메뉴 건너뛰기




Volumn 1125, Issue , 2008, Pages 158-170

Methane as fuel for anaerobic microorganisms

Author keywords

Anaerobic oxidation of methane; Glycyl radical enzymes; Methanotrophic archaea; Methanotrophic bacteria; Methyl coenzyme M reductase; Methylsuccinate synthase; Nickel cofactor F430

Indexed keywords

ALKANE; ETHANE; FUMARIC ACID; METHANE; METHANOL; NITRATE; OXIDE; OXIDOREDUCTASE; PROPANE; SUCCINIC ACID DERIVATIVE; SULFATE; UNSPECIFIC MONOOXYGENASE;

EID: 41349105149     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1196/annals.1419.000     Document Type: Conference Paper
Times cited : (158)

References (96)
  • 1
    • 0012233552 scopus 로고    scopus 로고
    • Activation of C-H bonds by metal complexes
    • SHILOV, A.E. & G.B. SHUL'PIN. 1997. Activation of C-H bonds by metal complexes. Chem. Rev. 97: 2879-2932.
    • (1997) Chem. Rev , vol.97 , pp. 2879-2932
    • SHILOV, A.E.1    SHUL'PIN, G.B.2
  • 2
    • 0035823266 scopus 로고    scopus 로고
    • 100 years of carbocations and their significance in chemistry
    • OLAH, G.A. 2001. 100 years of carbocations and their significance in chemistry. J. Org. Chem. 66: 5943-5957.
    • (2001) J. Org. Chem , vol.66 , pp. 5943-5957
    • OLAH, G.A.1
  • 3
    • 4444257275 scopus 로고    scopus 로고
    • Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase
    • LIEBERMAN, R.L. & A.C. ROSENZWEIG. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39: 147-164.
    • (2004) Crit. Rev. Biochem. Mol. Biol , vol.39 , pp. 147-164
    • LIEBERMAN, R.L.1    ROSENZWEIG, A.C.2
  • 4
    • 0742288622 scopus 로고    scopus 로고
    • The "Rebound controversy": An overview and theoretical modeling of the rebound step in C-H hydroxylation by cytochrome P450
    • SHAIK, S. et al. 2004. The "Rebound controversy": an overview and theoretical modeling of the rebound step in C-H hydroxylation by cytochrome P450. Eur. J. Inorg. Chem. 207-226.
    • (2004) Eur. J. Inorg. Chem , pp. 207-226
    • SHAIK, S.1
  • 5
    • 31344479543 scopus 로고    scopus 로고
    • The Leeuwenhoek Lecture 2000 - The natural and unnatural history of methane-oxidizing bacteria
    • DALTON, H. 2005. The Leeuwenhoek Lecture 2000 - The natural and unnatural history of methane-oxidizing bacteria. Philos. Trans. R. Soc. Lond.B Biol. Sci. 360: 1207-1222.
    • (2005) Philos. Trans. R. Soc. Lond.B Biol. Sci , vol.360 , pp. 1207-1222
    • DALTON, H.1
  • 6
    • 14844340576 scopus 로고    scopus 로고
    • A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea
    • CHISTOSERDOVA, L., J.A. VORHOLT & M.E. LIDSTROM. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6: 208.1-208.6.
    • (2005) Genome Biol , vol.6
    • CHISTOSERDOVA, L.1    VORHOLT, J.A.2    LIDSTROM, M.E.3
  • 7
    • 33847720244 scopus 로고    scopus 로고
    • Oceanic methane biogeochemistry
    • REEBURGH, W.S. 2007. Oceanic methane biogeochemistry. Chem. Rev. 107: 486-513.
    • (2007) Chem. Rev , vol.107 , pp. 486-513
    • REEBURGH, W.S.1
  • 8
    • 33645876469 scopus 로고    scopus 로고
    • A microbial consortium couples anaerobic methane oxidation to denitrification
    • RAGHOEBARSING, A.A. et al. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440: 918-921.
    • (2006) Nature , vol.440 , pp. 918-921
    • RAGHOEBARSING, A.A.1
  • 9
    • 27844544240 scopus 로고    scopus 로고
    • Methyl-coenzyme M reductase (MCR) and the anaerobic oxidation of methane (AOM) in methanotrophic archaea
    • SHIMA, S. & R.K. THAUER. 2005. Methyl-coenzyme M reductase (MCR) and the anaerobic oxidation of methane (AOM) in methanotrophic archaea. Curr. Opin. Microbiol. 8: 643-648.
    • (2005) Curr. Opin. Microbiol , vol.8 , pp. 643-648
    • SHIMA, S.1    THAUER, R.K.2
  • 10
    • 34548388446 scopus 로고    scopus 로고
    • THAUER, R.K. & S. SHIMA. 2007. Methyl-coenzyme M reductase in methanogens and methanotrophs. In Archaea, Evolution, Physiology and Molecuar Biology. R. Garrett & H.-P. Klenk, Eds.: 275-283. Malden, MA: Blackwell Publishing.
    • THAUER, R.K. & S. SHIMA. 2007. Methyl-coenzyme M reductase in methanogens and methanotrophs. In Archaea, Evolution, Physiology and Molecuar Biology. R. Garrett & H.-P. Klenk, Eds.: 275-283. Malden, MA: Blackwell Publishing.
  • 11
    • 22144456094 scopus 로고    scopus 로고
    • Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor
    • GIRGUIS, P.R., A.E. COZEN & E.F. DELONG. 2005. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl. Environ. Microbiol. 71: 3725-3733.
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 3725-3733
    • GIRGUIS, P.R.1    COZEN, A.E.2    DELONG, E.F.3
  • 12
    • 33846094482 scopus 로고    scopus 로고
    • In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate
    • NAUHAUS, K. et al. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol. 9: 187-196.
    • (2007) Environ. Microbiol , vol.9 , pp. 187-196
    • NAUHAUS, K.1
  • 13
    • 19944425208 scopus 로고    scopus 로고
    • Calculation of the stability and solubility of methane hydrate in seawater
    • TISHCHENKO, P. et al. 2005. Calculation of the stability and solubility of methane hydrate in seawater. Chem. Geol. 219: 37-52.
    • (2005) Chem. Geol , vol.219 , pp. 37-52
    • TISHCHENKO, P.1
  • 14
    • 26844539699 scopus 로고    scopus 로고
    • Microbialmethane turnover in different marine habitats
    • KRUEGER, M. et al. 2005. Microbialmethane turnover in different marine habitats. Palaeogeogr. Palaeoclimatol. 227: 6-17.
    • (2005) Palaeogeogr. Palaeoclimatol , vol.227 , pp. 6-17
    • KRUEGER, M.1
  • 15
    • 26844432221 scopus 로고    scopus 로고
    • Subsurface microbial methanotrophic mats in the Black Sea
    • TREUDE, T. et al. 2005. Subsurface microbial methanotrophic mats in the Black Sea. Appl. Environ. Microb. 71: 6375-6378.
    • (2005) Appl. Environ. Microb , vol.71 , pp. 6375-6378
    • TREUDE, T.1
  • 16
    • 20344387441 scopus 로고    scopus 로고
    • Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin
    • TREUDE, T. et al. 2005b. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim. Cosmochim. Acta 69: 2767-2779.
    • (2005) Geochim. Cosmochim. Acta , vol.69 , pp. 2767-2779
    • TREUDE, T.1
  • 17
    • 33750987357 scopus 로고    scopus 로고
    • Microbial methane turnover at mud volcanoes of the Gulf of Cadiz
    • NIEMANN, H. et al. 2006. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim. Cosmochim. Acta 70: 336-5355.
    • (2006) Geochim. Cosmochim. Acta , vol.70 , pp. 336-5355
    • NIEMANN, H.1
  • 18
    • 9144257242 scopus 로고    scopus 로고
    • A conspicuous nickel protein in microbial mats that oxidize methane anaerobically
    • KRÜGER, M. et al. 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426: 878-881.
    • (2003) Nature , vol.426 , pp. 878-881
    • KRÜGER, M.1
  • 19
    • 33748887868 scopus 로고    scopus 로고
    • Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro
    • SEIFERT, R. et al. 2006. Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro. Org. Geochem. 37: 1411-1419.
    • (2006) Org. Geochem , vol.37 , pp. 1411-1419
    • SEIFERT, R.1
  • 20
    • 24644498136 scopus 로고    scopus 로고
    • Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps
    • ORCUTT, B. et al. 2005. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim. Cosmochim. Acta 69: 4267-4281.
    • (2005) Geochim. Cosmochim. Acta , vol.69 , pp. 4267-4281
    • ORCUTT, B.1
  • 21
    • 12244272161 scopus 로고    scopus 로고
    • Diversity and distribution of methanotrophic archaea at cold seeps
    • KNITTEL, K. et al. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ.Microbiol. 71: 467-479.
    • (2005) Appl. Environ.Microbiol , vol.71 , pp. 467-479
    • KNITTEL, K.1
  • 22
    • 12544250488 scopus 로고    scopus 로고
    • Environmental regulation of the anaerobic oxidation of methane: A comparison of ANME-I and ANME-II communities
    • NAUHAUS, K. et al. 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ.Microbiol. 7: 98-106.
    • (2005) Environ.Microbiol , vol.7 , pp. 98-106
    • NAUHAUS, K.1
  • 23
    • 21044441938 scopus 로고    scopus 로고
    • Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea
    • STADNITSKAIA, A. et al. 2005. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar. Geol. 217: 67-96.
    • (2005) Mar. Geol , vol.217 , pp. 67-96
    • STADNITSKAIA, A.1
  • 24
    • 18844481026 scopus 로고    scopus 로고
    • A marine microbial consortium apparently mediating anaerobic oxidation of methane
    • BOETIUS, A. et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623-626.
    • (2000) Nature , vol.407 , pp. 623-626
    • BOETIUS, A.1
  • 25
    • 0035317030 scopus 로고    scopus 로고
    • Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments
    • ORPHAN, V.J. et al. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 67: 1922-1934.
    • (2001) Appl. Environ. Microbiol , vol.67 , pp. 1922-1934
    • ORPHAN, V.J.1
  • 26
    • 0141447278 scopus 로고    scopus 로고
    • Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane
    • ELVERT, M. et al. 2003. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol. J. 20: 403-419.
    • (2003) Geomicrobiol. J , vol.20 , pp. 403-419
    • ELVERT, M.1
  • 27
    • 0141447287 scopus 로고    scopus 로고
    • Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon)
    • KNITTEL, K. et al. 2003. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol. J. 20: 269-294.
    • (2003) Geomicrobiol. J , vol.20 , pp. 269-294
    • KNITTEL, K.1
  • 28
    • 23744479180 scopus 로고    scopus 로고
    • In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat
    • BLUMENBERG, M. et al. 2005. In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Appl. Environ. Microbiol. 71: 4345-4351.
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 4345-4351
    • BLUMENBERG, M.1
  • 29
    • 0035675972 scopus 로고    scopus 로고
    • Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment
    • HOEHLER, T. et al. 2001. Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol. Ecol. 38: 33-41.
    • (2001) FEMS Microbiol. Ecol , vol.38 , pp. 33-41
    • HOEHLER, T.1
  • 30
    • 33746862899 scopus 로고    scopus 로고
    • Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: A theoretical analysis
    • DALE, A.W., P. REGNIER & P. VAN CAPPELLEN. 2006. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis. Am. J. Sci. 306: 246-294.
    • (2006) Am. J. Sci , vol.306 , pp. 246-294
    • DALE, A.W.1    REGNIER, P.2    VAN CAPPELLEN, P.3
  • 31
    • 21344461500 scopus 로고    scopus 로고
    • Extracellular electron transfer via microbial nanowires
    • REGUERA, G. et al. 2005. Extracellular electron transfer via microbial nanowires. Nature 435: 1098-1101.
    • (2005) Nature , vol.435 , pp. 1098-1101
    • REGUERA, G.1
  • 32
    • 33644947596 scopus 로고    scopus 로고
    • Exocellular electron transfer in anaerobic microbial communities
    • STAMS, A.J.M. et al. 2006. Exocellular electron transfer in anaerobic microbial communities. Environ. Microbiol. 8: 371-382.
    • (2006) Environ. Microbiol , vol.8 , pp. 371-382
    • STAMS, A.J.M.1
  • 33
    • 29144512804 scopus 로고    scopus 로고
    • Evidence of intense archaeal and bacterial methanotrophic activity in the black sea water column
    • DURISCH-KAISER, E. et al. 2005. Evidence of intense archaeal and bacterial methanotrophic activity in the black sea water column. Appl. Environ. Microb. 71: 8099-8106.
    • (2005) Appl. Environ. Microb , vol.71 , pp. 8099-8106
    • DURISCH-KAISER, E.1
  • 34
    • 0141592799 scopus 로고    scopus 로고
    • Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea
    • HALLAM, S.J. et al. 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 69: 5483-5491.
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 5483-5491
    • HALLAM, S.J.1
  • 35
    • 4444370893 scopus 로고    scopus 로고
    • Reverse methanogenesis: Testing the hypothesis with environmental genomics
    • HALLAM, S.J. et al. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305: 1457-1462.
    • (2004) Science , vol.305 , pp. 1457-1462
    • HALLAM, S.J.1
  • 36
    • 4644265740 scopus 로고    scopus 로고
    • Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues
    • GOENRICH, M. et al. 2004. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues. J. Biol. Inorg. Chem. 9: 691-705.
    • (2004) J. Biol. Inorg. Chem , vol.9 , pp. 691-705
    • GOENRICH, M.1
  • 37
    • 33751568687 scopus 로고    scopus 로고
    • Characterization of 2-bromoethanesulfonate as a selective inhibitor of the coenzyme M-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism
    • BOYD, J.M., A. ELLSWORTH & S.A. ENSIGN. 2006. Characterization of 2-bromoethanesulfonate as a selective inhibitor of the coenzyme M-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism. J. Bacteriol. 188: 8062-8069.
    • (2006) J. Bacteriol , vol.188 , pp. 8062-8069
    • BOYD, J.M.1    ELLSWORTH, A.2    ENSIGN, S.A.3
  • 38
    • 0023098740 scopus 로고
    • Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae - Evidence of a coenzyme-M transport-system
    • SANTORO, N. & J. KONISKY. 1987. Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae - Evidence of a coenzyme-M transport-system. J. Bacteriol. 169: 660-665.
    • (1987) J. Bacteriol , vol.169 , pp. 660-665
    • SANTORO, N.1    KONISKY, J.2
  • 39
    • 27644532467 scopus 로고    scopus 로고
    • Methyl-coenzyme M reductase genes: Unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea
    • FRIEDRICH, M.W. 2005. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol. 397: 428-442.
    • (2005) Methods Enzymol , vol.397 , pp. 428-442
    • FRIEDRICH, M.W.1
  • 40
    • 10444248885 scopus 로고    scopus 로고
    • INAGAKI, F. et al. 2004. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl. Environ. Microbiol. 70: 7445-7455.
    • INAGAKI, F. et al. 2004. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl. Environ. Microbiol. 70: 7445-7455.
  • 41
    • 12544256650 scopus 로고    scopus 로고
    • Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments
    • NERCESSIAN, O. et al. 2005. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ. Microbiol. 7: 118-132.
    • (2005) Environ. Microbiol , vol.7 , pp. 118-132
    • NERCESSIAN, O.1
  • 42
    • 33745044981 scopus 로고    scopus 로고
    • Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough
    • NUNOURA, T. et al. 2006. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiol. Ecol. 57: 149-157.
    • (2006) FEMS Microbiol. Ecol , vol.57 , pp. 149-157
    • NUNOURA, T.1
  • 43
    • 21344431639 scopus 로고    scopus 로고
    • OREMLAND, R.S. et al. 2005. Whither or wither geomicrobiology in the era of 'community metagenomics.' Nat. Rev. Microbiol. 3: 572-578.
    • OREMLAND, R.S. et al. 2005. Whither or wither geomicrobiology in the era of 'community metagenomics.' Nat. Rev. Microbiol. 3: 572-578.
  • 44
    • 84954583467 scopus 로고    scopus 로고
    • JAUN, B. & R.K. THAUER. 2007. Methyl-coenzmye M reductase and its nickel corphin coenzyme F430 in methanogenic archaea. In Nickel and Its Surprising Impact in Nature, 2 of Metal Ions in Life Sciences. A. Sigel, H. Sigel & R.K.O. Sigel, Eds.: 323-356. Chichester, UK: John Wiley & Sons.
    • JAUN, B. & R.K. THAUER. 2007. Methyl-coenzmye M reductase and its nickel corphin coenzyme F430 in methanogenic archaea. In Nickel and Its Surprising Impact in Nature, Vol. 2 of Metal Ions in Life Sciences. A. Sigel, H. Sigel & R.K.O. Sigel, Eds.: 323-356. Chichester, UK: John Wiley & Sons.
  • 45
    • 0030726657 scopus 로고    scopus 로고
    • Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation
    • ERMLER, U. et al. 1997. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278: 1457-1462.
    • (1997) Science , vol.278 , pp. 1457-1462
    • ERMLER, U.1
  • 46
    • 0034635543 scopus 로고    scopus 로고
    • The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase
    • SELMER, T. et al. 2000. The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase. J. Biol. Chem. 275: 3755-3760.
    • (2000) J. Biol. Chem , vol.275 , pp. 3755-3760
    • SELMER, T.1
  • 47
    • 0034692923 scopus 로고    scopus 로고
    • Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: Unusual amino acid modification, conservation and adaptation
    • GRABARSE, W. et al. 2000. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. J. Mol. Biol. 303: 329-344.
    • (2000) J. Mol. Biol , vol.303 , pp. 329-344
    • GRABARSE, W.1
  • 48
    • 41349087637 scopus 로고    scopus 로고
    • HELLER, C. et al. 2007. Immunological localization of coenzyme M reductase in anaerobic methane-oxidizing archaea. BIOspektrum. Special Issue 2007, 60:KE 014.
    • HELLER, C. et al. 2007. Immunological localization of coenzyme M reductase in anaerobic methane-oxidizing archaea. BIOspektrum. Special Issue 2007, 60:KE 014.
  • 49
    • 33748813186 scopus 로고    scopus 로고
    • Methanogenesis is reversible: The formation of acetate in methane carboxilation by bacteria of methanigenic biocenose
    • SHILOV, A.E. et al. 1999. Methanogenesis is reversible: the formation of acetate in methane carboxilation by bacteria of methanigenic biocenose. Dokl. Akad. Nauk. 367: 557-559.
    • (1999) Dokl. Akad. Nauk , vol.367 , pp. 557-559
    • SHILOV, A.E.1
  • 50
    • 20144385037 scopus 로고    scopus 로고
    • Trace methane oxidation studied in several Euryarchaeota under diverse conditions
    • MORAN, J.J. et al. 2004. Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1: 303-309.
    • (2004) Archaea , vol.1 , pp. 303-309
    • MORAN, J.J.1
  • 51
    • 0018427427 scopus 로고
    • Methane formation and methane oxidation by methanogenic bacteria
    • ZEHNDER, A.J.B. & T. BROCK. 1979. Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137: 420-432.
    • (1979) J. Bacteriol , vol.137 , pp. 420-432
    • ZEHNDER, A.J.B.1    BROCK, T.2
  • 52
    • 0018869415 scopus 로고
    • Anaerobic methane oxidation - Occurrence and ecology
    • ZEHNDER, A.J.B. & T.D. BROCK. 1980. Anaerobic methane oxidation - Occurrence and ecology. Appl. Environ. Microbiol. 39: 194-204.
    • (1980) Appl. Environ. Microbiol , vol.39 , pp. 194-204
    • ZEHNDER, A.J.B.1    BROCK, T.D.2
  • 53
    • 0021063355 scopus 로고
    • Carbon monoxide production by Methanobacterium thermoautotrophicum
    • CONRAD, R. & R.K. THAUER. 1983. Carbon monoxide production by Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 20: 229-232.
    • (1983) FEMS Microbiol. Lett , vol.20 , pp. 229-232
    • CONRAD, R.1    THAUER, R.K.2
  • 54
    • 0031685510 scopus 로고    scopus 로고
    • Biochemistry of methanogenesis: A tribute to Marjory Stephenson
    • THAUER, R.K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144: 2377-2406.
    • (1998) Microbiology , vol.144 , pp. 2377-2406
    • THAUER, R.K.1
  • 55
    • 21644433865 scopus 로고    scopus 로고
    • Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B
    • GOENRICH, M. et al. 2005. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J. Biol. Inorg. Chem. 10: 333-342.
    • (2005) J. Biol. Inorg. Chem , vol.10 , pp. 333-342
    • GOENRICH, M.1
  • 56
    • 35348897220 scopus 로고    scopus 로고
    • Two sub-strates of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectrospcopy
    • KERN, D.I. et al. 2007. Two sub-strates of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectrospcopy. J. Biol. Inorg. Chem. 12(8): 1097-1105.
    • (2007) J. Biol. Inorg. Chem , vol.12 , Issue.8 , pp. 1097-1105
    • KERN, D.I.1
  • 57
    • 0035980250 scopus 로고    scopus 로고
    • Mechanistic studies of methane biogenesis by methyl-coenzyme M reductase: Evidence that coenzyme B participates in cleaving the C-S bond of methyl-coenzyme M
    • HORNG, Y.C., D.F. BECKER & S.W. RAGSDALE. 2001. Mechanistic studies of methane biogenesis by methyl-coenzyme M reductase: evidence that coenzyme B participates in cleaving the C-S bond of methyl-coenzyme M. Biochemistry 40: 12875-12885.
    • (2001) Biochemistry , vol.40 , pp. 12875-12885
    • HORNG, Y.C.1    BECKER, D.F.2    RAGSDALE, S.W.3
  • 58
    • 0000505068 scopus 로고
    • Steric course of the reduction of ethyl coenzyme M to ethane catalyzed by methyl coenzyme M reductase from Methanosarcina barkeri
    • AHN, Y., J.A. KRZYCKI & H.G. FLOSS. 1991. Steric course of the reduction of ethyl coenzyme M to ethane catalyzed by methyl coenzyme M reductase from Methanosarcina barkeri. J. Am. Chem. Soc. 113: 4700-4701.
    • (1991) J. Am. Chem. Soc , vol.113 , pp. 4700-4701
    • AHN, Y.1    KRZYCKI, J.A.2    FLOSS, H.G.3
  • 59
    • 33746244090 scopus 로고    scopus 로고
    • A nickel-alkyl bond in an inactivated state of the enzyme catalyzing methane formation
    • HINDERBERGER, D. et al. 2006. A nickel-alkyl bond in an inactivated state of the enzyme catalyzing methane formation. Angew. Chem. Int. Ed. Engl. 45: 3602-3607.
    • (2006) Angew. Chem. Int. Ed. Engl , vol.45 , pp. 3602-3607
    • HINDERBERGER, D.1
  • 60
    • 41349090735 scopus 로고    scopus 로고
    • JAUN, B. 1993. Methane formation by methanogenic bacteria: redox chemistry of coenzyme F430. In Metal Ions in Biological Systems, 29, Properties of Metal Alkyl Derivatives. H. Sigel & A. Sigel, Eds.: 287-337. New York: Marcel Dekker.
    • JAUN, B. 1993. Methane formation by methanogenic bacteria: redox chemistry of coenzyme F430. In Metal Ions in Biological Systems, Vol. 29, Properties of Metal Alkyl Derivatives. H. Sigel & A. Sigel, Eds.: 287-337. New York: Marcel Dekker.
  • 61
    • 0142214613 scopus 로고    scopus 로고
    • Direct determination of the number of electrons needed to reduce coenzyme F430 pentamethyl ester to the Ni(I) species exhibiting the electron paramagnetic resonance and ultraviolet-visible spectra characteristic for the MCR(red1) state of methyl-coenzyme M reductase
    • PISKORSKI, R. & B. JAUN. 2003. Direct determination of the number of electrons needed to reduce coenzyme F430 pentamethyl ester to the Ni(I) species exhibiting the electron paramagnetic resonance and ultraviolet-visible spectra characteristic for the MCR(red1) state of methyl-coenzyme M reductase. J. Am. Chem. Soc. 125: 13120-13125.
    • (2003) J. Am. Chem. Soc , vol.125 , pp. 13120-13125
    • PISKORSKI, R.1    JAUN, B.2
  • 62
    • 0037123266 scopus 로고    scopus 로고
    • A mechanism from quantum chemical studies for methane formation in methanogenesis
    • PELMENSCHIKOV, V. et al. 2002. A mechanism from quantum chemical studies for methane formation in methanogenesis. J. Am. Chem. Soc. 124: 4039-4049.
    • (2002) J. Am. Chem. Soc , vol.124 , pp. 4039-4049
    • PELMENSCHIKOV, V.1
  • 63
    • 0042155695 scopus 로고    scopus 로고
    • Catalysis by methyl-coenzyme M reductase: A theoretical study for heterodisulfide product formation
    • PELMENSCHIKOV, V. & P.E. SIEGBAHN. 2003. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation. J. Biol. Inorg. Chem. 8: 653-662.
    • (2003) J. Biol. Inorg. Chem , vol.8 , pp. 653-662
    • PELMENSCHIKOV, V.1    SIEGBAHN, P.E.2
  • 64
    • 0035606344 scopus 로고    scopus 로고
    • Deconstructing F430: Quantum chemical perspectives of biological methanogenesis
    • GHOSH, A., T. WONDIMAGEGN & H. RYENG. 2001. Deconstructing F430: quantum chemical perspectives of biological methanogenesis. Curr. Opin. Chem. Biol. 5: 744-750.
    • (2001) Curr. Opin. Chem. Biol , vol.5 , pp. 744-750
    • GHOSH, A.1    WONDIMAGEGN, T.2    RYENG, H.3
  • 65
    • 0037473525 scopus 로고    scopus 로고
    • Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase
    • FINAZZO, C. et al. 2003. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase. J. Am. Chem. Soc. 125: 4988-4989.
    • (2003) J. Am. Chem. Soc , vol.125 , pp. 4988-4989
    • FINAZZO, C.1
  • 66
    • 0037496168 scopus 로고    scopus 로고
    • Characterization of the MCRred2 form of methyl-coenzyme M reductase: A pulse EPR and ENDOR study
    • FINAZZO, C. et al. 2003. Characterization of the MCRred2 form of methyl-coenzyme M reductase: a pulse EPR and ENDOR study. J. Biol. Inorg. Chem. 8: 586-593.
    • (2003) J. Biol. Inorg. Chem , vol.8 , pp. 586-593
    • FINAZZO, C.1
  • 67
    • 1842450597 scopus 로고    scopus 로고
    • Nickel oxidation states of F430 cofactor in methyl-coenzyme M reductase
    • CRAFT, J.L. et al. 2004. Nickel oxidation states of F430 cofactor in methyl-coenzyme M reductase. J. Am. Chem. Soc. 126: 4068-4069.
    • (2004) J. Am. Chem. Soc , vol.126 , pp. 4068-4069
    • CRAFT, J.L.1
  • 68
    • 3943085693 scopus 로고    scopus 로고
    • Spectroscopic investigation of the nickel-containing porphinoid cofactor F430. Comparison of the free cofactor in the +1, +2 and +3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms
    • DUIN, E.C. et al. 2004. Spectroscopic investigation of the nickel-containing porphinoid cofactor F430. Comparison of the free cofactor in the +1, +2 and +3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms. J. Biol. Inorg. Chem. 9: 563-574.
    • (2004) J. Biol. Inorg. Chem , vol.9 , pp. 563-574
    • DUIN, E.C.1
  • 69
    • 33845574861 scopus 로고    scopus 로고
    • Mechanism of benzylsuccinate synthase probed by substrate and isotope exchange
    • LI, L. & E.N.G. MARSH. 2006. Mechanism of benzylsuccinate synthase probed by substrate and isotope exchange. J. Am. Chem. Soc. 128: 16056-16057.
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 16056-16057
    • LI, L.1    MARSH, E.N.G.2
  • 70
    • 33645857059 scopus 로고    scopus 로고
    • Biogeochemistry: Methane and microbes
    • THAUER, R.K. & S. SHIMA. 2006. Biogeochemistry: methane and microbes. Nature 440: 878-879.
    • (2006) Nature , vol.440 , pp. 878-879
    • THAUER, R.K.1    SHIMA, S.2
  • 71
    • 41349104591 scopus 로고    scopus 로고
    • ETTWIG, K.F. et al. 2007. Freshwater microbial consortium couples anaerobic methane oxidation to denitrification. BIOspektrum. Special Issue 2007, 58:KE 007.
    • ETTWIG, K.F. et al. 2007. Freshwater microbial consortium couples anaerobic methane oxidation to denitrification. BIOspektrum. Special Issue 2007, 58:KE 007.
  • 72
    • 0001368236 scopus 로고
    • Electrophilic substitution of methane revisited
    • OLAH, G.A. et al. 1995. Electrophilic substitution of methane revisited. J. Am. Chem. Soc. 117: 1336-1343.
    • (1995) J. Am. Chem. Soc , vol.117 , pp. 1336-1343
    • OLAH, G.A.1
  • 73
    • 0030726775 scopus 로고    scopus 로고
    • Electrophilic nitration of alkanes with nitronium hexafluorophosphate
    • OLAH, G.A., P. RAMAIAH & G.K.S. PRAKASH. 1997. Electrophilic nitration of alkanes with nitronium hexafluorophosphate. Proc. Natl. Acad. Sci. USA 94: 11783-11785.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 11783-11785
    • OLAH, G.A.1    RAMAIAH, P.2    PRAKASH, G.K.S.3
  • 74
    • 0034437363 scopus 로고    scopus 로고
    • Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria
    • SPORMANN, A.M. & F. WIDDEL. 2000. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11: 85-105.
    • (2000) Biodegradation , vol.11 , pp. 85-105
    • SPORMANN, A.M.1    WIDDEL, F.2
  • 75
    • 11844286322 scopus 로고    scopus 로고
    • The anaerobic hydrocarbon biodegrading bacteria: An overview
    • BONIN, P. et al. 2004. The anaerobic hydrocarbon biodegrading bacteria: an overview. Ophelia 58: 243-254.
    • (2004) Ophelia , vol.58 , pp. 243-254
    • BONIN, P.1
  • 76
    • 33644778038 scopus 로고    scopus 로고
    • Utilisation of C-2-C-4 gaseous hydrocarbons and isoprene by microorganisms
    • SHENNAN, J.L. 2006. Utilisation of C-2-C-4 gaseous hydrocarbons and isoprene by microorganisms. J. Chem. Technol. Biotechnol. 81: 237-256.
    • (2006) J. Chem. Technol. Biotechnol , vol.81 , pp. 237-256
    • SHENNAN, J.L.1
  • 77
    • 41349096168 scopus 로고    scopus 로고
    • RABUS, R, T. HANSEN & F. WIDDEL. 2001. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. S. Dworkin et al, Eds, New York:Springer-Verlag.release 3.3
    • RABUS, R., T. HANSEN & F. WIDDEL. 2001. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. S. Dworkin et al., Eds.: New York:Springer-Verlag.release 3.3, http://link.springerny.com/link/service/books/10125.
  • 78
    • 0042859855 scopus 로고    scopus 로고
    • Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil
    • WILKES, H. et al. 2003. Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org. Geochem. 34: 1313-1323.
    • (2003) Org. Geochem , vol.34 , pp. 1313-1323
    • WILKES, H.1
  • 79
    • 22144479802 scopus 로고    scopus 로고
    • Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803
    • CRAVO-LAUREAU, C. et al. 2005. Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803. Appl. Environ. Microb. 71: 3458-3467.
    • (2005) Appl. Environ. Microb , vol.71 , pp. 3458-3467
    • CRAVO-LAUREAU, C.1
  • 80
    • 29144499457 scopus 로고    scopus 로고
    • Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture
    • DAVIDOVA, I.A. et al. 2005. Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture. Appl. Environ. Microbiol. 71: 8174-8182.
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 8174-8182
    • DAVIDOVA, I.A.1
  • 81
    • 33845799665 scopus 로고    scopus 로고
    • Desulfoglaeba alkanexedens gen. nov., sp nov., an n-alkane-degrading, sulfate-reducing bacterium
    • DAVIDOVA, I.A. et al. 2006. Desulfoglaeba alkanexedens gen. nov., sp nov., an n-alkane-degrading, sulfate-reducing bacterium. Int. J. Syst. Evol. Micr. 56: 2737-2742.
    • (2006) Int. J. Syst. Evol. Micr , vol.56 , pp. 2737-2742
    • DAVIDOVA, I.A.1
  • 82
    • 33847034793 scopus 로고    scopus 로고
    • Understanding the electon paramagnetic resonance parameters of protein-bound glycyl radicals
    • KACPRZAK, S., R. REVIAKINE & M. KAUPP. 2007. Understanding the electon paramagnetic resonance parameters of protein-bound glycyl radicals. J. Phys. Chem. B 111: 820-831.
    • (2007) J. Phys. Chem. B , vol.111 , pp. 820-831
    • KACPRZAK, S.1    REVIAKINE, R.2    KAUPP, M.3
  • 83
    • 27644532857 scopus 로고    scopus 로고
    • New glycyl radical enzymes catalysing key. Metabolic steps in anaerobic bacteria
    • SELMER, T., A.J. PIERIK & J. HEIDER. 2005. New glycyl radical enzymes catalysing key. Metabolic steps in anaerobic bacteria. Biol. Chem. 386: 981-988.
    • (2005) Biol. Chem , vol.386 , pp. 981-988
    • SELMER, T.1    PIERIK, A.J.2    HEIDER, J.3
  • 84
    • 33751229040 scopus 로고    scopus 로고
    • Deuterium isotope effects in the unusual addition of toluene to fumarate catalyzed by benzylsuccinate synthase
    • LI, L. & E.N.G. MARSH. 2006. Deuterium isotope effects in the unusual addition of toluene to fumarate catalyzed by benzylsuccinate synthase. Biochemistry 45: 13932-13938.
    • (2006) Biochemistry , vol.45 , pp. 13932-13938
    • LI, L.1    MARSH, E.N.G.2
  • 86
    • 34547542453 scopus 로고    scopus 로고
    • Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase
    • ERB, T.J. et al. 2007. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase. Proc. Natl. Acad. Sci. USA 104: 10631-10636.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 10631-10636
    • ERB, T.J.1
  • 87
    • 0037479784 scopus 로고    scopus 로고
    • Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3
    • SO, C.M., C.D. PHELPS & L.Y. YOUNG. 2003. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl. Environ. Microbiol. 69: 3892-3900.
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 3892-3900
    • SO, C.M.1    PHELPS, C.D.2    YOUNG, L.Y.3
  • 88
    • 33749529553 scopus 로고    scopus 로고
    • Biological formation of ethane and propane in the deep marine subsurface
    • HINRICHS, K.U. et al. 2006. Biological formation of ethane and propane in the deep marine subsurface. Proc. Natl. Acad. Sci. USA 103: 14684-14689.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 14684-14689
    • HINRICHS, K.U.1
  • 89
  • 90
    • 0037419007 scopus 로고    scopus 로고
    • Redox potentials of methanophenazine and CoB-S-S-CoM, factors involved in electron transport in Methanogenic archaea
    • TIETZE, M. et al. 2003. Redox potentials of methanophenazine and CoB-S-S-CoM, factors involved in electron transport in Methanogenic archaea. Chembiochem. 4: 333-335.
    • (2003) Chembiochem , vol.4 , pp. 333-335
    • TIETZE, M.1
  • 91
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria
    • THAUER, R.K., K. JUNGERMANN & K. DECKER. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bact. Rev. 41: 100-180.
    • (1977) Bact. Rev , vol.41 , pp. 100-180
    • THAUER, R.K.1    JUNGERMANN, K.2    DECKER, K.3
  • 92
    • 0028037502 scopus 로고
    • Anaerobic oxidation of ferrous iron by purple bacteria, a new-type of phototrophic metabolism
    • EHRENREICH, A. & F. WIDDEL. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new-type of phototrophic metabolism. Appl. Environ. Microb. 60: 4517-4526.
    • (1994) Appl. Environ. Microb , vol.60 , pp. 4517-4526
    • EHRENREICH, A.1    WIDDEL, F.2
  • 93
    • 0032023777 scopus 로고    scopus 로고
    • Protein radicals in enzyme catalysis
    • STUBBE, J.A. & W.A. VAN DER DONK. 1998. Protein radicals in enzyme catalysis. Chem. Rev. 98: 705-762.
    • (1998) Chem. Rev , vol.98 , pp. 705-762
    • STUBBE, J.A.1    VAN DER DONK, W.A.2
  • 94
    • 33847635732 scopus 로고    scopus 로고
    • S-Adenosylmethionine as an oxidant: The radical SAM superfamily
    • WANG, S.C. & P.A. FREY. 2007. S-Adenosylmethionine as an oxidant: the radical SAM superfamily. Trends Biochem. Sci. 32: 101-110.
    • (2007) Trends Biochem. Sci , vol.32 , pp. 101-110
    • WANG, S.C.1    FREY, P.A.2
  • 95
    • 33846982966 scopus 로고    scopus 로고
    • Toward an improved understanding of the glutamate mutase system
    • SANDALA, G.M. et al. 2007. Toward an improved understanding of the glutamate mutase system. J. Am. Chem. Soc. 129: 1623-1633.
    • (2007) J. Am. Chem. Soc , vol.129 , pp. 1623-1633
    • SANDALA, G.M.1
  • 96
    • 0030175259 scopus 로고    scopus 로고
    • Oxidative damage to the glycyl alpha-carbon site in proteins: An ab initio study of the C-H bond dissociation energy and the reduction potential of the C-centered radical
    • ARMSTRONG, D.A., D. YU & A. RAUK. 1996. Oxidative damage to the glycyl alpha-carbon site in proteins: an ab initio study of the C-H bond dissociation energy and the reduction potential of the C-centered radical. Can. J. Chem. 74: 1192-1196.
    • (1996) Can. J. Chem , vol.74 , pp. 1192-1196
    • ARMSTRONG, D.A.1    YU, D.2    RAUK, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.