehler, T.2
-
106
-
-
56849109102
-
Constraints on mechanisms, rates of anaerobic oxidation of methane by microbial consortia: Process-basedmodeling of ANME-2 archaea, sulfate reducing bacteria interactions
-
B. Orcutt, C. Meile, "Constraints on mechanisms, rates of anaerobic oxidation of methane by microbial consortia: process-basedmodeling of ANME-2 archaea, sulfate reducing bacteria interactions, " Biogeosciences, vol. 5, no. 6, pp. 1587-1599, 2008.
-
(2008)
Biogeosciences
, vol.5
, Issue.6
, pp. 1587-1599
-
-
Orcutt, B.1
Meile, C.2
-
107
-
-
84945289920
-
Single cell activity reveals direct electron transfer in methanotrophic consortia
-
S. E. McGlynn, G. L. Chadwick, C. P. Kempes, andV. J. Orphan, "Single cell activity reveals direct electron transfer in methanotrophic consortia, " Nature, vol. 526, no. 7574, pp. 531-535, 2015.
-
(2015)
Nature
, vol.526
, Issue.7574
, pp. 531-535
-
-
McGlynn, S.E.1
Chadwick, G.L.2
Kempes, C.P.3
Orphan, V.J.4
-
109
-
-
80055034132
-
On the electrical conductivity of microbial nanowires, biofilms
-
S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie, L. M. Tender, "On the electrical conductivity of microbial nanowires, biofilms, " Energy, Environmental Science, vol. 4, no. 11, pp. 4366-4379, 2011.
-
(2011)
Energy, Environmental Science
, vol.4
, Issue.11
, pp. 4366-4379
-
-
Strycharz-Glaven, S.M.1
Snider, R.M.2
Guiseppi-Elie, A.3
Tender, L.M.4
-
110
-
-
84863584372
-
The 'porin-cytochrome' model for microbe-to-mineral electron transfer
-
D. J. Richardson, J. N. Butt, J. K. Fredrickson et al. , "The 'porin-cytochrome' model for microbe-to-mineral electron transfer, " Molecular Microbiology, vol. 85, no. 2, pp. 201-212, 2012.
-
(2012)
Molecular Microbiology
, vol.85
, Issue.2
, pp. 201-212
-
-
Richardson, D.J.1
Butt, J.N.2
Fredrickson, J.K.3
-
111
-
-
84857355108
-
Long-range electron conduction of Shewanella biofilms mediated by outer membrane C-type cytochromes
-
A. Okamoto, K. Hashimoto, R. Nakamura, "Long-range electron conduction of Shewanella biofilms mediated by outer membrane C-type cytochromes, " Bioelectrochemistry, vol. 85, pp. 61-65, 2012.
-
(2012)
Bioelectrochemistry
, vol.85
, pp. 61-65
-
-
Okamoto, A.1
Hashimoto, K.2
Nakamura, R.3
-
112
-
-
78149245960
-
Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1
-
M. Y. El-Naggar, G. Wanger, K. M. Leung et al. , "Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1, " Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 42, pp. 18127-18131, 2010.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, Issue.42
, pp. 18127-18131
-
-
El-Naggar, M.Y.1
Wanger, G.2
Leung, K.M.3
-
113
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley, "Extracellular electron transfer via microbial nanowires, " Nature, vol. 435, no. 7045, pp. 1098-1101, 2005.
-
(2005)
Nature
, vol.435
, Issue.7045
, pp. 1098-1101
-
-
Reguera, G.1
McCarthy, K.D.2
Mehta, T.3
Nicoll, J.S.4
Tuominen, M.T.5
Lovley, D.R.6
-
114
-
-
78649707496
-
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
-
Z. M. Summers, H. E. Fogarty, C. Leang, A. E. Franks, N. S. Malvankar, D. R. Lovley, "Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria, " Science, vol. 330, no. 6009, pp. 1413-1415, 2010.
-
(2010)
Science
, vol.330
, Issue.6009
, pp. 1413-1415
-
-
Summers, Z.M.1
Fogarty, H.E.2
Leang, C.3
Franks, A.E.4
Malvankar, N.S.5
Lovley, D.R.6
-
115
-
-
84931273534
-
Cytochromes c in archaea: Distribution, maturation, cell architecture, the special case of Ignicoccus hospitalis
-
A. Kletzin, T. Heimerl, J. Flechsler, L. V. Niftrik, R. Rachel, A. Klingl, "Cytochromes c in archaea: distribution, maturation, cell architecture, the special case of Ignicoccus hospitalis, " Frontiers in Microbiology, vol. 6, article 439, 2015.
-
(2015)
Frontiers in Microbiology
, vol.6
-
-
Kletzin, A.1
Heimerl, T.2
Flechsler, J.3
Niftrik, L.V.4
Rachel, R.5
Klingl, A.6
-
116
-
-
84944755142
-
Intercellular wiring enables electron transfer between methanotrophic archaea, bacteria
-
G. Wegener, V. Krukenberg, D. Riedel, H. E. Tegetmeyer, A. Boetius, "Intercellular wiring enables electron transfer between methanotrophic archaea, bacteria, " Nature, vol. 526, no. 7574, pp. 587-590, 2015.
-
(2015)
Nature
, vol.526
, Issue.7574
, pp. 587-590
-
-
Wegener, G.1
Krukenberg, V.2
Riedel, D.3
Tegetmeyer, H.E.4
Boetius, A.5
-
117
-
-
84855870250
-
Archaeosortases, exosortases are widely distributed systems linking membrane transit with posttranslational modification
-
D. H. Haft, S. H. Payne, J. D. Selengut, "Archaeosortases, exosortases are widely distributed systems linking membrane transit with posttranslational modification, " Journal of Bacteriology, vol. 194, no. 1, pp. 36-48, 2012.
-
(2012)
Journal of Bacteriology
, vol.194
, Issue.1
, pp. 36-48
-
-
Haft, D.H.1
Payne, S.H.2
Selengut, J.D.3
-
118
-
-
84941042486
-
CDD: NCBI's conserved domain database
-
A. Marchler-Bauer, M. K. Derbyshire, N. R. Gonzales et al. , "CDD: NCBI's conserved domain database, " Nucleic Acids Research, vol. 43, no. 1, pp. D222-D226, 2015.
-
(2015)
Nucleic Acids Research
, vol.43
, Issue.1
, pp. D222-D226
-
-
Marchler-Bauer, A.1
Derbyshire, M.K.2
Gonzales, N.R.3
-
119
-
-
84946074739
-
The InterPro protein families database: The classification resource after 15 years
-
A. Mitchell, H.-Y. Chang, L. Daugherty et al. , "The InterPro protein families database: the classification resource after 15 years, " Nucleic Acids Research, vol. 43, no. 1, pp. D213-D221, 2015.
-
(2015)
Nucleic Acids Research
, vol.43
, Issue.1
, pp. D213-D221
-
-
Mitchell, A.1
Chang, H.-Y.2
Daugherty, L.3
-
120
-
-
85027932343
-
Candidatus desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane
-
V. Krukenberg, K. Harding, M. Richter et al. , "Candidatus desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane, " Environmental Microbiology, vol. 18, pp. 3073-3091, 2016.
-
(2016)
Environmental Microbiology
, vol.18
, pp. 3073-3091
-
-
Krukenberg, V.1
Harding, K.2
Richter, M.3
-
121
-
-
34250639301
-
Respiration of metal (hydr)oxides by Shewanella, Geobacter: A key role for multihaem c-type cytochromes
-
L. Shi, T. C. Squier, J. M. Zachara, J. K. Fredrickson, "Respiration of metal (hydr)oxides by Shewanella, Geobacter: a key role for multihaem c-type cytochromes, " Molecular Microbiology, vol. 65, no. 1, pp. 12-20, 2007.
-
(2007)
Molecular Microbiology
, vol.65
, Issue.1
, pp. 12-20
-
-
Shi, L.1
Squier, T.C.2
Zachara, J.M.3
Fredrickson, J.K.4
-
122
-
-
84891471544
-
Microbial nanowires for bioenergy applications
-
N. S. Malvankar, D. R. Lovley, "Microbial nanowires for bioenergy applications, " Current Opinion in Biotechnology, vol. 27, pp. 88-95, 2014.
-
(2014)
Current Opinion in Biotechnology
, vol.27
, pp. 88-95
-
-
Malvankar, N.S.1
Lovley, D.R.2
-
123
-
-
84938880111
-
Link between capacity for current production, syntrophic growth in Geobacter species
-
A.-E. Rotaru, T. L. Woodard, K. P. Nevin, andD. R. Lovley, "Link between capacity for current production, syntrophic growth in Geobacter species, " Frontiers in Microbiology, vol. 6, article 744, 2015.
-
(2015)
Frontiers in Microbiology
, vol.6
-
-
Rotaru, A.-E.1
Woodard, T.L.2
Nevin, K.P.3
Lovley, D.R.4
-
124
-
-
84904895454
-
Direct interspecies electron transfer between Geobacter metallireducens, Methanosarcina barkeri
-
A.-E. Rotaru, P. M. Shrestha, F. Liu et al. , "Direct interspecies electron transfer between Geobacter metallireducens, Methanosarcina barkeri, " Applied, Environmental Microbiology, vol. 80, no. 15, pp. 4599-4605, 2014.
-
(2014)
Applied, Environmental Microbiology
, vol.80
, Issue.15
, pp. 4599-4605
-
-
Rotaru, A.-E.1
Shrestha, P.M.2
Liu, F.3
-
125
-
-
84957875989
-
Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction
-
S. Scheller, H. Yu, G. L. Chadwick, S. E. McGlynn, V. J. Orphan, "Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction, " Science, vol. 351, no. 6274, pp. 703-707, 2016.
-
(2016)
Science
, vol.351
, Issue.6274
, pp. 703-707
-
-
Scheller, S.1
Yu, H.2
Chadwick, G.L.3
McGlynn, S.E.4
Orphan, V.J.5
-
126
-
-
84876498602
-
Immunological detection of enzymes for sulfate reduction in anaerobic methaneoxidizing consortia
-
J. Milucka, F. Widdel, S. Shima, "Immunological detection of enzymes for sulfate reduction in anaerobic methaneoxidizing consortia, " Environmental Microbiology, vol. 15, no. 5, pp. 1561-1571, 2013.
-
(2013)
Environmental Microbiology
, vol.15
, Issue.5
, pp. 1561-1571
-
-
Milucka, J.1
Widdel, F.2
Shima, S.3
-
127
-
-
9144223171
-
Nitrate reduction, the nitrogen cycle in archaea
-
P. Cabello, M. D. Roldán, C. Moreno-Vivián, "Nitrate reduction, the nitrogen cycle in archaea, " Microbiology, vol. 150, no. 11, pp. 3527-3546, 2004.
-
(2004)
Microbiology
, vol.150
, Issue.11
, pp. 3527-3546
-
-
Cabello, P.1
Roldán, M.D.2
Moreno-Vivián, C.3
-
128
-
-
35448931242
-
Look on the positive side!The orientation, identification, bioenergetics of 'Archaeal'membrane-bound nitrate reductases
-
R. M. Martinez-Espinosa, E. J. Dridge, M. J. Bonete et al. , "Look on the positive side!The orientation, identification, bioenergetics of 'Archaeal'membrane-bound nitrate reductases, " FEMS Microbiology Letters, vol. 276, no. 2, pp. 129-139, 2007.
-
(2007)
FEMS Microbiology Letters
, vol.276
, Issue.2
, pp. 129-139
-
-
Martinez-Espinosa, R.M.1
Dridge, E.J.2
Bonete, M.J.3
-
129
-
-
78149435831
-
Adaptation to a high-tungsten environment: Pyrobaculumaerophilum contains an active tungsten nitrate reductase
-
S. deVries, M. Momcilovic, M. J. F. Strampraad, J. P. Whitelegge, A. Baghai, I. Schröder, "Adaptation to a high-tungsten environment: pyrobaculumaerophilumcontains an active tungsten nitrate reductase, " Biochemistry, vol. 49, no. 45, pp. 9911-9921, 2010.
-
(2010)
Biochemistry
, vol.49
, Issue.45
, pp. 9911-9921
-
-
De Vries, S.1
Momcilovic, M.2
Strampraad, M.J.F.3
Whitelegge, J.P.4
Baghai, A.5
Schröder, I.6
-
130
-
-
84924988124
-
Iron-mediated anaerobic oxidation of methane in brackish coastal sediments
-
M. Egger, O. Rasigraf, C. J. Sapart et al. , "Iron-mediated anaerobic oxidation of methane in brackish coastal sediments, " Environmental Science, Technology, vol. 49, no. 1, pp. 277-283, 2015.
-
(2015)
Environmental Science, Technology
, vol.49
, Issue.1
, pp. 277-283
-
-
Egger, M.1
Rasigraf, O.2
Sapart, C.J.3
-
131
-
-
84908268946
-
Sulfate reduction, methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling
-
T. Treude, S. Krause, J. Maltby, A. W. Dale, R. Coffin, L. J. Hamdan, "Sulfate reduction, methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: implications for deep sulfur cycling, " Geochimica et Cosmochimica Acta, vol. 144, pp. 217-237, 2014.
-
(2014)
Geochimica et Cosmochimica Acta
, vol.144
, pp. 217-237
-
-
Treude, T.1
Krause, S.2
Maltby, J.3
Dale, A.W.4
Coffin, R.5
Hamdan, L.J.6
-
132
-
-
84893756276
-
An inorganic geochemical argument for coupled anaerobic oxidation of methane, iron reduction in marine sediments
-
N. Riedinger, M. J. Formolo, T. W. Lyons, S. Henkel, A. Beck, S. Kasten, "An inorganic geochemical argument for coupled anaerobic oxidation of methane, iron reduction in marine sediments, " Geobiology, vol. 12, no. 2, pp. 172-181, 2014.
-
(2014)
Geobiology
, vol.12
, Issue.2
, pp. 172-181
-
-
Riedinger, N.1
Formolo, M.J.2
Lyons, T.W.3
Henkel, S.4
Beck, A.5
Kasten, S.6
-
133
-
-
84859425755
-
Microbial methane cycling in a terrestrialmud volcano in eastern Taiwan
-
Y.-H. Chang, T.-W. Cheng, W.-J. Lai et al. , "Microbial methane cycling in a terrestrialmud volcano in eastern Taiwan, " Environmental Microbiology, vol. 14, no. 4, pp. 895-908, 2012.
-
(2012)
Environmental Microbiology
, vol.14
, Issue.4
, pp. 895-908
-
-
Chang, Y.-H.1
Cheng, T.-W.2
Lai, W.-J.3
-
134
-
-
78049495940
-
The methane cycle in ferruginous Lake Matano
-
S. A. Crowe, S. Katsev, K. Leslie et al. , "The methane cycle in ferruginous Lake Matano, " Geobiology, vol. 9, no. 1, pp. 61-78, 2011.
-
(2011)
Geobiology
, vol.9
, Issue.1
, pp. 61-78
-
-
Crowe, S.A.1
Katsev, S.2
Leslie, K.3
-
135
-
-
84858118655
-
Geochemical evidence for iron-mediated anaerobic oxidation ofmethane
-
O. Sivan, M. Adler, A. Pearson et al. , "Geochemical evidence for iron-mediated anaerobic oxidation ofmethane, " Limnology, Oceanography, vol. 56, no. 4, pp. 1536-1544, 2011.
-
(2011)
Limnology, Oceanography
, vol.56
, Issue.4
, pp. 1536-1544
-
-
Sivan, O.1
Adler, M.2
Pearson, A.3
-
136
-
-
84877359146
-
Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater, brackish wetland sediments
-
K. E. A. Segarra, C. Comerford, J. Slaughter, S. B. Joye, "Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater, brackish wetland sediments, " Geochimica et Cosmochimica Acta, vol. 115, pp. 15-30, 2013.
-
(2013)
Geochimica et Cosmochimica Acta
, vol.115
, pp. 15-30
-
-
Segarra, K.E.A.1
Comerford, C.2
Slaughter, J.3
Joye, S.B.4
-
137
-
-
84881452441
-
Stable isotopes reveal widespread anaerobic methane oxidation across latitude, peatland type
-
V. Gupta, K. A. Smemo, J. B. Yavitt, D. Fowle, B. Branfireun, N. Basiliko, "Stable isotopes reveal widespread anaerobic methane oxidation across latitude, peatland type, " Environmental Science, Technology, vol. 47, no. 15, pp. 8273-8279, 2013.
-
(2013)
Environmental Science, Technology
, vol.47
, Issue.15
, pp. 8273-8279
-
-
Gupta, V.1
Smemo, K.A.2
Yavitt, J.B.3
Fowle, D.4
Branfireun, B.5
Basiliko, N.6
-
138
-
-
84931266197
-
Distinct microbial populations are tightly linked to the profile of dissolved iron in themethanic sediments of theHelgolandmud area, North Sea
-
O. Oni, T. Miyatake, S. Kasten et al. , "Distinct microbial populations are tightly linked to the profile of dissolved iron in themethanic sediments of theHelgolandmud area, North Sea, " Frontiers in Microbiology, vol. 6, 2015.
-
(2015)
Frontiers in Microbiology
, vol.6
-
-
Oni, O.1
Miyatake, T.2
Kasten, S.3
-
139
-
-
67650430046
-
Manganese-, iron-dependent marine methane oxidation
-
E. J. Beal, C. H. House, V. J. Orphan, "Manganese-, iron-dependent marine methane oxidation, " Science, vol. 325, no. 5937, pp. 184-187, 2009.
-
(2009)
Science
, vol.325
, Issue.5937
, pp. 184-187
-
-
Beal, E.J.1
House, C.H.2
Orphan, V.J.3
-
140
-
-
78650187987
-
Weak coupling between sulfate reduction, the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation
-
M. W. Bowles, V. A. Samarkin, K. M. Bowles, S. B. Joye, "Weak coupling between sulfate reduction, the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation, " Geochimica et Cosmochimica Acta, vol. 75, no. 2, pp. 500-519, 2011.
-
(2011)
Geochimica et Cosmochimica Acta
, vol.75
, Issue.2
, pp. 500-519
-
-
Bowles, M.W.1
Samarkin, V.A.2
Bowles, K.M.3
Joye, S.B.4
-
141
-
-
84977644035
-
Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor
-
Y. Z. Lu, L. Fu, J. Ding, Z. Ding, N. Li, R. J. Zeng, "Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor, " Water Research, vol. 102, pp. 445-452, 2016.
-
(2016)
Water Research
, vol.102
, pp. 445-452
-
-
Lu, Y.Z.1
Fu, L.2
Ding, J.3
Ding, Z.4
Li, N.5
Zeng, R.J.6
-
142
-
-
84994533192
-
Archaea catalyze iron-dependent anaerobic oxidation of methane
-
K. F. Ettwig, B. Zhu, D. Speth, J. T. Keltjens, M. S. Jetten, B. Kartal, "Archaea catalyze iron-dependent anaerobic oxidation of methane, " Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 45, pp. 12792-12796, 2016.
-
(2016)
Proceedings of the National Academy of Sciences of the United States of America
, vol.113
, Issue.45
, pp. 12792-12796
-
-
Ettwig, K.F.1
Zhu, B.2
Speth, D.3
Keltjens, J.T.4
Jetten, M.S.5
Kartal, B.6
-
143
-
-
84879198024
-
Functional microbial diversity explains groundwater chemistry in a pristine aquifer
-
T. M. Flynn, R. A. Sanford, H. Ryu et al. , "Functional microbial diversity explains groundwater chemistry in a pristine aquifer, " BMC Microbiology, vol. 13, no. 1, article no. 146, 2013.
-
(2013)
BMC Microbiology
, vol.13
, Issue.1
-
-
Flynn, T.M.1
Sanford, R.A.2
Ryu, H.3
-
144
-
-
79952361193
-
Evidence for anaerobic oxidation of methane in sediments of a fresh water system (Lago di Cadagno)
-
C. J. Schubert, F. Vazquez, T. Lösekann-Behrens, K. Knittel, M. Tonolla, A. Boetius, "Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno), " FEMS Microbiology Ecology, vol. 76, no. 1, pp. 26-38, 2011.
-
(2011)
FEMS Microbiology Ecology
, vol.76
, Issue.1
, pp. 26-38
-
-
Schubert, C.J.1
Vazquez, F.2
Lösekann-Behrens, T.3
Knittel, K.4
Tonolla, M.5
Boetius, A.6
-
145
-
-
84934784045
-
High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions
-
K. E. A. Segarra, F. Schubotz, V. Samarkin, M. Y. Yoshinaga, K.-U. Hinrichs, S. B. Joye, "High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions, " Nature Communications, vol. 6, article 7477, 2015.
-
(2015)
Nature Communications
, vol.6
-
-
Segarra, K.E.A.1
Schubotz, F.2
Samarkin, V.3
Yoshinaga, M.Y.4
Hinrichs, K.-U.5
Joye, S.B.6
-
146
-
-
79851476205
-
High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past, present methane levels
-
E. J. Beal, M. W. Claire, C. H. House, "High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past, present methane levels, " Geobiology, vol. 9, no. 2, pp. 131-139, 2011.
-
(2011)
Geobiology
, vol.9
, Issue.2
, pp. 131-139
-
-
Beal, E.J.1
Claire, M.W.2
House, C.H.3
-
147
-
-
84936993627
-
Microbial electron transport, energy conservation-the foundation for optimizing bioelectrochemical systems
-
F. Kracke, I. Vassilev, J. O. Krömer, "Microbial electron transport, energy conservation-the foundation for optimizing bioelectrochemical systems, " Frontiers in Microbiology, vol. 6, article 575, 2015.
-
(2015)
Frontiers in Microbiology
, vol.6
-
-
Kracke, F.1
Vassilev, I.2
Krömer, J.O.3
-
148
-
-
73349135628
-
Role of outer-membrane cytochromes MtrC, OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1
-
C. L. Reardon, A. C. Dohnalkova, P. Nachimuthu et al. , "Role of outer-membrane cytochromes MtrC, OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1, " Geobiology, vol. 8, no. 1, pp. 56-68, 2010.
-
(2010)
Geobiology
, vol.8
, Issue.1
, pp. 56-68
-
-
Reardon, C.L.1
Dohnalkova, A.C.2
Nachimuthu, P.3
-
149
-
-
33745449038
-
Isolation of a high-affinity functional protein complex between OmcA, MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1
-
L. Shi, B. Chen, Z. Wang et al. , "Isolation of a high-affinity functional protein complex between OmcA, MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1, " Journal of Bacteriology, vol. 188, no. 13, pp. 4705-4714, 2006.
-
(2006)
Journal of Bacteriology
, vol.188
, Issue.13
, pp. 4705-4714
-
-
Shi, L.1
Chen, B.2
Wang, Z.3
-
150
-
-
79751531838
-
Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens
-
X. Qian, T. Mester, L. Morgado et al. , "Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens, " Biochimica et BiophysicaActa-Bioenergetics, vol. 1807, no. 4, pp. 404-412, 2011.
-
(2011)
Biochimica et BiophysicaActa-Bioenergetics
, vol.1807
, Issue.4
, pp. 404-412
-
-
Qian, X.1
Mester, T.2
Morgado, L.3
-
151
-
-
29144451480
-
Outer membrane c-type cytochromes required for Fe(III) andMn(IV) oxide reduction in Geobacter sulfurreducens
-
T. Mehta, M. V. Coppi, S. E. Childers, D. R. Lovley, "Outer membrane c-type cytochromes required for Fe(III) andMn(IV) oxide reduction in Geobacter sulfurreducens, " Applied, EnvironmentalMicrobiology, vol. 71, no. 12, pp. 8634-8641, 2005.
-
(2005)
Applied, EnvironmentalMicrobiology
, vol.71
, Issue.12
, pp. 8634-8641
-
-
Mehta, T.1
Coppi, M.V.2
Childers, S.E.3
Lovley, D.R.4
-
152
-
-
9344256709
-
Structure, function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens
-
W. Blankenfeldt, A. P. Kuzin, T. Skarina et al. , "Structure, function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens, " Proceedings of theNationalAcademy of Sciences of the United States of America, vol. 101, no. 47, pp. 16431-16436, 2004.
-
(2004)
Proceedings of TheNationalAcademy of Sciences of the United States of America
, vol.101
, Issue.47
, pp. 16431-16436
-
-
Blankenfeldt, W.1
Kuzin, A.P.2
Skarina, T.3
-
153
-
-
4744365340
-
Structure, function of the phenazine biosynthesis protein PhzF fromPseudomonas fluorescens 2-79
-
J. F. Parsons, F. Song, L. Parsons, K. Calabrese, E. Eisenstein, J. E. Ladner, "Structure, function of the phenazine biosynthesis protein PhzF fromPseudomonas fluorescens 2-79, " Biochemistry, vol. 43, no. 39, pp. 12427-12435, 2004.
-
(2004)
Biochemistry
, vol.43
, Issue.39
, pp. 12427-12435
-
-
Parsons, J.F.1
Song, F.2
Parsons, L.3
Calabrese, K.4
Eisenstein, E.5
Ladner, J.E.6
-
154
-
-
52249100797
-
An alternative menaquinone biosynthetic pathway operating in microorganisms
-
T. Hiratsuka, K. Furihata, J. Ishikawa et al. , "An alternative menaquinone biosynthetic pathway operating in microorganisms, " Science, vol. 321, no. 5896, pp. 1670-1673, 2008.
-
(2008)
Science
, vol.321
, Issue.5896
, pp. 1670-1673
-
-
Hiratsuka, T.1
Furihata, K.2
Ishikawa, J.3
-
155
-
-
0037419007
-
Redox potentials of methanophenazine, CoB-S-S-CoM, factors involved in electron transport in methanogenic archaea
-
M. Tietze, A. Beuchle, I. Lamla et al. , "Redox potentials of methanophenazine, CoB-S-S-CoM, factors involved in electron transport in methanogenic archaea, " ChemBioChem, vol. 4, no. 4, pp. 333-335, 2003.
-
(2003)
Chem Bio Chem
, vol.4
, Issue.4
, pp. 333-335
-
-
Tietze, M.1
Beuchle, A.2
Lamla, I.3
-
156
-
-
0032518432
-
Changes in the proton potential, the cellular energetics of Escherichia coli during growth by aerobic, anaerobic respiration or by fermentation
-
Q. H. Tran, G. Unden, "Changes in the proton potential, the cellular energetics of Escherichia coli during growth by aerobic, anaerobic respiration or by fermentation, " European Journal of Biochemistry, vol. 251, no. 1-2, pp. 538-543, 1998.
-
(1998)
European Journal of Biochemistry
, vol.251
, Issue.1-2
, pp. 538-543
-
-
Tran, Q.H.1
Unden, G.2
-
157
-
-
0033854828
-
HYR, an extracellular module involved in cellular adhesion, related to the immunoglobulin-like fold
-
I. Callebaut, D. Gilgès, I. Vigon, J.-P. Mornon, "HYR, an extracellular module involved in cellular adhesion, related to the immunoglobulin-like fold, " Protein Science, vol. 9, no. 7, pp. 1382-1390, 2000.
-
(2000)
Protein Science
, vol.9
, Issue.7
, pp. 1382-1390
-
-
Callebaut, I.1
Gilgès, D.2
Vigon, I.3
Mornon, J.-P.4
-
158
-
-
33947256880
-
Cellulosomes: Microbial nanomachines that display plasticity in quaternary structure
-
H. J. Gilbert, "Cellulosomes: microbial nanomachines that display plasticity in quaternary structure, "MolecularMicrobiology, vol. 63, no. 6, pp. 1568-1576, 2007.
-
(2007)
Molecular Microbiology
, vol.63
, Issue.6
, pp. 1568-1576
-
-
Gilbert, H.J.1
-
159
-
-
58149277107
-
Noncellulosomal cohesin-, dockerin-like modules in the three domains of life
-
A. Peer, S. P. Smith, E. A. Bayer, R. Lamed, I. Borovok, "Noncellulosomal cohesin-, dockerin-like modules in the three domains of life, " FEMS Microbiology Letters, vol. 291, no. 1, pp. 1-16, 2009.
-
(2009)
FEMS Microbiology Letters
, vol.291
, Issue.1
, pp. 1-16
-
-
Peer, A.1
Smith, S.P.2
Bayer, E.A.3
Lamed, R.4
Borovok, I.5
-
160
-
-
84945292939
-
Microbiology: Conductive consortia
-
M. Wagner, "Microbiology: conductive consortia, " Nature, vol. 526, no. 7574, pp. 513-514, 2015.
-
(2015)
Nature
, vol.526
, Issue.7574
, pp. 513-514
-
-
Wagner, M.1
|