메뉴 건너뛰기




Volumn 26, Issue 1, 2017, Pages 43-53

Radiomic Phenotyping in Brain Cancer to Unravel Hidden Information in Medical Images

Author keywords

brain tumor; imaging; imaging genomics; radiogenomics; radiomics

Indexed keywords

BRAIN CANCER; BRAIN METASTASIS; CANCER DIAGNOSIS; CANCER STAGING; DATA BASE; DATA MINING; DIAGNOSTIC IMAGING; DIFFUSION WEIGHTED IMAGING; DIGITAL IMAGING; GENOMICS; HIGH THROUGHPUT SCREENING; HUMAN; INFORMATION; INFORMATION PROCESSING; NUCLEAR MAGNETIC RESONANCE IMAGING; NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY; PERFUSION WEIGHTED IMAGING; PHENOTYPE; PRIORITY JOURNAL; PROTEOMICS; RADIOLOGY; REVIEW; TREATMENT OUTCOME; TREATMENT RESPONSE; WORKFLOW; BRAIN NEOPLASMS; GENETIC MARKER; GENETIC PREDISPOSITION; GENETIC SCREENING; GENETICS; MOLECULAR IMAGING; PERSONALIZED MEDICINE; PROCEDURES;

EID: 85009373564     PISSN: 08993459     EISSN: 15361004     Source Type: Journal    
DOI: 10.1097/RMR.0000000000000117     Document Type: Review
Times cited : (32)

References (132)
  • 2
    • 84879376559 scopus 로고    scopus 로고
    • Advanced MR imaging of gliomas: An update
    • Kao HW, Chiang SW, Chung HW, et al. Advanced MR imaging of gliomas: an update. Biomed Res Int. 2013;2013:970586.
    • (2013) Biomed Res Int. , vol.2013 , pp. 970586
    • Kao, H.W.1    Chiang, S.W.2    Chung, H.W.3
  • 3
    • 84955116941 scopus 로고    scopus 로고
    • Multiparametric MR imaging in the assessment of brain tumors
    • Kimura M, da Cruz Jr LC. Multiparametric MR imaging in the assessment of brain tumors. Magn Reson Imaging Clin N Am. 2016;24:87-122.
    • (2016) Magn Reson Imaging Clin N Am. , vol.24 , pp. 87-122
    • Kimura, M.1    Da Cruz, L.C.2
  • 5
    • 84867139157 scopus 로고    scopus 로고
    • Radiomics: The process and the challenges
    • Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234-1248.
    • (2012) Magn Reson Imaging. , vol.30 , pp. 1234-1248
    • Kumar, V.1    Gu, Y.2    Basu, S.3
  • 7
    • 84885755228 scopus 로고    scopus 로고
    • Imaging genomic mapping in glioblastoma
    • Zinn PO, Colen RR. Imaging genomic mapping in glioblastoma. Neurosurgery. 2013;60(Suppl 1):126-130.
    • (2013) Neurosurgery. , vol.60 , pp. 126-130
    • Zinn, P.O.1    Colen, R.R.2
  • 8
    • 84876887800 scopus 로고    scopus 로고
    • MR imaging predictors of molecular profile and survival: Multi-institutional study of the TCGA glioblastoma data set
    • Gutman DA, Cooper LA, Hwang SN, et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013;267:560-569.
    • (2013) Radiology. , vol.267 , pp. 560-569
    • Gutman, D.A.1    Cooper, L.A.2    Hwang, S.N.3
  • 9
    • 84946574783 scopus 로고    scopus 로고
    • Multicenter imaging outcomes study of the Cancer Genome Atlas glioblastoma patient cohort: Imaging predictors of overall and progression-free survival
    • Wangaryattawanich P, Hatami M, Wang J, et al. Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro Oncol. 2015;17:1525-1537.
    • (2015) Neuro Oncol. , vol.17 , pp. 1525-1537
    • Wangaryattawanich, P.1    Hatami, M.2    Wang, J.3
  • 10
    • 85013225296 scopus 로고    scopus 로고
    • Unravelling tumour heterogeneity using next-generation imaging: Radiomics, radiogenomics, and habitat imaging
    • [Epub ahead of print]
    • Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 2016 [Epub ahead of print].
    • (2016) Clin Radiol
    • Sala, E.1    Mema, E.2    Himoto, Y.3
  • 11
    • 34250697544 scopus 로고    scopus 로고
    • Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma
    • Kuo MD, Gollub J, Sirlin CB, et al. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol. 2007;18:821-831.
    • (2007) J Vasc Interv Radiol. , vol.18 , pp. 821-831
    • Kuo, M.D.1    Gollub, J.2    Sirlin, C.B.3
  • 12
    • 84904823913 scopus 로고    scopus 로고
    • Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer
    • Teruel JR, Heldahl MG, Goa PE, et al. Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. NMR Biomed. 2014;27:887-896.
    • (2014) NMR Biomed. , vol.27 , pp. 887-896
    • Teruel, J.R.1    Heldahl, M.G.2    Goa, P.E.3
  • 13
    • 77951625266 scopus 로고    scopus 로고
    • Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group
    • Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963-1972.
    • (2010) J Clin Oncol. , vol.28 , pp. 1963-1972
    • Wen, P.Y.1    MacDonald, D.R.2    Reardon, D.A.3
  • 14
    • 3142662858 scopus 로고    scopus 로고
    • New guidelines to evaluate the response to treatment in solid tumors
    • Duffaud F, Therasse P. New guidelines to evaluate the response to treatment in solid tumors. Bull Cancer. 2000;87:881-886.
    • (2000) Bull Cancer. , vol.87 , pp. 881-886
    • Duffaud, F.1    Therasse, P.2
  • 15
    • 57849117384 scopus 로고    scopus 로고
    • New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)
    • Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228-247.
    • (2009) Eur J Cancer. , vol.45 , pp. 228-247
    • Eisenhauer, E.A.1    Therasse, P.2    Bogaerts, J.3
  • 16
    • 0025281789 scopus 로고
    • Response criteria for phase II studies of supratentorial malignant glioma
    • Macdonald DR, Cascino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277-1280.
    • (1990) J Clin Oncol. , vol.8 , pp. 1277-1280
    • MacDonald, D.R.1    Cascino, T.L.2    Schold, S.C.3    Cairncross, J.G.4
  • 17
    • 84930246930 scopus 로고    scopus 로고
    • Response assessment criteria for brain metastases: Proposal from the RANO group
    • Lin NU, Lee EQ, Aoyama H, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16:e270-e278.
    • (2015) Lancet Oncol. , vol.16 , pp. e270-e278
    • Lin, N.U.1    Lee, E.Q.2    Aoyama, H.3
  • 18
    • 84863393080 scopus 로고    scopus 로고
    • Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
    • Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883-892.
    • (2012) N Engl J Med. , vol.366 , pp. 883-892
    • Gerlinger, M.1    Rowan, A.J.2    Horswell, S.3
  • 19
    • 84884685636 scopus 로고    scopus 로고
    • Quantitative imaging in cancer evolution and ecology
    • Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology. Radiology. 2013;269:8-15.
    • (2013) Radiology. , vol.269 , pp. 8-15
    • Gatenby, R.A.1    Grove, O.2    Gillies, R.J.3
  • 20
    • 84996533954 scopus 로고    scopus 로고
    • Characterization of PET/CT images using texture analysis: The past, the present. Any future?
    • Hatt M, Tixier F, Pierce L, et al. Characterization of PET/CT images using texture analysis: the past, the present.. any future? Eur J Nucl Med Mol Imaging. 2017;44:151-165.
    • (2017) Eur J Nucl Med Mol Imaging. , vol.44 , pp. 151-165
    • Hatt, M.1    Tixier, F.2    Pierce, L.3
  • 21
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.
    • (2014) Nat Commun. , vol.5 , pp. 4006
    • Aerts, H.J.1    Velazquez, E.R.2    Leijenaar, R.T.3
  • 22
    • 84928902792 scopus 로고    scopus 로고
    • Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma
    • Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One. 2015;10:e0118261.
    • (2015) PLoS One. , vol.10 , pp. e0118261
    • Grove, O.1    Berglund, A.E.2    Schabath, M.B.3
  • 23
    • 84957567984 scopus 로고    scopus 로고
    • Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma
    • Hu LS, Ning S, Eschbacher JM, et al. Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS One. 2015;10:e0141506.
    • (2015) PLoS One. , vol.10 , pp. e0141506
    • Hu, L.S.1    Ning, S.2    Eschbacher, J.M.3
  • 24
    • 85013225857 scopus 로고    scopus 로고
    • Radiogenomics to characterize regional genetic heterogeneity in glioblastoma
    • [Epub ahead of print]
    • Hu LS, Ning S, Eschbacher JM, et al. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol;. 2016 [Epub ahead of print].
    • (2016) Neuro Oncol.
    • Hu, L.S.1    Ning, S.2    Eschbacher, J.M.3
  • 25
    • 84960517189 scopus 로고    scopus 로고
    • Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma
    • Parker NR, Hudson AL, Khong P, et al. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep. 2016;6:22477.
    • (2016) Sci Rep. , vol.6 , pp. 22477
    • Parker, N.R.1    Hudson, A.L.2    Khong, P.3
  • 26
    • 85013175171 scopus 로고    scopus 로고
    • 1.5T versus 3.0T MRI texture analysis in the normal appearing white matter of multiple sclerosis patients
    • Zang Y, Metz LM. 1.5T versus 3.0T MRI texture analysis in the normal appearing white matter of multiple sclerosis patients. Proc Intl Soc Mag Reson Med. 2012;20.
    • (2012) Proc Intl Soc Mag Reson Med. , vol.20
    • Zang, Y.1    Metz, L.M.2
  • 27
    • 84926410503 scopus 로고    scopus 로고
    • Brain MR image normalization in texture analysis of multiple sclerosis
    • Loizou CP, Pantziaris M, Pattichis CS, Seimenis I. Brain MR image normalization in texture analysis of multiple sclerosis. J Biomedical Graphics Comput. 2013;3. DOI: 10.5430/jbgc.v3n1p20; URL: http://dx.doi.org/10.5430/jbgc.v3n1p20.
    • (2013) J Biomedical Graphics Comput. , vol.3
    • Loizou, C.P.1    Pantziaris, M.2    Pattichis, C.S.3    Seimenis, I.4
  • 28
  • 29
    • 63849094894 scopus 로고    scopus 로고
    • Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application-oriented study
    • Mayerhoefer ME, Szomolanyi P, Jirak D, et al. Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys. 2009;36:1236-1243.
    • (2009) Med Phys. , vol.36 , pp. 1236-1243
    • Mayerhoefer, M.E.1    Szomolanyi, P.2    Jirak, D.3
  • 30
    • 84899846194 scopus 로고    scopus 로고
    • Harnessing the power of big data in healthcare
    • Nash DB. Harnessing the power of big data in healthcare. Am Health Drug Benefits. 2014;7:69-70.
    • (2014) Am Health Drug Benefits. , vol.7 , pp. 69-70
    • Nash, D.B.1
  • 32
    • 84867209483 scopus 로고    scopus 로고
    • Conventional MRI evaluation of gliomas
    • Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas. Brit J Radiol. 2011;84(Spec Iss 2):S107-S111.
    • (2011) Brit J Radiol. , vol.84 , Issue.2 , pp. S107-S111
    • Upadhyay, N.1    Waldman, A.D.2
  • 33
    • 0035384134 scopus 로고    scopus 로고
    • Interaction in the segmentation of medical images: A survey
    • Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal. 2001;5:127-142.
    • (2001) Med Image Anal. , vol.5 , pp. 127-142
    • Olabarriaga, S.D.1    Smeulders, A.W.2
  • 34
    • 84883741497 scopus 로고    scopus 로고
    • State of the art survey on MRI brain tumor segmentation
    • Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. 2013;31:1426-1438.
    • (2013) Magn Reson Imaging. , vol.31 , pp. 1426-1438
    • Gordillo, N.1    Montseny, E.2    Sobrevilla, P.3
  • 35
    • 84925307961 scopus 로고    scopus 로고
    • MRI segmentation of the human brain: Challenges, methods, and applications
    • Despotovic I, Goossens B, Philips W. MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med. 2015;2015:450341.
    • (2015) Comput Math Methods Med. , vol.2015 , pp. 450341
    • Despotovic, I.1    Goossens, B.2    Philips, W.3
  • 36
    • 84953280821 scopus 로고    scopus 로고
    • Segmentation of human brain using structural MRI
    • Helms G. Segmentation of human brain using structural MRI. MAGMA. 2016;29:111-124.
    • (2016) MAGMA. , vol.29 , pp. 111-124
    • Helms, G.1
  • 37
    • 45749121580 scopus 로고    scopus 로고
    • Validation of image segmentation by estimating rater bias and variance
    • Warfield SK, Zou KH, Wells WM. Validation of image segmentation by estimating rater bias and variance. Philos Trans A Math Phys Eng Sci. 2008;366:2361-2375.
    • (2008) Philos Trans A Math Phys Eng Sci. , vol.366 , pp. 2361-2375
    • Warfield, S.K.1    Zou, K.H.2    Wells, W.M.3
  • 38
    • 84877131798 scopus 로고    scopus 로고
    • Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation
    • Khalilzadeh MM, Fatemizadeh E, Behnam H. Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation. Magn Reson Imaging. 2013;31:733-741.
    • (2013) Magn Reson Imaging. , vol.31 , pp. 733-741
    • Khalilzadeh, M.M.1    Fatemizadeh, E.2    Behnam, H.3
  • 39
  • 40
    • 84899512814 scopus 로고    scopus 로고
    • Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies
    • Weizman L, Sira LB, Joskowicz L, et al. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Med Phys. 2014;41:052303.
    • (2014) Med Phys. , vol.41 , pp. 052303
    • Weizman, L.1    Sira, L.B.2    Joskowicz, L.3
  • 41
    • 80053599063 scopus 로고    scopus 로고
    • Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme
    • Zinn PO, Mahajan B, Sathyan P, et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One. 2011;6:e25451.
    • (2011) PLoS One. , vol.6 , pp. e25451
    • Zinn, P.O.1    Mahajan, B.2    Sathyan, P.3
  • 42
    • 84937640437 scopus 로고    scopus 로고
    • Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients
    • Nicolasjilwan M, Hu Y, Yan C, et al. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J Neuroradiol. 2015;42:212-221.
    • (2015) J Neuroradiol. , vol.42 , pp. 212-221
    • Nicolasjilwan, M.1    Hu, Y.2    Yan, C.3
  • 43
    • 84955604605 scopus 로고    scopus 로고
    • Radiomics: Images are more than pictures, they are data
    • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563-577.
    • (2016) Radiology. , vol.278 , pp. 563-577
    • Gillies, R.J.1    Kinahan, P.E.2    Hricak, H.3
  • 45
    • 0034951961 scopus 로고    scopus 로고
    • The role of diffusion-weighted imaging in patients with brain tumors
    • Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22:1081-1088.
    • (2001) AJNR Am J Neuroradiol. , vol.22 , pp. 1081-1088
    • Kono, K.1    Inoue, Y.2    Nakayama, K.3
  • 46
    • 84966704826 scopus 로고    scopus 로고
    • Radiomic texture analysis mapping predicts areas of true functional MRI activity
    • Hassan I, Kotrotsou A, Bakhtiari AS, et al. Radiomic texture analysis mapping predicts areas of true functional MRI activity. Sci Rep. 2016;6:25295.
    • (2016) Sci Rep. , vol.6 , pp. 25295
    • Hassan, I.1    Kotrotsou, A.2    Bakhtiari, A.S.3
  • 47
    • 77952407905 scopus 로고    scopus 로고
    • Texture analysis: A review of neurologic MR imaging applications
    • Kassner A, Thornhill RE. Texture analysis: a review of neurologic MR imaging applications. AJNR Am J Neuroradiol. 2010;31:809-816.
    • (2010) AJNR Am J Neuroradiol. , vol.31 , pp. 809-816
    • Kassner, A.1    Thornhill, R.E.2
  • 50
    • 0033097007 scopus 로고    scopus 로고
    • Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
    • Soh LK, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Transact Geosci Remote Sensing. 1999;37:780-795.
    • (1999) IEEE Transact Geosci Remote Sensing. , vol.37 , pp. 780-795
    • Soh, L.K.1    Tsatsoulis, C.2
  • 51
    • 84992671923 scopus 로고    scopus 로고
    • Radiomics in brain tumors: An emerging technique for characterization of tumor environment
    • Kotrotsou A, Zinn PO, Colen RR. Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn Reson Imaging Clin N Am 2016;24:719-729.
    • (2016) Magn Reson Imaging Clin N Am , vol.24 , pp. 719-729
    • Kotrotsou, A.1    Zinn, P.O.2    Colen, R.R.3
  • 53
    • 84885654901 scopus 로고    scopus 로고
    • CT texture analysis using the filtration-histogram method: What do the measurements mean?
    • Miles KA, Ganeshan B, Hayball MP. CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging. 2013;13:400-406.
    • (2013) Cancer Imaging. , vol.13 , pp. 400-406
    • Miles, K.A.1    Ganeshan, B.2    Hayball, M.P.3
  • 54
    • 79751529886 scopus 로고    scopus 로고
    • Enhanced CTimages by the Wavelet transform improving diagnostic accuracy of chest nodules
    • Guo X, Liu X, Wang H, et al. Enhanced CTimages by the Wavelet transform improving diagnostic accuracy of chest nodules. J Digit Imaging. 2011;24:44-49.
    • (2011) J Digit Imaging. , vol.24 , pp. 44-49
    • Guo, X.1    Liu, X.2    Wang, H.3
  • 55
    • 0002433547 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: An overview
    • Usama MF, et al., eds American Association for Artificial Intelligence
    • Fayyad UM, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery: an overview. In: Usama MF, et al., eds. Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence; 1996:1-34.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 1-34
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 56
    • 84868138320 scopus 로고    scopus 로고
    • Model transparency and validation: A report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7
    • Eddy DM, Hollingworth W, Caro JJ, et al. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7. Med Decis Making. 2012;32:733-743.
    • (2012) Med Decis Making. , vol.32 , pp. 733-743
    • Eddy, D.M.1    Hollingworth, W.2    Caro, J.J.3
  • 57
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373-1379.
    • (1996) J Clin Epidemiol. , vol.49 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3
  • 58
    • 84939498419 scopus 로고    scopus 로고
    • Machine learning methods for quantitative radiomic biomarkers
    • Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.
    • (2015) Sci Rep. , vol.5 , pp. 13087
    • Parmar, C.1    Grossmann, P.2    Bussink, J.3
  • 59
    • 38349031393 scopus 로고    scopus 로고
    • Machine learning: A review of classification and combining techniques
    • Kotsiantis SB, Zaharakis ID, et al. Machine learning: a review of classification and combining techniques. Artif Intell Rev. 2006;159-190. DOI 10.1007/s10462-007-9052-3.
    • (2006) Artif Intell Rev. , pp. 159-190
    • Kotsiantis, S.B.1    Zaharakis, I.D.2
  • 60
    • 84923319145 scopus 로고    scopus 로고
    • Predicting outcomes of nonsmall cell lung cancer using CT image features
    • Hawkins SH. Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access. 2014;2:1418-1426.
    • (2014) IEEE Access. , vol.2 , pp. 1418-1426
    • Hawkins, S.H.1
  • 62
    • 84954549862 scopus 로고    scopus 로고
    • Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer
    • Parmar C, Grossmann P, Rietveld D, et al. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. 2015;5.
    • (2015) Front Oncol. , vol.5
    • Parmar, C.1    Grossmann, P.2    Rietveld, D.3
  • 63
    • 0027337853 scopus 로고
    • MR tissue characterization of intracranial tumors by means of texture analysis
    • Schad LR, Bluml S, Zuna I. MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging. 1993;11:889-896.
    • (1993) Magn Reson Imaging. , vol.11 , pp. 889-896
    • Schad, L.R.1    Bluml, S.2    Zuna, I.3
  • 64
    • 84977005324 scopus 로고
    • Texture analysis in quantitative MR imaging. Tissue characterisation of normal brain and intracranial tumours at 1.5 T
    • Kjaer L, Ring P, Thomsen C, Henriksen O. Texture analysis in quantitative MR imaging. Tissue characterisation of normal brain and intracranial tumours at 1.5 T. Acta Radiol. 1995;36:127-135.
    • (1995) Acta Radiol. , vol.36 , pp. 127-135
    • Kjaer, L.1    Ring, P.2    Thomsen, C.3    Henriksen, O.4
  • 65
    • 73149086838 scopus 로고    scopus 로고
    • Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
    • Zacharaki EI, Wang S, Chawla S, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med. 2009;62:1609-1618.
    • (2009) Magn Reson Med. , vol.62 , pp. 1609-1618
    • Zacharaki, E.I.1    Wang, S.2    Chawla, S.3
  • 66
    • 84902097099 scopus 로고    scopus 로고
    • Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI
    • Pallavi T, Prateek P, Lisa R, et al. Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI. Proc SPIE Int Soc Opt Eng. 2014;9035:90352B.
    • (2014) Proc SPIE Int Soc Opt Eng. , vol.9035 , pp. 90352B
    • Pallavi, T.1    Prateek, P.2    Lisa, R.3
  • 67
    • 79954610475 scopus 로고    scopus 로고
    • Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition
    • Georgiadis P, Kostopoulos S, Cavouras D, et al. Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition. Magn Reson Imaging. 2011;29:525-535.
    • (2011) Magn Reson Imaging. , vol.29 , pp. 525-535
    • Georgiadis, P.1    Kostopoulos, S.2    Cavouras, D.3
  • 68
    • 35248823722 scopus 로고    scopus 로고
    • Classification of brain tumors using MRI and MRS data
    • Wang Q, Karamani Liacouras E, Miranda E, et al. Classification of brain tumors using MRI and MRS data. Proc of SPIE. 2007;6514:65140S1-65140S8.
    • (2007) Proc of SPIE. , vol.6514 , pp. 65140S1-65140S8
    • Wang, Q.1    Karamani Liacouras, E.2    Miranda, E.3
  • 69
    • 14844363126 scopus 로고    scopus 로고
    • The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification
    • Devos A, Simonetti AW, van der Graff M, et al. The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson. 2005;173:218-228.
    • (2005) J Magn Reson. , vol.173 , pp. 218-228
    • Devos, A.1    Simonetti, A.W.2    Van Der Graff, M.3
  • 70
    • 84866170811 scopus 로고    scopus 로고
    • Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma?
    • Eliat P-A, Olivie D, Saikali S, et al. Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma? Neurol Res Int. 2012;2012:195176.
    • (2012) Neurol Res Int. , vol.2012 , pp. 195176
    • Eliat, P.-A.1    Olivie, D.2    Saikali, S.3
  • 71
    • 84952027684 scopus 로고    scopus 로고
    • 3D texture analysis of heterogeneous MRI data for diagnostic classification of childhood brain tumours
    • Fetit AE, Novak J, Rodriguez D, et al. 3D texture analysis of heterogeneous MRI data for diagnostic classification of childhood brain tumours. Stud Health Technol Inform. 2015;213:19-22.
    • (2015) Stud Health Technol Inform. , vol.213 , pp. 19-22
    • Fetit, A.E.1    Novak, J.2    Rodriguez, D.3
  • 73
    • 0021345233 scopus 로고
    • Primary intracranial tumor imaging: A comparison of magnetic resonance and CT
    • Brant-Zawadzki M, Badami JP, Mills CM, et al. Primary intracranial tumor imaging: a comparison of magnetic resonance and CT. Radiology. 1984;150:435-440.
    • (1984) Radiology. , vol.150 , pp. 435-440
    • Brant-Zawadzki, M.1    Badami, J.P.2    Mills, C.M.3
  • 74
    • 84941622528 scopus 로고    scopus 로고
    • Added value of advanced over conventional magnetic resonance imaging in grading gliomas and other primary brain tumors
    • Guzman-De-Villoria JA, Mateos-Perez JM, Fernandez-Garcia P, et al. Added value of advanced over conventional magnetic resonance imaging in grading gliomas and other primary brain tumors. Cancer Imaging. 2014;14:35.
    • (2014) Cancer Imaging. , vol.14 , pp. 35
    • Guzman-De-Villoria, J.A.1    Mateos-Perez, J.M.2    Fernandez-Garcia, P.3
  • 75
    • 0027442267 scopus 로고
    • Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma
    • Kondziolka D, Lunsford LD, Martinez AJ. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg. 1993;79:533-536.
    • (1993) J Neurosurg. , vol.79 , pp. 533-536
    • Kondziolka, D.1    Lunsford, L.D.2    Martinez, A.J.3
  • 76
    • 0031953734 scopus 로고    scopus 로고
    • Correlation between dynamic MRI and outcome in patients with malignant gliomas
    • Wong ET, Jackson EF, Hess KR, et al. Correlation between dynamic MRI and outcome in patients with malignant gliomas. Neurology. 1998;50:777-781.
    • (1998) Neurology. , vol.50 , pp. 777-781
    • Wong, E.T.1    Jackson, E.F.2    Hess, K.R.3
  • 78
    • 84926511460 scopus 로고    scopus 로고
    • Epidemiology and diagnosis of brain tumors
    • Butowski NA. Epidemiology and diagnosis of brain tumors. Continuum (Minneap Minn). 2015;21:301-313.
    • (2015) Continuum (Minneap Minn). , vol.21 , pp. 301-313
    • Butowski, N.A.1
  • 79
    • 34548861548 scopus 로고    scopus 로고
    • [Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma]
    • Chen J, Xia J, Zhou YC, et al. [Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma]. Zhonghua Zhong Liu Za Zhi. 2005;27:309-311.
    • (2005) Zhonghua Zhong Liu Za Zhi. , vol.27 , pp. 309-311
    • Chen, J.1    Xia, J.2    Zhou, Y.C.3
  • 80
    • 81555218161 scopus 로고    scopus 로고
    • Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging-correlation with tumor grade
    • Kang Y, Choi SH, Kim YJ, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging-correlation with tumor grade. Radiology. 2011;261:882-890.
    • (2011) Radiology. , vol.261 , pp. 882-890
    • Kang, Y.1    Choi, S.H.2    Kim, Y.J.3
  • 81
    • 84907486211 scopus 로고    scopus 로고
    • Glioma: Application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity
    • Ryu YJ, Choi SH, Park SJ, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One. 2014;9:e108335.
    • (2014) PLoS One. , vol.9 , pp. e108335
    • Ryu, Y.J.1    Choi, S.H.2    Park, S.J.3
  • 82
    • 84907153252 scopus 로고    scopus 로고
    • ADC texture-an imaging biomarker for high-grade glioma?
    • Brynolfsson P, Nilsson D, Henriksson R, et al. ADC texture-an imaging biomarker for high-grade glioma? Med Phys. 2014;41:101903.
    • (2014) Med Phys. , vol.41 , pp. 101903
    • Brynolfsson, P.1    Nilsson, D.2    Henriksson, R.3
  • 83
    • 84901038106 scopus 로고    scopus 로고
    • Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors
    • Rodriguez Gutierrez D, Awwad A, Meijer L, et al. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. Am J Neuroradiol. 2014;35:1009-1015.
    • (2014) Am J Neuroradiol. , vol.35 , pp. 1009-1015
    • Rodriguez Gutierrez, D.1    Awwad, A.2    Meijer, L.3
  • 84
    • 84945410763 scopus 로고    scopus 로고
    • The basics of diffusion and perfusion imaging in brain tumors
    • Korfiatis P, Erickson B. The basics of diffusion and perfusion imaging in brain tumors. Appl Radiol. 2014;43:22-29.
    • (2014) Appl Radiol. , vol.43 , pp. 22-29
    • Korfiatis, P.1    Erickson, B.2
  • 85
    • 84981287443 scopus 로고    scopus 로고
    • Neck radiotherapy, dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: Prospective assessment of imaging biomarkers of normal tissue injury
    • Joint Head and Neck Radiotherapy-MRI Development Cooperative. Neck radiotherapy, dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: prospective assessment of imaging biomarkers of normal tissue injury. Sci Rep. 2016;6:29864.
    • (2016) Sci Rep. , vol.6 , pp. 29864
  • 86
    • 33644858731 scopus 로고    scopus 로고
    • Comparative overview of brain perfusion imaging techniques
    • Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol. 2005;32:294-314.
    • (2005) J Neuroradiol. , vol.32 , pp. 294-314
    • Wintermark, M.1    Sesay, M.2    Barbier, E.3
  • 87
    • 84954027044 scopus 로고    scopus 로고
    • Dynamic contrast-enhanced perfusion MRI of high grade brain gliomas obtained with arterial or venous waveform input function
    • Filice S, Crisi G. Dynamic contrast-enhanced perfusion MRI of high grade brain gliomas obtained with arterial or venous waveform input function. J Neuroimaging. 2016;26:124-129.
    • (2016) J Neuroimaging. , vol.26 , pp. 124-129
    • Filice, S.1    Crisi, G.2
  • 88
    • 67650035443 scopus 로고    scopus 로고
    • Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI
    • Sourbron S, Ingrisch M, Siefert A, et al. Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med. 2009;62:205-217.
    • (2009) Magn Reson Med. , vol.62 , pp. 205-217
    • Sourbron, S.1    Ingrisch, M.2    Siefert, A.3
  • 89
    • 0031404162 scopus 로고    scopus 로고
    • Modeling tracer kinetics in dynamic Gd-DTPA MR imaging
    • Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7:91-101.
    • (1997) J Magn Reson Imaging. , vol.7 , pp. 91-101
    • Tofts, P.S.1
  • 90
    • 0032828135 scopus 로고    scopus 로고
    • Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols
    • Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223-232.
    • (1999) J Magn Reson Imaging. , vol.10 , pp. 223-232
    • Tofts, P.S.1    Brix, G.2    Buckley, D.L.3
  • 91
    • 0036210301 scopus 로고    scopus 로고
    • Intracranial mass lesions: Dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging
    • Cha S, Knopp EA, Johnson G, et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223:11-29.
    • (2002) Radiology. , vol.223 , pp. 11-29
    • Cha, S.1    Knopp, E.A.2    Johnson, G.3
  • 92
    • 84992028365 scopus 로고    scopus 로고
    • Arterial spin labeling to predict brain tumor grading in children: Correlations between histopathologic vascular density and perfusion MR imaging
    • Dangouloff-Ros V, Deroulers C, Foissac F, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology. 2016;281:553-566.
    • (2016) Radiology. , vol.281 , pp. 553-566
    • Dangouloff-Ros, V.1    Deroulers, C.2    Foissac, F.3
  • 93
    • 84962855679 scopus 로고    scopus 로고
    • Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis
    • Santarosa C, Castellano A, Conte GM, et al. Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis. Eur J Radiol. 2016;85:1147-1156.
    • (2016) Eur J Radiol. , vol.85 , pp. 1147-1156
    • Santarosa, C.1    Castellano, A.2    Conte, G.M.3
  • 94
    • 44449133653 scopus 로고    scopus 로고
    • Gliomas: Predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging
    • Law M, Young RJ, Babb JS, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247:490-498.
    • (2008) Radiology. , vol.247 , pp. 490-498
    • Law, M.1    Young, R.J.2    Babb, J.S.3
  • 95
    • 84955438660 scopus 로고    scopus 로고
    • Texture feature ratios from rCBV maps of perfusion MRI are associated with patient survival in glioblastoma
    • Lee J, Jain R, Khalil K, et al. Texture feature ratios from rCBV maps of perfusion MRI are associated with patient survival in glioblastoma. AJNR Am J Neuroradiol. 2016;37:37-43.
    • (2016) AJNR Am J Neuroradiol. , vol.37 , pp. 37-43
    • Lee, J.1    Jain, R.2    Khalil, K.3
  • 96
    • 0345254996 scopus 로고    scopus 로고
    • Glioma grading: Sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging
    • Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989-1998.
    • (2003) AJNR Am J Neuroradiol. , vol.24 , pp. 1989-1998
    • Law, M.1    Yang, S.2    Wang, H.3
  • 97
    • 84870661637 scopus 로고    scopus 로고
    • Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases
    • Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N. Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol. 2012;39:301-307.
    • (2012) J Neuroradiol. , vol.39 , pp. 301-307
    • Mouthuy, N.1    Cosnard, G.2    Abarca-Quinones, J.3    Michoux, N.4
  • 98
    • 84895440282 scopus 로고    scopus 로고
    • Clinical proton MR spectroscopy in central nervous system disorders
    • Oz G, Alger JR, Barker PB, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270:658-679.
    • (2014) Radiology. , vol.270 , pp. 658-679
    • Oz, G.1    Alger, J.R.2    Barker, P.B.3
  • 99
    • 0033995248 scopus 로고    scopus 로고
    • Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors
    • Warren KE, Frank JA, Black JL, et al. Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol. 2000;18:1020-1026.
    • (2000) J Clin Oncol. , vol.18 , pp. 1020-1026
    • Warren, K.E.1    Frank, J.A.2    Black, J.L.3
  • 100
    • 84872325997 scopus 로고    scopus 로고
    • Potential of MR spectroscopy for assessment of glioma grading
    • Bulik M, Jancalek R, Vanicek J, et al. Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg. 2013;115:146-153.
    • (2013) Clin Neurol Neurosurg. , vol.115 , pp. 146-153
    • Bulik, M.1    Jancalek, R.2    Vanicek, J.3
  • 101
    • 0028695478 scopus 로고
    • Clinical applications of magnetic resonance spectroscopy
    • Ross B, Michaelis T. Clinical applications of magnetic resonance spectroscopy. Magn Reson Q. 1994;10:191-247.
    • (1994) Magn Reson Q. , vol.10 , pp. 191-247
    • Ross, B.1    Michaelis, T.2
  • 102
    • 84964380416 scopus 로고    scopus 로고
    • Treatment response assessment in IDH-mutant glioma patients by noninvasive 3D functional spectroscopic mapping of 2-hydroxyglutarate
    • Andronesi OC, Loebel F, Bogner W, et al. Treatment response assessment in IDH-mutant glioma patients by noninvasive 3D functional spectroscopic mapping of 2-hydroxyglutarate. Clin Cancer Res. 2016;22:1632-1641.
    • (2016) Clin Cancer Res. , vol.22 , pp. 1632-1641
    • Andronesi, O.C.1    Loebel, F.2    Bogner, W.3
  • 103
    • 84862776826 scopus 로고    scopus 로고
    • 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas
    • Choi C, Ganji SK, DeBerardinis RJ, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18:624-629.
    • (2012) Nat Med. , vol.18 , pp. 624-629
    • Choi, C.1    Ganji, S.K.2    Deberardinis, R.J.3
  • 104
    • 84858603856 scopus 로고    scopus 로고
    • Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy
    • Pope WB, Prins RM, Albert Thomas M, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol. 2012;107:197-205.
    • (2012) J Neurooncol. , vol.107 , pp. 197-205
    • Pope, W.B.1    Prins, R.M.2    Albert Thomas, M.3
  • 105
    • 57349166553 scopus 로고    scopus 로고
    • Hydroxyglutaric aciduria and malignant brain tumor: A case report and literature review
    • Aghili M, Zahedi F, Rafiee E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol. 2009;91:233-236.
    • (2009) J Neurooncol. , vol.91 , pp. 233-236
    • Aghili, M.1    Zahedi, F.2    Rafiee, E.3
  • 106
    • 84904399848 scopus 로고    scopus 로고
    • Multidimensional texture characterization: On analysis for brain tumor tissues using MRS and MRI
    • Nachimuthu DS, Baladhandapani A. Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI. J Digit Imaging. 2014;27:496-506.
    • (2014) J Digit Imaging. , vol.27 , pp. 496-506
    • Nachimuthu, D.S.1    Baladhandapani, A.2
  • 107
    • 84926244656 scopus 로고    scopus 로고
    • Radiogenomics and imaging phenotypes in glioblastoma: Novel observations and correlation with molecular characteristics
    • Ellingson BM. Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep. 2015;15:506.
    • (2015) Curr Neurol Neurosci Rep. , vol.15 , pp. 506
    • Ellingson, B.M.1
  • 109
    • 84975263401 scopus 로고    scopus 로고
    • A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma
    • Rao A, Rao G, Gutman DA, et al. A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma. J Neurosurg. 2016;124:1008-1017.
    • (2016) J Neurosurg. , vol.124 , pp. 1008-1017
    • Rao, A.1    Rao, G.2    Gutman, D.A.3
  • 110
    • 84915752982 scopus 로고    scopus 로고
    • NCI Workshop Report: Clinical and computational requirements for correlating imaging phenotypes with genomics signatures
    • Colen R, Foster I, Gatenby R, et al. NCI Workshop Report: clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl Oncol. 2014;7:556-569.
    • (2014) Transl Oncol. , vol.7 , pp. 556-569
    • Colen, R.1    Foster, I.2    Gatenby, R.3
  • 111
    • 84931833137 scopus 로고    scopus 로고
    • Imaging genomics of glioblastoma: Biology, biomarkers, and breakthroughs
    • Moton S, Elbanan M, Zinn O, Colen RR. Imaging genomics of glioblastoma: biology, biomarkers, and breakthroughs. Top Magn Reson Imaging. 2015;24:155-163.
    • (2015) Top Magn Reson Imaging. , vol.24 , pp. 155-163
    • Moton, S.1    Elbanan, M.2    Zinn, O.3    Colen, R.R.4
  • 112
    • 84863243619 scopus 로고    scopus 로고
    • Predicting MGMT methylation status of glioblastomas from MRI texture
    • Levner I, Drabycz S, Roldan G, et al. Predicting MGMT methylation status of glioblastomas from MRI texture. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):522-530.
    • (2009) Med Image Comput Comput Assist Interv. , vol.12 , pp. 522-530
    • Levner, I.1    Drabycz, S.2    Roldan, G.3
  • 113
    • 70749119866 scopus 로고    scopus 로고
    • An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
    • Drabycz S, Roldan G, de Robles P, et al. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage. 2010;49:1398-1405.
    • (2010) Neuroimage. , vol.49 , pp. 1398-1405
    • Drabycz, S.1    Roldan, G.2    De Robles, P.3
  • 114
    • 84969855998 scopus 로고    scopus 로고
    • MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
    • Korfiatis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys. 2016;43:2835.
    • (2016) Med Phys. , vol.43 , pp. 2835
    • Korfiatis, P.1    Kline, T.L.2    Coufalova, L.3
  • 115
    • 85013225834 scopus 로고    scopus 로고
    • Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas
    • [Epub ahead of print]
    • Zhang B, Chang K, Ramkissoon S, et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol;. 2016 [Epub ahead of print].
    • (2016) Neuro Oncol;.
    • Zhang, B.1    Chang, K.2    Ramkissoon, S.3
  • 116
    • 42249088264 scopus 로고    scopus 로고
    • The useof magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma
    • Brown R, Zlatescu M, Sijben A, et al. The useof magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma. Clin Cancer Res. 2008;14:2357-2362.
    • (2008) Clin Cancer Res. , vol.14 , pp. 2357-2362
    • Brown, R.1    Zlatescu, M.2    Sijben, A.3
  • 117
    • 85013217092 scopus 로고    scopus 로고
    • 139 clinically applicable and biologically validated MRI radiomic test method predicts glioblastoma genomic landscape and survival
    • Zinn PO, Singh SK, Kotrotsou A, et al. 139 clinically applicable and biologically validated MRI radiomic test method predicts glioblastoma genomic landscape and survival. Neurosurgery. 2016;63(Suppl 1): 156-157.
    • (2016) Neurosurgery. , vol.63 , pp. 156-157
    • Zinn, P.O.1    Singh, S.K.2    Kotrotsou, A.3
  • 119
    • 0018112252 scopus 로고
    • Intracranial metastases from systemic cancer
    • Posner JB, Chernik NL. Intracranial metastases from systemic cancer. Adv Neurol. 1978;19:579-592.
    • (1978) Adv Neurol. , vol.19 , pp. 579-592
    • Posner, J.B.1    Chernik, N.L.2
  • 120
    • 68649104529 scopus 로고    scopus 로고
    • Quality of life in brain metastases radiation trials: A literature review
    • Wong J, Hird A, Kirou-Mauro A, et al. Quality of life in brain metastases radiation trials: a literature review. Curr Oncol. 2008;15:25-45.
    • (2008) Curr Oncol. , vol.15 , pp. 25-45
    • Wong, J.1    Hird, A.2    Kirou-Mauro, A.3
  • 121
    • 85011710220 scopus 로고    scopus 로고
    • Prognostic value of MR imaging texture analysis in brain non-small cell lung cancer oligo-metastases undergoing stereotactic irradiation
    • Nardone V, Tini P, Biondi M, et al. Prognostic value of MR imaging texture analysis in brain non-small cell lung cancer oligo-metastases undergoing stereotactic irradiation. Cureus. 2016;8:e584.
    • (2016) Cureus. , vol.8 , pp. e584
    • Nardone, V.1    Tini, P.2    Biondi, M.3
  • 122
    • 84991672118 scopus 로고    scopus 로고
    • Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR
    • Li Z, Mao Y, Li H, et al. Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med. 2016;76:1410-1419.
    • (2016) Magn Reson Med. , vol.76 , pp. 1410-1419
    • Li, Z.1    Mao, Y.2    Li, H.3
  • 124
    • 84949669471 scopus 로고    scopus 로고
    • Big data and the future of radiology informatics
    • Kansagra AP, Yu JP, Chatterjee AR, et al. Big data and the future of radiology informatics. Acad Radiol. 2016;23:30-42.
    • (2016) Acad Radiol. , vol.23 , pp. 30-42
    • Kansagra, A.P.1    Yu, J.P.2    Chatterjee, A.R.3
  • 125
    • 85104094046 scopus 로고    scopus 로고
    • Big data analytics in healthcare: Promise and potential
    • Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2:3.
    • (2014) Health Inf Sci Syst. , vol.2 , pp. 3
    • Raghupathi, W.1    Raghupathi, V.2
  • 129
    • 84878979335 scopus 로고    scopus 로고
    • Biology: The big challenges of big data
    • Marx V. Biology: the big challenges of big data. Nature. 2013;498:255-260.
    • (2013) Nature. , vol.498 , pp. 255-260
    • Marx, V.1
  • 130
    • 85017065785 scopus 로고    scopus 로고
    • Accessed September 30, 2015
    • Marr B. Big Data: 20 Mind-Boggling Facts Everyone Must Read. Available at: http://www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-boggl ing-facts-everyone-must-read/#119f9e786c1d. Accessed September 30, 2015.
    • Big Data: 20 Mind-Boggling Facts Everyone Must Read
    • Marr, B.1
  • 131
    • 84976466056 scopus 로고    scopus 로고
    • Big data and machine learning in radiation oncology: Stateof the art and future prospects
    • Bibault JE, Giraud P, Burgun A. Big data and machine learning in radiation oncology: stateof the art and future prospects. Cancer Lett 2016; 382:110-117.
    • (2016) Cancer Lett , vol.382 , pp. 110-117
    • Bibault, J.E.1    Giraud, P.2    Burgun, A.3
  • 132
    • 70249130850 scopus 로고    scopus 로고
    • Data sharing: Empty archives
    • Nelson B. Data sharing: empty archives. Nature. 2009;461:160-163.
    • (2009) Nature. , vol.461 , pp. 160-163
    • Nelson, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.