메뉴 건너뛰기




Volumn 108, Issue 52, 2011, Pages 21170-21173

Erratum: Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction (Proceedings of the National Academy of Sciences of the United States of America (2011) 108, (E1484-E1490) DOI: 10.1073/pnas.1106032108);Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction

Author keywords

Anaerobic methanotrophy; Biological thermodynamics; Element cycle; Haldane relationship

Indexed keywords

BICARBONATE C 14; CARBON; ISOTOPE; METHANE; METHANE C 14; SULFATE; SULFATE S 35; SULFIDE S 35; SULFUR; UNCLASSIFIED DRUG;

EID: 84855489685     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1218683109     Document Type: Erratum
Times cited : (102)

References (59)
  • 1
    • 0004214524 scopus 로고
    • Longmans, Green & Co., London
    • Haldane JBS (1930) Enzymes (Longmans, Green & Co., London).
    • (1930) Enzymes
    • Haldane, J.B.S.1
  • 2
    • 0000729778 scopus 로고
    • Uses and limitations of measurements of rates of isotopic exchange and incorporation in catalyzed reactions
    • Boyer PD (1959) Uses and limitations of measurements of rates of isotopic exchange and incorporation in catalyzed reactions. Arch Biochem Biophys 82:387-410.
    • (1959) Arch Biochem Biophys , vol.82 , pp. 387-410
    • Boyer, P.D.1
  • 6
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria
    • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100-180. (Pubitemid 8082287)
    • (1977) Bacteriological Reviews , vol.41 , Issue.1 , pp. 100-180
    • Thauer, R.K.1    Jungermann, K.2    Decker, K.3
  • 8
    • 0030871461 scopus 로고    scopus 로고
    • Energetics of syntrophic cooperation in methanogenic degradation
    • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262-280.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 262-280
    • Schink, B.1
  • 9
    • 0037165203 scopus 로고    scopus 로고
    • Anaerobic microbial metabolism can proceed close to thermodynamic limits
    • DOI 10.1038/415454a
    • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454-456. (Pubitemid 34100959)
    • (2002) Nature , vol.415 , Issue.6870 , pp. 454-456
    • Jackson, B.E.1    McInerney, M.J.2
  • 10
    • 44449149379 scopus 로고    scopus 로고
    • Life close to the thermodynamic limit: How methanogenic archaea conserve energy
    • Deppenmeier U, Müller V (2008) Life close to the thermodynamic limit: How methanogenic archaea conserve energy. Results Probl Cell Differ 45:123-152.
    • (2008) Results Probl Cell Differ , vol.45 , pp. 123-152
    • Deppenmeier, U.1    Müller, V.2
  • 11
    • 67651202726 scopus 로고    scopus 로고
    • Electron transfer in syntrophic communities of anaerobic bacteria and archaea
    • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568-577.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 568-577
    • Stams, A.J.M.1    Plugge, C.M.2
  • 12
    • 0018427427 scopus 로고
    • Methane formation and methane oxidation by methanogenic bacteria
    • Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420-432. (Pubitemid 9097588)
    • (1979) Journal of Bacteriology , vol.137 , Issue.1 , pp. 420-432
    • Zehnder, A.J.B.1    Brock, T.D.2
  • 13
    • 0030620732 scopus 로고    scopus 로고
    • 14C-carbon monoxide
    • 14C-carbon monoxide. Mar Geol 137:13-23.
    • (1997) Mar Geol , vol.137 , pp. 13-23
    • Harder, J.1
  • 14
    • 20144385037 scopus 로고    scopus 로고
    • Trace methane oxidation studied in several Euryarchaeota under diverse conditions
    • Moran JJ, House CH, Freeman KH, Ferry JG (2005) Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1:303-309. (Pubitemid 40801837)
    • (2005) Archaea , vol.1 , Issue.5 , pp. 303-309
    • Moran, J.J.1    House, C.H.2    Freeman, K.H.3    Ferry, J.G.4
  • 15
    • 34548354509 scopus 로고    scopus 로고
    • Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina
    • Moran JJ, House CH, Thomas B, Freeman KH (2007) Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina. J Geophys Res 112, G02011.
    • (2007) J Geophys Res , vol.112
    • Moran, J.J.1    House, C.H.2    Thomas, B.3    Freeman, K.H.4
  • 16
    • 77949423483 scopus 로고    scopus 로고
    • Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge
    • Meulepas RJW, et al. (2010) Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge. FEMS Microbiol Ecol 72:261-271.
    • (2010) FEMS Microbiol Ecol , vol.72 , pp. 261-271
    • Meulepas, R.J.W.1
  • 17
    • 77953222884 scopus 로고    scopus 로고
    • The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
    • Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606-608.
    • (2010) Nature , vol.465 , pp. 606-608
    • Scheller, S.1    Goenrich, M.2    Boecher, R.3    Thauer, R.K.4    Jaun, B.5
  • 18
    • 4244206474 scopus 로고
    • Reversibility of bacterial sulfate reduction and its relevance to isotope fractionation
    • Trudinger PA, Chambers LA (1973) Reversibility of bacterial sulfate reduction and its relevance to isotope fractionation. Geochim Cosmochim Acta 37:1775-1778.
    • (1973) Geochim Cosmochim Acta , vol.37 , pp. 1775-1778
    • Trudinger, P.A.1    Chambers, L.A.2
  • 20
    • 0342599190 scopus 로고
    • 2and the carbonyl group of acetyl-CoA and topology of enzymes involved
    • 2 and the carbonyl group of acetyl-CoA and topology of enzymes involved. Arch Microbiol 152:189-195.
    • (1989) Arch Microbiol , vol.152 , pp. 189-195
    • Spormann, A.M.1    Thauer, R.K.2
  • 21
    • 0036045379 scopus 로고    scopus 로고
    • In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area
    • Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296-305.
    • (2002) Environ Microbiol , vol.4 , pp. 296-305
    • Nauhaus, K.1    Boetius, A.2    Krüger, M.3    Widdel, F.4
  • 22
  • 23
    • 77749328125 scopus 로고    scopus 로고
    • Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints
    • Alperin MJ, Hoehler TM (2009) Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am J Sci 309:869-957.
    • (2009) Am J Sci , vol.309 , pp. 869-957
    • Alperin, M.J.1    Hoehler, T.M.2
  • 24
    • 33847720244 scopus 로고    scopus 로고
    • Oceanic methane biogeochemistry
    • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486-513.
    • (2007) Chem Rev , vol.107 , pp. 486-513
    • Reeburgh, W.S.1
  • 25
    • 70349559191 scopus 로고    scopus 로고
    • Anaerobic oxidation of methane: Progress with an unknown process
    • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol 63:311-334.
    • (2009) Annu Rev Microbiol , vol.63 , pp. 311-334
    • Knittel, K.1    Boetius, A.2
  • 27
    • 18844481026 scopus 로고    scopus 로고
    • A marine microbial consortium apparently mediating anaerobic oxidation of methane
    • Boetius A, et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623-626.
    • (2000) Nature , vol.407 , pp. 623-626
    • Boetius, A.1
  • 30
    • 77955242360 scopus 로고    scopus 로고
    • Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade
    • Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12:2327-2340.
    • (2010) Environ Microbiol , vol.12 , pp. 2327-2340
    • Schreiber, L.1    Holler, T.2    Knittel, K.3    Meyerdierks, A.4    Amann, R.5
  • 31
    • 0028583232 scopus 로고
    • Field and laboratory studies of methane oxidation in anoxic marine sediment: Evidence for a methanogenic-sulfate reducer consortium
    • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in anoxic marine sediment: Evidence for a methanogenic-sulfate reducer consortium. Global Biogeochem Cycles 8:451-463.
    • (1994) Global Biogeochem Cycles , vol.8 , pp. 451-463
    • Hoehler, T.M.1    Alperin, M.J.2    Albert, D.B.3    Martens, C.S.4
  • 32
    • 34247465976 scopus 로고    scopus 로고
    • 2by methanotrophic microbial mats from gas seeps of the anoxic Black Sea
    • 2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl Environ Microbiol 73:2271-2283.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 2271-2283
    • Treude, T.1
  • 33
    • 41849084119 scopus 로고    scopus 로고
    • On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico
    • DOI 10.1111/j.1462-2920.2007.01526.x
    • Orcutt B, Samarkin V, Boetius A, Joye SB (2008) On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ Microbiol 10:1108-1117. (Pubitemid 351499229)
    • (2008) Environmental Microbiology , vol.10 , Issue.5 , pp. 1108-1117
    • Orcutt, B.1    Samarkin, V.2    Boetius, A.3    Joye, S.4
  • 34
    • 0034904762 scopus 로고    scopus 로고
    • Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles
    • Sørensen KB, Finster K, Ramsing NB (2001) Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microb Ecol 42:1-10. (Pubitemid 32731566)
    • (2001) Microbial Ecology , vol.42 , Issue.1 , pp. 1-10
    • Sorensen, K.B.1    Finster, K.2    Ramsing, N.B.3
  • 35
    • 38149077985 scopus 로고    scopus 로고
    • Methyl sulfides as intermediates in the anaerobic oxidation of methane
    • Moran JJ, et al. (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10:162-173.
    • (2008) Environ Microbiol , vol.10 , pp. 162-173
    • Moran, J.J.1
  • 36
    • 56849109102 scopus 로고    scopus 로고
    • Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: Process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions
    • Orcutt B, Meile C (2008) Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: Process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences 5:1587-1599.
    • (2008) Biogeosciences , vol.5 , pp. 1587-1599
    • Orcutt, B.1    Meile, C.2
  • 37
    • 77955558020 scopus 로고    scopus 로고
    • Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment
    • Meulepas RJW, Jagersma CG, Khadem AF, Stams AJM, Lens PNL (2010) Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Appl Microbiol Biotechnol 87:1499-1506.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 1499-1506
    • Meulepas, R.J.W.1    Jagersma, C.G.2    Khadem, A.F.3    Stams, A.J.M.4    Lens, P.N.L.5
  • 38
    • 33846094482 scopus 로고    scopus 로고
    • In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate
    • DOI 10.1111/j.1462-2920.2006.01127.x, PII AR
    • Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9:187-196. (Pubitemid 46059009)
    • (2007) Environmental Microbiology , vol.9 , Issue.1 , pp. 187-196
    • Nauhaus, K.1    Albrecht, M.2    Elvert, M.3    Boetius, A.4    Widdel, F.5
  • 39
    • 77749281557 scopus 로고    scopus 로고
    • Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro
    • Holler T, et al. (2009) Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. Environ Microbiol Rep 1:370-376.
    • (2009) Environ Microbiol Rep , vol.1 , pp. 370-376
    • Holler, T.1
  • 40
    • 50549159930 scopus 로고
    • The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations
    • Cleland WW (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67:104-137.
    • (1963) Biochim Biophys Acta , vol.67 , pp. 104-137
    • Cleland, W.W.1
  • 43
    • 0001162594 scopus 로고
    • A steady-state model for sulphur isotope fractionation in bacterial reduction processes
    • Rees CE (1973) A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim Cosmochim Acta 37:1141-1162.
    • (1973) Geochim Cosmochim Acta , vol.37 , pp. 1141-1162
    • Rees, C.E.1
  • 44
    • 34748844589 scopus 로고    scopus 로고
    • Biogeochemistry of sulfur isotopes
    • Canfield DE (2001) Biogeochemistry of sulfur isotopes. Rev Mineral Geochem 43:607-636.
    • (2001) Rev Mineral Geochem , vol.43 , pp. 607-636
    • Canfield, D.E.1
  • 45
    • 1842730270 scopus 로고    scopus 로고
    • Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens
    • DOI 10.1016/j.gca.2003.10.012, PII S0016703703007464
    • Valentine DL, Chidthaisong A, Rice A, Reeburgh WS, Tyler SC (2004) Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim Cosmochim Acta 68:1571-1590. (Pubitemid 38464301)
    • (2004) Geochimica et Cosmochimica Acta , vol.68 , Issue.7 , pp. 1571-1590
    • Valentine, D.L.1    Chidthaisong, A.2    Rice, A.3    Reeburgh, W.S.4    Tyler, S.C.5
  • 46
    • 27644599204 scopus 로고    scopus 로고
    • A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria
    • DOI 10.1016/j.gca.2005.04.015, PII S0016703705004254
    • Brunner B, Bernasconi SM (2005) A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim Cosmochim Acta 69:4759-4771. (Pubitemid 41555872)
    • (2005) Geochimica et Cosmochimica Acta , vol.69 , Issue.20 , pp. 4759-4771
    • Brunner, B.1    Bernasconi, S.M.2
  • 47
    • 33744479539 scopus 로고    scopus 로고
    • Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status
    • DOI 10.1111/j.1365-2486.2005.01076.x
    • Penning H, Plugge CM, Galand PE, Conrad R (2005) Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status. Glob Change Biol 11:2103-2113. (Pubitemid 43904648)
    • (2005) Global Change Biology , vol.11 , Issue.12 , pp. 2103-2113
    • Penning, H.1    Plugge, C.M.2    Galand, P.E.3    Conrad, R.4
  • 48
    • 34547428633 scopus 로고    scopus 로고
    • Sulfur isotope insights into microbial sulfate reduction: When microbes meet models
    • DOI 10.1016/j.gca.2007.05.008, PII S0016703707002487
    • Johnston DT, Farquhar J, Canfield DE (2007) Sulfur isotope insights into microbial sulfate reduction: When microbes meet models. Geochim Cosmochim Acta 71:3929-3947. (Pubitemid 47163649)
    • (2007) Geochimica et Cosmochimica Acta , vol.71 , Issue.16 , pp. 3929-3947
    • Johnston, D.T.1    Farquhar, J.2    Canfield, D.E.3
  • 49
    • 44549088768 scopus 로고    scopus 로고
    • Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Fællestrand, Denmark
    • Farquhar J, Canfield DE, Masterson A, Bao H, Johnston DT (2008) Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Fællestrand, Denmark. Geochim Cosmochim Acta 72:2805-2821.
    • (2008) Geochim Cosmochim Acta , vol.72 , pp. 2805-2821
    • Farquhar, J.1    Canfield, D.E.2    Masterson, A.3    Bao, H.4    Johnston, D.T.5
  • 50
    • 79955385307 scopus 로고    scopus 로고
    • Microbially mediated reoxidation of sulfide during dissimilatory sulfate reduction by Desulfobacter latus
    • Eckert T, Brunner B, Edwards EA, Wortmann UG (2011) Microbially mediated reoxidation of sulfide during dissimilatory sulfate reduction by Desulfobacter latus. Geochim Cosmochim Acta 75:3469-3485.
    • (2011) Geochim Cosmochim Acta , vol.75 , pp. 3469-3485
    • Eckert, T.1    Brunner, B.2    Edwards, E.A.3    Wortmann, U.G.4
  • 51
    • 79955442044 scopus 로고    scopus 로고
    • Concurrent low- and high-affinity sulfate reduction kinetics in marine sediment
    • Tarpgaard IH, Røy H, Jørgensen BB (2011) Concurrent low- and high-affinity sulfate reduction kinetics in marine sediment. Geochim Cosmochim Acta 75:2997-3010.
    • (2011) Geochim Cosmochim Acta , vol.75 , pp. 2997-3010
    • Tarpgaard, I.H.1    Røy, H.2    Jørgensen, B.B.3
  • 52
    • 79959831682 scopus 로고    scopus 로고
    • Large sulfur isotope fractionation does not require disproportionation
    • Sim MS, Bosak T, Ono S (2011) Large sulfur isotope fractionation does not require disproportionation. Science 333:74-77.
    • (2011) Science , vol.333 , pp. 74-77
    • Sim, M.S.1    Bosak, T.2    Ono, S.3
  • 54
    • 14644396355 scopus 로고    scopus 로고
    • A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements
    • Kallmeyer J, Ferdelman TG, Weber A, Fossing H, Jørgensen BB (2004) A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol Oceanogr Methods 2:171-180. (Pubitemid 43723711)
    • (2004) Limnology and Oceanography: Methods , vol.2 , Issue.JUNE , pp. 171-180
    • Kallmeyer, J.1    Ferdelman, T.C.2    Weber, A.3    Fossing, H.4    Jorgensen, B.B.5
  • 55
    • 24644449469 scopus 로고    scopus 로고
    • Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic)
    • Treude T, Krüger M, Boetius A, Jørgensen BB (2005) Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnol Oceanogr 50:1771-1786. (Pubitemid 41692185)
    • (2005) Limnology and Oceanography , vol.50 , Issue.6 , pp. 1771-1786
    • Treude, T.1    Kruger, M.2    Boetius, A.3    Jorgensen, B.B.4
  • 58
    • 84951580147 scopus 로고
    • A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. 1. Measurement with radiotracer techniques
    • Jørgensen BB (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. 1. Measurement with radiotracer techniques. Geomicrobiol J 1:11-27.
    • (1978) Geomicrobiol J , vol.1 , pp. 11-27
    • Jørgensen, B.B.1
  • 59
    • 0025257667 scopus 로고
    • Isotope exchange reactions with radiolabeled sulfur compounds in anoxic seawater
    • Fossing H, Jørgensen BB (1990) Isotope exchange reaction with radiolabeled sulfur compounds in anoxic seawater. Biogeochemistry 9:223-245. (Pubitemid 20415069)
    • (1990) Biogeochemistry , vol.9 , Issue.3 , pp. 223-245
    • Fossing, H.1    Jorgensen, B.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.