메뉴 건너뛰기




Volumn 80, Issue 20, 2014, Pages 6403-6412

Discovery of multiple modified F430 coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F430 in nature

Author keywords

[No Author keywords available]

Indexed keywords

ARCHAEA;

EID: 84907279948     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.02202-14     Document Type: Article
Times cited : (38)

References (55)
  • 1
    • 84896473466 scopus 로고    scopus 로고
    • Metabolic versatility in methanogens
    • Costa KC, Leigh JA. 2014. Metabolic versatility in methanogens. Curr. Opin. Biotechnol. 29C:70-75. http://dx.doi.org/10.1016/j.copbio.2014.02.012.
    • (2014) Curr. Opin. Biotechnol. , vol.29 C , pp. 70-75
    • Costa, K.C.1    Leigh, J.A.2
  • 2
    • 0030726657 scopus 로고    scopus 로고
    • Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation
    • Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. 1997. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457-1462. http://dx.doi.org/10.1126/science.278.5342.1457.
    • (1997) Science , vol.278 , pp. 1457-1462
    • Ermler, U.1    Grabarse, W.2    Shima, S.3    Goubeaud, M.4    Thauer, R.K.5
  • 3
    • 78650453777 scopus 로고    scopus 로고
    • Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme Mreductase using the natural substrate methyl-coenzymeMand a coenzyme B substrate analogue
    • Dey M, Li X, Kunz RC, Ragsdale SW. 2010. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme Mreductase using the natural substrate methyl-coenzymeMand a coenzyme B substrate analogue. Biochemistry 49:10902-10911. http://dx.doi.org/10.1021/bi101562m.
    • (2010) Biochemistry , vol.49 , pp. 10902-10911
    • Dey, M.1    Li, X.2    Kunz, R.C.3    Ragsdale, S.W.4
  • 4
    • 35348927419 scopus 로고    scopus 로고
    • Nickel and the carbon cycle
    • Ragsdale SW. 2007. Nickel and the carbon cycle. J. Inorg. Biochem. 101: 1657-1666. http://dx.doi.org/10.1016/j.jinorgbio.2007.07.014.
    • (2007) J. Inorg. Biochem. , vol.101 , pp. 1657-1666
    • Ragsdale, S.W.1
  • 5
    • 84860754998 scopus 로고    scopus 로고
    • How is methane formed and oxidized reversibly when catalyzed by Ni-containing methylcoenzymeMreductase?
    • Chen SL, Blomberg MR, Siegbahn PE. 2012. How is methane formed and oxidized reversibly when catalyzed by Ni-containing methylcoenzymeMreductase? Chemistry (Easton) 18:6309-6315. http://dx.doi.org/10.1002/chem.201200274.
    • (2012) Chemistry (Easton) , vol.18 , pp. 6309-6315
    • Chen, S.L.1    Blomberg, M.R.2    Siegbahn, P.E.3
  • 6
    • 84885657490 scopus 로고    scopus 로고
    • Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M
    • Scheller S, Goenrich M, Thauer RK, Jaun B. 2013. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M. J. Am. Chem. Soc. 135:14985-14995. http://dx.doi.org/10.1021/ja4064876.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 14985-14995
    • Scheller, S.1    Goenrich, M.2    Thauer, R.K.3    Jaun, B.4
  • 7
    • 0040833854 scopus 로고
    • Nickel tetrapyrrole cofactor F430: comparison of the forms bound to methyl S-coenzyme M reductase and protein free in cells of Methanobacterium thermoautotrophicum ΔH
    • Hausinger RP, Ormejohnson WH, Walsh C. 1984. Nickel tetrapyrrole cofactor F430: comparison of the forms bound to methyl S-coenzyme M reductase and protein free in cells of Methanobacterium thermoautotrophicum ΔH. Biochemistry 23:801-804. http://dx.doi.org/10.1021/bi00300a003.
    • (1984) Biochemistry , vol.23 , pp. 801-804
    • Hausinger, R.P.1    Ormejohnson, W.H.2    Walsh, C.3
  • 10
    • 84883315635 scopus 로고    scopus 로고
    • Seafloor oxygen consumption fuelled by methane from cold seeps
    • Boetius A, Wenzhofer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6:725-734. http://dx.doi.org/10.1038/ngeo1926.
    • (2013) Nat. Geosci. , vol.6 , pp. 725-734
    • Boetius, A.1    Wenzhofer, F.2
  • 13
    • 70349559191 scopus 로고    scopus 로고
    • Anaerobic oxidation of methane: progress with an unknown process
    • Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63:311-334. http://dx.doi.org/10.1146/annurev.micro.61.080706.093130.
    • (2009) Annu. Rev. Microbiol. , vol.63 , pp. 311-334
    • Knittel, K.1    Boetius, A.2
  • 14
    • 34249660046 scopus 로고    scopus 로고
    • Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea
    • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl. Environ. Microbiol. 73:3348-3362. http://dx.doi.org/10.1128/AEM.00016-07.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 3348-3362
    • Lösekann, T.1    Knittel, K.2    Nadalig, T.3    Fuchs, B.4    Niemann, H.5    Boetius, A.6    Amann, R.7
  • 16
    • 77953222884 scopus 로고    scopus 로고
    • The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
    • Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B. 2010. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606-608. http://dx.doi.org/10.1038/nature09015.
    • (2010) Nature , vol.465 , pp. 606-608
    • Scheller, S.1    Goenrich, M.2    Boecher, R.3    Thauer, R.K.4    Jaun, B.5
  • 19
  • 20
    • 0032731169 scopus 로고    scopus 로고
    • Reactor-scale cultivation of the hyperthermophilic methanarchaeon Methanococcus jannaschii to high cell densities
    • Mukhopadhyay B, Johnson EF, Wolfe RS. 1999. Reactor-scale cultivation of the hyperthermophilic methanarchaeon Methanococcus jannaschii to high cell densities. Appl. Environ. Microbiol. 65:5059-5065.
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 5059-5065
    • Mukhopadhyay, B.1    Johnson, E.F.2    Wolfe, R.S.3
  • 21
    • 0742269406 scopus 로고    scopus 로고
    • The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis
    • Lin W, Whitman WB. 2004. The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis. Arch. Microbiol. 181:68-73. http://dx.doi.org/10.1007/s00203-003-0629-1.
    • (2004) Arch. Microbiol. , vol.181 , pp. 68-73
    • Lin, W.1    Whitman, W.B.2
  • 22
    • 0017405995 scopus 로고
    • Methanococcus vannielii: culture and effects of selenium and tungsten on growth
    • Jones JB, Stadtman TC. 1977. Methanococcus vannielii: culture and effects of selenium and tungsten on growth. J. Bacteriol. 130:1404-1406.
    • (1977) J. Bacteriol. , vol.130 , pp. 1404-1406
    • Jones, J.B.1    Stadtman, T.C.2
  • 24
    • 0001549105 scopus 로고
    • Zur Kenntnis des Faktors F430 aus methanogenen Bakterien: Über die Natur der Isolierungsartefakte von F430, ein Beitrag zur Chemie von F430 und zur konformationellen Stereochemie der Ligandperipherie von hydroporphinoiden Nickel(II)-Komplexen
    • Pfaltz A, Livingston AD, Juan B, Diekert G, Thauer RK, Eschenmoser A. 1985. Zur Kenntnis des Faktors F430 aus methanogenen Bakterien: Über die Natur der Isolierungsartefakte von F430, ein Beitrag zur Chemie von F430 und zur konformationellen Stereochemie der Ligandperipherie von hydroporphinoiden Nickel(II)-Komplexen. Helv. Chim. Acta 68: 1338-1358. http://dx.doi.org/10.1002/hlca.19850680527.
    • (1985) Helv. Chim. Acta , vol.68 , pp. 1338-1358
    • Pfaltz, A.1    Livingston, A.D.2    Juan, B.3    Diekert, G.4    Thauer, R.K.5    Eschenmoser, A.6
  • 25
    • 0019813985 scopus 로고
    • Nickel requirement and factor F430 content of methanogenic bacteria
    • Diekert G, Konheiser U, Piechulla K, Thauer RK. 1981. Nickel requirement and factor F430 content of methanogenic bacteria. J. Bacteriol. 148: 459-464.
    • (1981) J. Bacteriol. , vol.148 , pp. 459-464
    • Diekert, G.1    Konheiser, U.2    Piechulla, K.3    Thauer, R.K.4
  • 26
    • 0027291855 scopus 로고
    • Empirical force field analysis of the revised structure of coenzyme F430. Epimerization and geometry of the corphinoid tetrapyrrole
    • Zimmer M. 1993. Empirical force field analysis of the revised structure of coenzyme F430. Epimerization and geometry of the corphinoid tetrapyrrole. J. Biomol. Struct. Dyn. 11:203-214.
    • (1993) J. Biomol. Struct. Dyn. , vol.11 , pp. 203-214
    • Zimmer, M.1
  • 27
    • 84876735220 scopus 로고    scopus 로고
    • Detection of coenzyme F430 in deep sea sediments: a key molecule for biological methanogenesis
    • Takano Y, Kaneko M, Kahnt J, Imachi H, Shima S, Ohkouchi N. 2013. Detection of coenzyme F430 in deep sea sediments: a key molecule for biological methanogenesis. Org. Geochem. 58:137-140. http://dx.doi.org/10.1016/j.orggeochem.2013.01.012.
    • (2013) Org. Geochem. , vol.58 , pp. 137-140
    • Takano, Y.1    Kaneko, M.2    Kahnt, J.3    Imachi, H.4    Shima, S.5    Ohkouchi, N.6
  • 29
    • 37049106309 scopus 로고
    • Chemistry of corphinoids: synthesis of a nickel(II) complex containing the chromophore system of coenzyme F430
    • Fassler A, Pfaltz A, Krautler B, Eschenmoser A. 1984. Chemistry of corphinoids: synthesis of a nickel(II) complex containing the chromophore system of coenzyme F430. J. Chem. Soc. Chem. Commun. 1984: 1365-1367. http://dx.doi.org/10.1039/C39840001365.
    • (1984) J. Chem. Soc. Chem. Commun. , vol.1984 , pp. 1365-1367
    • Fassler, A.1    Pfaltz, A.2    Krautler, B.3    Eschenmoser, A.4
  • 30
    • 37049101768 scopus 로고
    • Chemistry of corphinoids: structural properties of corphinoid nickel(II) complexes related to coenzyme F430
    • Kratky C, Fassler A, Pfaltz A, Krautler B, Jaun B, Eschenmoser A. 1984. Chemistry of corphinoids: structural properties of corphinoid nickel(II) complexes related to coenzyme F430. J. Chem. Soc. Chem. Commun. 1984:1368-1371. http://dx.doi.org/10.1039/C39840001368.
    • (1984) J. Chem. Soc. Chem. Commun. , vol.1984 , pp. 1368-1371
    • Kratky, C.1    Fassler, A.2    Pfaltz, A.3    Krautler, B.4    Jaun, B.5    Eschenmoser, A.6
  • 31
    • 0347823185 scopus 로고    scopus 로고
    • Derivatives of coenzyme F430 with a covalently attached alpha-axial ligand. Part II. Partial synthesis of the five coenzyme F430 tetramethyl esters and of a derivative with a coordinating NTT-methyl-L-histidine ligand covalently attached to the side chain at C(3) of F430 via a peptidic linker
    • Bauer C, Jaun B. 2003. Derivatives of coenzyme F430 with a covalently attached alpha-axial ligand. Part II. Partial synthesis of the five coenzyme F430 tetramethyl esters and of a derivative with a coordinating NTT-methyl-L-histidine ligand covalently attached to the side chain at C(3) of F430 via a peptidic linker. Helv. Chim. Acta 86:4254-4269. http://dx.doi.org/10.1002/hlca.200390348.
    • (2003) Helv. Chim. Acta , vol.86 , pp. 4254-4269
    • Bauer, C.1    Jaun, B.2
  • 32
    • 33749323024 scopus 로고    scopus 로고
    • Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F430 from methyl-coenzyme M reductase
    • Dey M, Kunz RC, Van Heuvelen KM, Craft JL, Horng YC, Tang Q, Bocian DF, George SJ, Brunold TC, Ragsdale SW. 2006. Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F430 from methyl-coenzyme M reductase. Biochemistry 45:11915-11933. http://dx.doi.org/10.1021/bi0613269.
    • (2006) Biochemistry , vol.45 , pp. 11915-11933
    • Dey, M.1    Kunz, R.C.2    Van Heuvelen, K.M.3    Craft, J.L.4    Horng, Y.C.5    Tang, Q.6    Bocian, D.F.7    George, S.J.8    Brunold, T.C.9    Ragsdale, S.W.10
  • 33
    • 48749100254 scopus 로고    scopus 로고
    • Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane
    • Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A. 2008. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ. Microbiol. 10: 2287-2298. http://dx.doi.org/10.1111/j.1462-2920.2008.01653.x.
    • (2008) Environ. Microbiol. , vol.10 , pp. 2287-2298
    • Wegener, G.1    Niemann, H.2    Elvert, M.3    Hinrichs, K.U.4    Boetius, A.5
  • 35
    • 12244272161 scopus 로고    scopus 로고
    • Diversity and distribution of methanotrophic archaea at cold seeps
    • Knittel K, Lösekann T, Boetius A, Kort R, Amann R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71:467-479. http://dx.doi.org/10.1128/AEM.71.1.467-479.2005.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 467-479
    • Knittel, K.1    Lösekann, T.2    Boetius, A.3    Kort, R.4    Amann, R.5
  • 37
    • 84904391014 scopus 로고    scopus 로고
    • Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d1
    • Bali S, Palmer DJ, Schroeder S, Ferguson SJ, Warren MJ. 2014. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d1. Cell. Mol. Life Sci. 71:2837-2863. http://dx.doi.org/10.1007/s00018-014-1563-x.
    • (2014) Cell. Mol. Life Sci. , vol.71 , pp. 2837-2863
    • Bali, S.1    Palmer, D.J.2    Schroeder, S.3    Ferguson, S.J.4    Warren, M.J.5
  • 38
    • 70349309436 scopus 로고    scopus 로고
    • Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control
    • Kranz RG, Richard-Fogal C, Taylor JS, Frawley ER. 2009. Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol. Mol. Biol. Rev. 73: 510-528. http://dx.doi.org/10.1128/MMBR.00001-09.
    • (2009) Microbiol. Mol. Biol. Rev. , vol.73 , pp. 510-528
    • Kranz, R.G.1    Richard-Fogal, C.2    Taylor, J.S.3    Frawley, E.R.4
  • 39
    • 79952305310 scopus 로고    scopus 로고
    • Evidence for organometallic intermediates in bacterial methane formation involving the nickel coenzyme F430
    • Dey M, Li X, Zhou Y, Ragsdale SW. 2010. Evidence for organometallic intermediates in bacterial methane formation involving the nickel coenzyme F430. Met. Ions Life Sci. 7:71-110.
    • (2010) Met. Ions Life Sci. , vol.7 , pp. 71-110
    • Dey, M.1    Li, X.2    Zhou, Y.3    Ragsdale, S.W.4
  • 40
    • 0001545943 scopus 로고
    • Pseudo vitamin-B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria
    • Stupperich E, Krautler B. 1988. Pseudo vitamin-B12 or 5-hydroxybenzimidazolyl-cobamide are the corrinoids found in methanogenic bacteria. Arch. Microbiol. 149:268-271. http://dx.doi.org/10.1007/BF00422016.
    • (1988) Arch. Microbiol. , vol.149 , pp. 268-271
    • Stupperich, E.1    Krautler, B.2
  • 41
    • 77954628691 scopus 로고    scopus 로고
    • Cobalamin coenzymes in enzymology
    • Elsevier, Oxford, United Kingdom.
    • Frey PA. 2010. Cobalamin coenzymes in enzymology, p 501-546. In Comprehensive natural products chemistry and biology, vol 7. Elsevier, Oxford, United Kingdom.
    • (2010) Comprehensive natural products chemistry and biology , vol.7 , pp. 501-546
    • Frey, P.A.1
  • 42
    • 0344949990 scopus 로고
    • Stereochemical course of methyl transfer from methanol to methyl coenzymeMin cell-free extracts of Methanosarcina barkeri
    • Zydowsky LD, Zydowsky TM, Haas ES, Brown JW, Reeve JN, Floss HG. 1987. Stereochemical course of methyl transfer from methanol to methyl coenzymeMin cell-free extracts of Methanosarcina barkeri. J. Am. Chem. Soc. 109:7922-7923. http://dx.doi.org/10.1021/ja00259a073.
    • (1987) J. Am. Chem. Soc. , vol.109 , pp. 7922-7923
    • Zydowsky, L.D.1    Zydowsky, T.M.2    Haas, E.S.3    Brown, J.W.4    Reeve, J.N.5    Floss, H.G.6
  • 44
    • 0024351566 scopus 로고
    • Biosynthesis of caldariellaquinone in Sulfolobus spp
    • Zhou D, White RH. 1989. Biosynthesis of caldariellaquinone in Sulfolobus spp. J. Bacteriol. 171:6610-6616.
    • (1989) J. Bacteriol. , vol.171 , pp. 6610-6616
    • Zhou, D.1    White, R.H.2
  • 45
    • 37049073130 scopus 로고
    • Biosynthesis of the methylthio side-chain of caldariellaquinone
    • Zhou D, White RH. 1990. Biosynthesis of the methylthio side-chain of caldariellaquinone. J. Chem. Soc. Perkin Trans. 1 1990:2346-2348.
    • (1990) J. Chem. Soc. Perkin Trans. 1 , vol.1990 , pp. 2346-2348
    • Zhou, D.1    White, R.H.2
  • 47
    • 78649637486 scopus 로고    scopus 로고
    • S-Adenosylmethionine-dependent radical-based modification of biological macromolecules
    • Atta M, Mulliez E, Arragain S, Forouhar F, Hunt JF, Fontecave M. 2010. S-Adenosylmethionine-dependent radical-based modification of biological macromolecules. Curr. Opin. Struct. Biol. 20:684-692. http://dx.doi.org/10.1016/j.sbi.2010.09.009.
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 684-692
    • Atta, M.1    Mulliez, E.2    Arragain, S.3    Forouhar, F.4    Hunt, J.F.5    Fontecave, M.6
  • 48
    • 84886888360 scopus 로고    scopus 로고
    • Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB
    • Landgraf BJ, Arcinas AJ, Lee KH, Booker SJ. 2013. Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. J. Am. Chem. Soc. 135:15404-15416. http://dx.doi.org/10.1021/ja4048448.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 15404-15416
    • Landgraf, B.J.1    Arcinas, A.J.2    Lee, K.H.3    Booker, S.J.4
  • 50
    • 2342631335 scopus 로고    scopus 로고
    • S-Adenosylmethionine: nothing goes to waste
    • Fontecave M, Atta M, Mulliez E. 2004. S-Adenosylmethionine: nothing goes to waste. Trends Biochem. Sci. 29:243-249. http://dx.doi.org/10.1016/j.tibs.2004.03.007.
    • (2004) Trends Biochem. Sci. , vol.29 , pp. 243-249
    • Fontecave, M.1    Atta, M.2    Mulliez, E.3
  • 51
    • 65249142024 scopus 로고    scopus 로고
    • Anaerobic functionalization of unactivated C-H bonds
    • Booker SJ. 2009. Anaerobic functionalization of unactivated C-H bonds. Curr. Opin. Chem. Biol. 13:58-73. http://dx.doi.org/10.1016/j.cbpa.2009.02.036.
    • (2009) Curr. Opin. Chem. Biol. , vol.13 , pp. 58-73
    • Booker, S.J.1
  • 52
    • 84866036753 scopus 로고    scopus 로고
    • Biotin synthase: insights into radicalmediated carbon-sulfur bond formation
    • Fugate CJ, Jarrett JT. 2012. Biotin synthase: insights into radicalmediated carbon-sulfur bond formation. Biochim. Biophys. Acta 1824: 1213-1222. http://dx.doi.org/10.1016/j.bbapap.2012.01.010.
    • (2012) Biochim. Biophys. Acta , vol.1824 , pp. 1213-1222
    • Fugate, C.J.1    Jarrett, J.T.2
  • 53
    • 0000782533 scopus 로고
    • Biotransformations of organosulfur compounds in sediments via 3-mercaptopropionate
    • Kiene RP, Taylor BF. 1988. Biotransformations of organosulfur compounds in sediments via 3-mercaptopropionate. Nature 332:148-150. http://dx.doi.org/10.1038/332148a0.
    • (1988) Nature , vol.332 , pp. 148-150
    • Kiene, R.P.1    Taylor, B.F.2
  • 54
    • 33845408957 scopus 로고    scopus 로고
    • Distribution of the thiols glutathione and 3-mercaptopropionic acid in Connecticut lakes
    • Hu HY, Mylon SE, Benoit G. 2006. Distribution of the thiols glutathione and 3-mercaptopropionic acid in Connecticut lakes. Limnol. Oceanogr. 51:2763-2774. http://dx.doi.org/10.4319/lo.2006.51.6.2763.
    • (2006) Limnol. Oceanogr. , vol.51 , pp. 2763-2774
    • Hu, H.Y.1    Mylon, S.E.2    Benoit, G.3
  • 55
    • 27644450582 scopus 로고    scopus 로고
    • Structural and functional comparison of HemN to other radical SAM enzymes
    • Layer G, Kervio E, Morlock G, Heinz DW, Jahn D, Retey J, Schubert WD. 2005. Structural and functional comparison of HemN to other radical SAM enzymes. Biol. Chem. 386:971-980. http://dx.doi.org/10.1515/BC.2005.113.
    • (2005) Biol. Chem. , vol.386 , pp. 971-980
    • Layer, G.1    Kervio, E.2    Morlock, G.3    Heinz, D.W.4    Jahn, D.5    Retey, J.6    Schubert, W.D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.