-
2
-
-
84879376559
-
Advanced MR imaging of gliomas: An update
-
Kao HW, Chiang SW, Chung HW, et al. Advanced MR imaging of gliomas: an update. Biomed Res Int. 2013;2013:970586.
-
(2013)
Biomed Res Int.
, vol.2013
, pp. 970586
-
-
Kao, H.W.1
Chiang, S.W.2
Chung, H.W.3
-
3
-
-
84955116941
-
Multiparametric MR imaging in the assessment of brain tumors
-
Kimura M, da Cruz Jr LC. Multiparametric MR imaging in the assessment of brain tumors. Magn Reson Imaging Clin N Am. 2016;24:87-122.
-
(2016)
Magn Reson Imaging Clin N Am.
, vol.24
, pp. 87-122
-
-
Kimura, M.1
Da Cruz, L.C.2
-
5
-
-
84867139157
-
Radiomics: The process and the challenges
-
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234-1248.
-
(2012)
Magn Reson Imaging.
, vol.30
, pp. 1234-1248
-
-
Kumar, V.1
Gu, Y.2
Basu, S.3
-
7
-
-
84885755228
-
Imaging genomic mapping in glioblastoma
-
Zinn PO, Colen RR. Imaging genomic mapping in glioblastoma. Neurosurgery. 2013;60(Suppl 1):126-130.
-
(2013)
Neurosurgery.
, vol.60
, pp. 126-130
-
-
Zinn, P.O.1
Colen, R.R.2
-
8
-
-
84876887800
-
MR imaging predictors of molecular profile and survival: Multi-institutional study of the TCGA glioblastoma data set
-
Gutman DA, Cooper LA, Hwang SN, et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013;267:560-569.
-
(2013)
Radiology.
, vol.267
, pp. 560-569
-
-
Gutman, D.A.1
Cooper, L.A.2
Hwang, S.N.3
-
9
-
-
84946574783
-
Multicenter imaging outcomes study of the Cancer Genome Atlas glioblastoma patient cohort: Imaging predictors of overall and progression-free survival
-
Wangaryattawanich P, Hatami M, Wang J, et al. Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro Oncol. 2015;17:1525-1537.
-
(2015)
Neuro Oncol.
, vol.17
, pp. 1525-1537
-
-
Wangaryattawanich, P.1
Hatami, M.2
Wang, J.3
-
10
-
-
85013225296
-
Unravelling tumour heterogeneity using next-generation imaging: Radiomics, radiogenomics, and habitat imaging
-
[Epub ahead of print]
-
Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 2016 [Epub ahead of print].
-
(2016)
Clin Radiol
-
-
Sala, E.1
Mema, E.2
Himoto, Y.3
-
11
-
-
34250697544
-
Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma
-
Kuo MD, Gollub J, Sirlin CB, et al. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol. 2007;18:821-831.
-
(2007)
J Vasc Interv Radiol.
, vol.18
, pp. 821-831
-
-
Kuo, M.D.1
Gollub, J.2
Sirlin, C.B.3
-
12
-
-
84904823913
-
Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer
-
Teruel JR, Heldahl MG, Goa PE, et al. Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. NMR Biomed. 2014;27:887-896.
-
(2014)
NMR Biomed.
, vol.27
, pp. 887-896
-
-
Teruel, J.R.1
Heldahl, M.G.2
Goa, P.E.3
-
13
-
-
77951625266
-
Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group
-
Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963-1972.
-
(2010)
J Clin Oncol.
, vol.28
, pp. 1963-1972
-
-
Wen, P.Y.1
MacDonald, D.R.2
Reardon, D.A.3
-
14
-
-
3142662858
-
New guidelines to evaluate the response to treatment in solid tumors
-
Duffaud F, Therasse P. New guidelines to evaluate the response to treatment in solid tumors. Bull Cancer. 2000;87:881-886.
-
(2000)
Bull Cancer.
, vol.87
, pp. 881-886
-
-
Duffaud, F.1
Therasse, P.2
-
15
-
-
57849117384
-
New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)
-
Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228-247.
-
(2009)
Eur J Cancer.
, vol.45
, pp. 228-247
-
-
Eisenhauer, E.A.1
Therasse, P.2
Bogaerts, J.3
-
17
-
-
84930246930
-
Response assessment criteria for brain metastases: Proposal from the RANO group
-
Lin NU, Lee EQ, Aoyama H, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16:e270-e278.
-
(2015)
Lancet Oncol.
, vol.16
, pp. e270-e278
-
-
Lin, N.U.1
Lee, E.Q.2
Aoyama, H.3
-
18
-
-
84863393080
-
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
-
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883-892.
-
(2012)
N Engl J Med.
, vol.366
, pp. 883-892
-
-
Gerlinger, M.1
Rowan, A.J.2
Horswell, S.3
-
19
-
-
84884685636
-
Quantitative imaging in cancer evolution and ecology
-
Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology. Radiology. 2013;269:8-15.
-
(2013)
Radiology.
, vol.269
, pp. 8-15
-
-
Gatenby, R.A.1
Grove, O.2
Gillies, R.J.3
-
20
-
-
84996533954
-
Characterization of PET/CT images using texture analysis: The past, the present. Any future?
-
Hatt M, Tixier F, Pierce L, et al. Characterization of PET/CT images using texture analysis: the past, the present.. any future? Eur J Nucl Med Mol Imaging. 2017;44:151-165.
-
(2017)
Eur J Nucl Med Mol Imaging.
, vol.44
, pp. 151-165
-
-
Hatt, M.1
Tixier, F.2
Pierce, L.3
-
21
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.
-
(2014)
Nat Commun.
, vol.5
, pp. 4006
-
-
Aerts, H.J.1
Velazquez, E.R.2
Leijenaar, R.T.3
-
22
-
-
84928902792
-
Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma
-
Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One. 2015;10:e0118261.
-
(2015)
PLoS One.
, vol.10
, pp. e0118261
-
-
Grove, O.1
Berglund, A.E.2
Schabath, M.B.3
-
23
-
-
84957567984
-
Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma
-
Hu LS, Ning S, Eschbacher JM, et al. Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS One. 2015;10:e0141506.
-
(2015)
PLoS One.
, vol.10
, pp. e0141506
-
-
Hu, L.S.1
Ning, S.2
Eschbacher, J.M.3
-
24
-
-
85013225857
-
Radiogenomics to characterize regional genetic heterogeneity in glioblastoma
-
[Epub ahead of print]
-
Hu LS, Ning S, Eschbacher JM, et al. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol;. 2016 [Epub ahead of print].
-
(2016)
Neuro Oncol.
-
-
Hu, L.S.1
Ning, S.2
Eschbacher, J.M.3
-
25
-
-
84960517189
-
Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma
-
Parker NR, Hudson AL, Khong P, et al. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep. 2016;6:22477.
-
(2016)
Sci Rep.
, vol.6
, pp. 22477
-
-
Parker, N.R.1
Hudson, A.L.2
Khong, P.3
-
26
-
-
85013175171
-
1.5T versus 3.0T MRI texture analysis in the normal appearing white matter of multiple sclerosis patients
-
Zang Y, Metz LM. 1.5T versus 3.0T MRI texture analysis in the normal appearing white matter of multiple sclerosis patients. Proc Intl Soc Mag Reson Med. 2012;20.
-
(2012)
Proc Intl Soc Mag Reson Med.
, vol.20
-
-
Zang, Y.1
Metz, L.M.2
-
29
-
-
63849094894
-
Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application-oriented study
-
Mayerhoefer ME, Szomolanyi P, Jirak D, et al. Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys. 2009;36:1236-1243.
-
(2009)
Med Phys.
, vol.36
, pp. 1236-1243
-
-
Mayerhoefer, M.E.1
Szomolanyi, P.2
Jirak, D.3
-
30
-
-
84899846194
-
Harnessing the power of big data in healthcare
-
Nash DB. Harnessing the power of big data in healthcare. Am Health Drug Benefits. 2014;7:69-70.
-
(2014)
Am Health Drug Benefits.
, vol.7
, pp. 69-70
-
-
Nash, D.B.1
-
32
-
-
84867209483
-
Conventional MRI evaluation of gliomas
-
Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas. Brit J Radiol. 2011;84(Spec Iss 2):S107-S111.
-
(2011)
Brit J Radiol.
, vol.84
, Issue.2
, pp. S107-S111
-
-
Upadhyay, N.1
Waldman, A.D.2
-
33
-
-
0035384134
-
Interaction in the segmentation of medical images: A survey
-
Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal. 2001;5:127-142.
-
(2001)
Med Image Anal.
, vol.5
, pp. 127-142
-
-
Olabarriaga, S.D.1
Smeulders, A.W.2
-
35
-
-
84925307961
-
MRI segmentation of the human brain: Challenges, methods, and applications
-
Despotovic I, Goossens B, Philips W. MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med. 2015;2015:450341.
-
(2015)
Comput Math Methods Med.
, vol.2015
, pp. 450341
-
-
Despotovic, I.1
Goossens, B.2
Philips, W.3
-
36
-
-
84953280821
-
Segmentation of human brain using structural MRI
-
Helms G. Segmentation of human brain using structural MRI. MAGMA. 2016;29:111-124.
-
(2016)
MAGMA.
, vol.29
, pp. 111-124
-
-
Helms, G.1
-
38
-
-
84877131798
-
Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation
-
Khalilzadeh MM, Fatemizadeh E, Behnam H. Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation. Magn Reson Imaging. 2013;31:733-741.
-
(2013)
Magn Reson Imaging.
, vol.31
, pp. 733-741
-
-
Khalilzadeh, M.M.1
Fatemizadeh, E.2
Behnam, H.3
-
40
-
-
84899512814
-
Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies
-
Weizman L, Sira LB, Joskowicz L, et al. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Med Phys. 2014;41:052303.
-
(2014)
Med Phys.
, vol.41
, pp. 052303
-
-
Weizman, L.1
Sira, L.B.2
Joskowicz, L.3
-
41
-
-
80053599063
-
Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme
-
Zinn PO, Mahajan B, Sathyan P, et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One. 2011;6:e25451.
-
(2011)
PLoS One.
, vol.6
, pp. e25451
-
-
Zinn, P.O.1
Mahajan, B.2
Sathyan, P.3
-
42
-
-
84937640437
-
Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients
-
Nicolasjilwan M, Hu Y, Yan C, et al. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J Neuroradiol. 2015;42:212-221.
-
(2015)
J Neuroradiol.
, vol.42
, pp. 212-221
-
-
Nicolasjilwan, M.1
Hu, Y.2
Yan, C.3
-
43
-
-
84955604605
-
Radiomics: Images are more than pictures, they are data
-
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563-577.
-
(2016)
Radiology.
, vol.278
, pp. 563-577
-
-
Gillies, R.J.1
Kinahan, P.E.2
Hricak, H.3
-
45
-
-
0034951961
-
The role of diffusion-weighted imaging in patients with brain tumors
-
Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol. 2001;22:1081-1088.
-
(2001)
AJNR Am J Neuroradiol.
, vol.22
, pp. 1081-1088
-
-
Kono, K.1
Inoue, Y.2
Nakayama, K.3
-
46
-
-
84966704826
-
Radiomic texture analysis mapping predicts areas of true functional MRI activity
-
Hassan I, Kotrotsou A, Bakhtiari AS, et al. Radiomic texture analysis mapping predicts areas of true functional MRI activity. Sci Rep. 2016;6:25295.
-
(2016)
Sci Rep.
, vol.6
, pp. 25295
-
-
Hassan, I.1
Kotrotsou, A.2
Bakhtiari, A.S.3
-
47
-
-
77952407905
-
Texture analysis: A review of neurologic MR imaging applications
-
Kassner A, Thornhill RE. Texture analysis: a review of neurologic MR imaging applications. AJNR Am J Neuroradiol. 2010;31:809-816.
-
(2010)
AJNR Am J Neuroradiol.
, vol.31
, pp. 809-816
-
-
Kassner, A.1
Thornhill, R.E.2
-
50
-
-
0033097007
-
Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
-
Soh LK, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Transact Geosci Remote Sensing. 1999;37:780-795.
-
(1999)
IEEE Transact Geosci Remote Sensing.
, vol.37
, pp. 780-795
-
-
Soh, L.K.1
Tsatsoulis, C.2
-
51
-
-
84992671923
-
Radiomics in brain tumors: An emerging technique for characterization of tumor environment
-
Kotrotsou A, Zinn PO, Colen RR. Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn Reson Imaging Clin N Am 2016;24:719-729.
-
(2016)
Magn Reson Imaging Clin N Am
, vol.24
, pp. 719-729
-
-
Kotrotsou, A.1
Zinn, P.O.2
Colen, R.R.3
-
53
-
-
84885654901
-
CT texture analysis using the filtration-histogram method: What do the measurements mean?
-
Miles KA, Ganeshan B, Hayball MP. CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging. 2013;13:400-406.
-
(2013)
Cancer Imaging.
, vol.13
, pp. 400-406
-
-
Miles, K.A.1
Ganeshan, B.2
Hayball, M.P.3
-
54
-
-
79751529886
-
Enhanced CTimages by the Wavelet transform improving diagnostic accuracy of chest nodules
-
Guo X, Liu X, Wang H, et al. Enhanced CTimages by the Wavelet transform improving diagnostic accuracy of chest nodules. J Digit Imaging. 2011;24:44-49.
-
(2011)
J Digit Imaging.
, vol.24
, pp. 44-49
-
-
Guo, X.1
Liu, X.2
Wang, H.3
-
55
-
-
0002433547
-
From data mining to knowledge discovery: An overview
-
Usama MF, et al., eds American Association for Artificial Intelligence
-
Fayyad UM, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery: an overview. In: Usama MF, et al., eds. Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence; 1996:1-34.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 1-34
-
-
Fayyad, U.M.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
56
-
-
84868138320
-
Model transparency and validation: A report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7
-
Eddy DM, Hollingworth W, Caro JJ, et al. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7. Med Decis Making. 2012;32:733-743.
-
(2012)
Med Decis Making.
, vol.32
, pp. 733-743
-
-
Eddy, D.M.1
Hollingworth, W.2
Caro, J.J.3
-
57
-
-
0030474271
-
A simulation study of the number of events per variable in logistic regression analysis
-
Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373-1379.
-
(1996)
J Clin Epidemiol.
, vol.49
, pp. 1373-1379
-
-
Peduzzi, P.1
Concato, J.2
Kemper, E.3
-
58
-
-
84939498419
-
Machine learning methods for quantitative radiomic biomarkers
-
Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.
-
(2015)
Sci Rep.
, vol.5
, pp. 13087
-
-
Parmar, C.1
Grossmann, P.2
Bussink, J.3
-
59
-
-
38349031393
-
Machine learning: A review of classification and combining techniques
-
Kotsiantis SB, Zaharakis ID, et al. Machine learning: a review of classification and combining techniques. Artif Intell Rev. 2006;159-190. DOI 10.1007/s10462-007-9052-3.
-
(2006)
Artif Intell Rev.
, pp. 159-190
-
-
Kotsiantis, S.B.1
Zaharakis, I.D.2
-
60
-
-
84923319145
-
Predicting outcomes of nonsmall cell lung cancer using CT image features
-
Hawkins SH. Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access. 2014;2:1418-1426.
-
(2014)
IEEE Access.
, vol.2
, pp. 1418-1426
-
-
Hawkins, S.H.1
-
62
-
-
84954549862
-
Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer
-
Parmar C, Grossmann P, Rietveld D, et al. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. 2015;5.
-
(2015)
Front Oncol.
, vol.5
-
-
Parmar, C.1
Grossmann, P.2
Rietveld, D.3
-
63
-
-
0027337853
-
MR tissue characterization of intracranial tumors by means of texture analysis
-
Schad LR, Bluml S, Zuna I. MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging. 1993;11:889-896.
-
(1993)
Magn Reson Imaging.
, vol.11
, pp. 889-896
-
-
Schad, L.R.1
Bluml, S.2
Zuna, I.3
-
64
-
-
84977005324
-
Texture analysis in quantitative MR imaging. Tissue characterisation of normal brain and intracranial tumours at 1.5 T
-
Kjaer L, Ring P, Thomsen C, Henriksen O. Texture analysis in quantitative MR imaging. Tissue characterisation of normal brain and intracranial tumours at 1.5 T. Acta Radiol. 1995;36:127-135.
-
(1995)
Acta Radiol.
, vol.36
, pp. 127-135
-
-
Kjaer, L.1
Ring, P.2
Thomsen, C.3
Henriksen, O.4
-
65
-
-
73149086838
-
Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
-
Zacharaki EI, Wang S, Chawla S, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med. 2009;62:1609-1618.
-
(2009)
Magn Reson Med.
, vol.62
, pp. 1609-1618
-
-
Zacharaki, E.I.1
Wang, S.2
Chawla, S.3
-
66
-
-
84902097099
-
Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI
-
Pallavi T, Prateek P, Lisa R, et al. Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI. Proc SPIE Int Soc Opt Eng. 2014;9035:90352B.
-
(2014)
Proc SPIE Int Soc Opt Eng.
, vol.9035
, pp. 90352B
-
-
Pallavi, T.1
Prateek, P.2
Lisa, R.3
-
67
-
-
79954610475
-
Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition
-
Georgiadis P, Kostopoulos S, Cavouras D, et al. Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition. Magn Reson Imaging. 2011;29:525-535.
-
(2011)
Magn Reson Imaging.
, vol.29
, pp. 525-535
-
-
Georgiadis, P.1
Kostopoulos, S.2
Cavouras, D.3
-
68
-
-
35248823722
-
Classification of brain tumors using MRI and MRS data
-
Wang Q, Karamani Liacouras E, Miranda E, et al. Classification of brain tumors using MRI and MRS data. Proc of SPIE. 2007;6514:65140S1-65140S8.
-
(2007)
Proc of SPIE.
, vol.6514
, pp. 65140S1-65140S8
-
-
Wang, Q.1
Karamani Liacouras, E.2
Miranda, E.3
-
69
-
-
14844363126
-
The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification
-
Devos A, Simonetti AW, van der Graff M, et al. The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification. J Magn Reson. 2005;173:218-228.
-
(2005)
J Magn Reson.
, vol.173
, pp. 218-228
-
-
Devos, A.1
Simonetti, A.W.2
Van Der Graff, M.3
-
70
-
-
84866170811
-
Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma?
-
Eliat P-A, Olivie D, Saikali S, et al. Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma? Neurol Res Int. 2012;2012:195176.
-
(2012)
Neurol Res Int.
, vol.2012
, pp. 195176
-
-
Eliat, P.-A.1
Olivie, D.2
Saikali, S.3
-
71
-
-
84952027684
-
3D texture analysis of heterogeneous MRI data for diagnostic classification of childhood brain tumours
-
Fetit AE, Novak J, Rodriguez D, et al. 3D texture analysis of heterogeneous MRI data for diagnostic classification of childhood brain tumours. Stud Health Technol Inform. 2015;213:19-22.
-
(2015)
Stud Health Technol Inform.
, vol.213
, pp. 19-22
-
-
Fetit, A.E.1
Novak, J.2
Rodriguez, D.3
-
73
-
-
0021345233
-
Primary intracranial tumor imaging: A comparison of magnetic resonance and CT
-
Brant-Zawadzki M, Badami JP, Mills CM, et al. Primary intracranial tumor imaging: a comparison of magnetic resonance and CT. Radiology. 1984;150:435-440.
-
(1984)
Radiology.
, vol.150
, pp. 435-440
-
-
Brant-Zawadzki, M.1
Badami, J.P.2
Mills, C.M.3
-
74
-
-
84941622528
-
Added value of advanced over conventional magnetic resonance imaging in grading gliomas and other primary brain tumors
-
Guzman-De-Villoria JA, Mateos-Perez JM, Fernandez-Garcia P, et al. Added value of advanced over conventional magnetic resonance imaging in grading gliomas and other primary brain tumors. Cancer Imaging. 2014;14:35.
-
(2014)
Cancer Imaging.
, vol.14
, pp. 35
-
-
Guzman-De-Villoria, J.A.1
Mateos-Perez, J.M.2
Fernandez-Garcia, P.3
-
75
-
-
0027442267
-
Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma
-
Kondziolka D, Lunsford LD, Martinez AJ. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg. 1993;79:533-536.
-
(1993)
J Neurosurg.
, vol.79
, pp. 533-536
-
-
Kondziolka, D.1
Lunsford, L.D.2
Martinez, A.J.3
-
76
-
-
0031953734
-
Correlation between dynamic MRI and outcome in patients with malignant gliomas
-
Wong ET, Jackson EF, Hess KR, et al. Correlation between dynamic MRI and outcome in patients with malignant gliomas. Neurology. 1998;50:777-781.
-
(1998)
Neurology.
, vol.50
, pp. 777-781
-
-
Wong, E.T.1
Jackson, E.F.2
Hess, K.R.3
-
78
-
-
84926511460
-
Epidemiology and diagnosis of brain tumors
-
Butowski NA. Epidemiology and diagnosis of brain tumors. Continuum (Minneap Minn). 2015;21:301-313.
-
(2015)
Continuum (Minneap Minn).
, vol.21
, pp. 301-313
-
-
Butowski, N.A.1
-
79
-
-
34548861548
-
[Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma]
-
Chen J, Xia J, Zhou YC, et al. [Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma]. Zhonghua Zhong Liu Za Zhi. 2005;27:309-311.
-
(2005)
Zhonghua Zhong Liu Za Zhi.
, vol.27
, pp. 309-311
-
-
Chen, J.1
Xia, J.2
Zhou, Y.C.3
-
80
-
-
81555218161
-
Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging-correlation with tumor grade
-
Kang Y, Choi SH, Kim YJ, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging-correlation with tumor grade. Radiology. 2011;261:882-890.
-
(2011)
Radiology.
, vol.261
, pp. 882-890
-
-
Kang, Y.1
Choi, S.H.2
Kim, Y.J.3
-
81
-
-
84907486211
-
Glioma: Application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity
-
Ryu YJ, Choi SH, Park SJ, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One. 2014;9:e108335.
-
(2014)
PLoS One.
, vol.9
, pp. e108335
-
-
Ryu, Y.J.1
Choi, S.H.2
Park, S.J.3
-
82
-
-
84907153252
-
ADC texture-an imaging biomarker for high-grade glioma?
-
Brynolfsson P, Nilsson D, Henriksson R, et al. ADC texture-an imaging biomarker for high-grade glioma? Med Phys. 2014;41:101903.
-
(2014)
Med Phys.
, vol.41
, pp. 101903
-
-
Brynolfsson, P.1
Nilsson, D.2
Henriksson, R.3
-
83
-
-
84901038106
-
Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors
-
Rodriguez Gutierrez D, Awwad A, Meijer L, et al. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. Am J Neuroradiol. 2014;35:1009-1015.
-
(2014)
Am J Neuroradiol.
, vol.35
, pp. 1009-1015
-
-
Rodriguez Gutierrez, D.1
Awwad, A.2
Meijer, L.3
-
84
-
-
84945410763
-
The basics of diffusion and perfusion imaging in brain tumors
-
Korfiatis P, Erickson B. The basics of diffusion and perfusion imaging in brain tumors. Appl Radiol. 2014;43:22-29.
-
(2014)
Appl Radiol.
, vol.43
, pp. 22-29
-
-
Korfiatis, P.1
Erickson, B.2
-
85
-
-
84981287443
-
Neck radiotherapy, dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: Prospective assessment of imaging biomarkers of normal tissue injury
-
Joint Head and Neck Radiotherapy-MRI Development Cooperative. Neck radiotherapy, dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: prospective assessment of imaging biomarkers of normal tissue injury. Sci Rep. 2016;6:29864.
-
(2016)
Sci Rep.
, vol.6
, pp. 29864
-
-
-
86
-
-
33644858731
-
Comparative overview of brain perfusion imaging techniques
-
Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol. 2005;32:294-314.
-
(2005)
J Neuroradiol.
, vol.32
, pp. 294-314
-
-
Wintermark, M.1
Sesay, M.2
Barbier, E.3
-
87
-
-
84954027044
-
Dynamic contrast-enhanced perfusion MRI of high grade brain gliomas obtained with arterial or venous waveform input function
-
Filice S, Crisi G. Dynamic contrast-enhanced perfusion MRI of high grade brain gliomas obtained with arterial or venous waveform input function. J Neuroimaging. 2016;26:124-129.
-
(2016)
J Neuroimaging.
, vol.26
, pp. 124-129
-
-
Filice, S.1
Crisi, G.2
-
88
-
-
67650035443
-
Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI
-
Sourbron S, Ingrisch M, Siefert A, et al. Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med. 2009;62:205-217.
-
(2009)
Magn Reson Med.
, vol.62
, pp. 205-217
-
-
Sourbron, S.1
Ingrisch, M.2
Siefert, A.3
-
89
-
-
0031404162
-
Modeling tracer kinetics in dynamic Gd-DTPA MR imaging
-
Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7:91-101.
-
(1997)
J Magn Reson Imaging.
, vol.7
, pp. 91-101
-
-
Tofts, P.S.1
-
90
-
-
0032828135
-
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols
-
Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223-232.
-
(1999)
J Magn Reson Imaging.
, vol.10
, pp. 223-232
-
-
Tofts, P.S.1
Brix, G.2
Buckley, D.L.3
-
91
-
-
0036210301
-
Intracranial mass lesions: Dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging
-
Cha S, Knopp EA, Johnson G, et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223:11-29.
-
(2002)
Radiology.
, vol.223
, pp. 11-29
-
-
Cha, S.1
Knopp, E.A.2
Johnson, G.3
-
92
-
-
84992028365
-
Arterial spin labeling to predict brain tumor grading in children: Correlations between histopathologic vascular density and perfusion MR imaging
-
Dangouloff-Ros V, Deroulers C, Foissac F, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology. 2016;281:553-566.
-
(2016)
Radiology.
, vol.281
, pp. 553-566
-
-
Dangouloff-Ros, V.1
Deroulers, C.2
Foissac, F.3
-
93
-
-
84962855679
-
Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis
-
Santarosa C, Castellano A, Conte GM, et al. Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis. Eur J Radiol. 2016;85:1147-1156.
-
(2016)
Eur J Radiol.
, vol.85
, pp. 1147-1156
-
-
Santarosa, C.1
Castellano, A.2
Conte, G.M.3
-
94
-
-
44449133653
-
Gliomas: Predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging
-
Law M, Young RJ, Babb JS, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247:490-498.
-
(2008)
Radiology.
, vol.247
, pp. 490-498
-
-
Law, M.1
Young, R.J.2
Babb, J.S.3
-
95
-
-
84955438660
-
Texture feature ratios from rCBV maps of perfusion MRI are associated with patient survival in glioblastoma
-
Lee J, Jain R, Khalil K, et al. Texture feature ratios from rCBV maps of perfusion MRI are associated with patient survival in glioblastoma. AJNR Am J Neuroradiol. 2016;37:37-43.
-
(2016)
AJNR Am J Neuroradiol.
, vol.37
, pp. 37-43
-
-
Lee, J.1
Jain, R.2
Khalil, K.3
-
96
-
-
0345254996
-
Glioma grading: Sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging
-
Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989-1998.
-
(2003)
AJNR Am J Neuroradiol.
, vol.24
, pp. 1989-1998
-
-
Law, M.1
Yang, S.2
Wang, H.3
-
97
-
-
84870661637
-
Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases
-
Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N. Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol. 2012;39:301-307.
-
(2012)
J Neuroradiol.
, vol.39
, pp. 301-307
-
-
Mouthuy, N.1
Cosnard, G.2
Abarca-Quinones, J.3
Michoux, N.4
-
98
-
-
84895440282
-
Clinical proton MR spectroscopy in central nervous system disorders
-
Oz G, Alger JR, Barker PB, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270:658-679.
-
(2014)
Radiology.
, vol.270
, pp. 658-679
-
-
Oz, G.1
Alger, J.R.2
Barker, P.B.3
-
99
-
-
0033995248
-
Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors
-
Warren KE, Frank JA, Black JL, et al. Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol. 2000;18:1020-1026.
-
(2000)
J Clin Oncol.
, vol.18
, pp. 1020-1026
-
-
Warren, K.E.1
Frank, J.A.2
Black, J.L.3
-
100
-
-
84872325997
-
Potential of MR spectroscopy for assessment of glioma grading
-
Bulik M, Jancalek R, Vanicek J, et al. Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg. 2013;115:146-153.
-
(2013)
Clin Neurol Neurosurg.
, vol.115
, pp. 146-153
-
-
Bulik, M.1
Jancalek, R.2
Vanicek, J.3
-
101
-
-
0028695478
-
Clinical applications of magnetic resonance spectroscopy
-
Ross B, Michaelis T. Clinical applications of magnetic resonance spectroscopy. Magn Reson Q. 1994;10:191-247.
-
(1994)
Magn Reson Q.
, vol.10
, pp. 191-247
-
-
Ross, B.1
Michaelis, T.2
-
102
-
-
84964380416
-
Treatment response assessment in IDH-mutant glioma patients by noninvasive 3D functional spectroscopic mapping of 2-hydroxyglutarate
-
Andronesi OC, Loebel F, Bogner W, et al. Treatment response assessment in IDH-mutant glioma patients by noninvasive 3D functional spectroscopic mapping of 2-hydroxyglutarate. Clin Cancer Res. 2016;22:1632-1641.
-
(2016)
Clin Cancer Res.
, vol.22
, pp. 1632-1641
-
-
Andronesi, O.C.1
Loebel, F.2
Bogner, W.3
-
103
-
-
84862776826
-
2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas
-
Choi C, Ganji SK, DeBerardinis RJ, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18:624-629.
-
(2012)
Nat Med.
, vol.18
, pp. 624-629
-
-
Choi, C.1
Ganji, S.K.2
Deberardinis, R.J.3
-
104
-
-
84858603856
-
Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy
-
Pope WB, Prins RM, Albert Thomas M, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol. 2012;107:197-205.
-
(2012)
J Neurooncol.
, vol.107
, pp. 197-205
-
-
Pope, W.B.1
Prins, R.M.2
Albert Thomas, M.3
-
105
-
-
57349166553
-
Hydroxyglutaric aciduria and malignant brain tumor: A case report and literature review
-
Aghili M, Zahedi F, Rafiee E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol. 2009;91:233-236.
-
(2009)
J Neurooncol.
, vol.91
, pp. 233-236
-
-
Aghili, M.1
Zahedi, F.2
Rafiee, E.3
-
106
-
-
84904399848
-
Multidimensional texture characterization: On analysis for brain tumor tissues using MRS and MRI
-
Nachimuthu DS, Baladhandapani A. Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI. J Digit Imaging. 2014;27:496-506.
-
(2014)
J Digit Imaging.
, vol.27
, pp. 496-506
-
-
Nachimuthu, D.S.1
Baladhandapani, A.2
-
107
-
-
84926244656
-
Radiogenomics and imaging phenotypes in glioblastoma: Novel observations and correlation with molecular characteristics
-
Ellingson BM. Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep. 2015;15:506.
-
(2015)
Curr Neurol Neurosci Rep.
, vol.15
, pp. 506
-
-
Ellingson, B.M.1
-
109
-
-
84975263401
-
A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma
-
Rao A, Rao G, Gutman DA, et al. A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma. J Neurosurg. 2016;124:1008-1017.
-
(2016)
J Neurosurg.
, vol.124
, pp. 1008-1017
-
-
Rao, A.1
Rao, G.2
Gutman, D.A.3
-
110
-
-
84915752982
-
NCI Workshop Report: Clinical and computational requirements for correlating imaging phenotypes with genomics signatures
-
Colen R, Foster I, Gatenby R, et al. NCI Workshop Report: clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl Oncol. 2014;7:556-569.
-
(2014)
Transl Oncol.
, vol.7
, pp. 556-569
-
-
Colen, R.1
Foster, I.2
Gatenby, R.3
-
111
-
-
84931833137
-
Imaging genomics of glioblastoma: Biology, biomarkers, and breakthroughs
-
Moton S, Elbanan M, Zinn O, Colen RR. Imaging genomics of glioblastoma: biology, biomarkers, and breakthroughs. Top Magn Reson Imaging. 2015;24:155-163.
-
(2015)
Top Magn Reson Imaging.
, vol.24
, pp. 155-163
-
-
Moton, S.1
Elbanan, M.2
Zinn, O.3
Colen, R.R.4
-
113
-
-
70749119866
-
An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
-
Drabycz S, Roldan G, de Robles P, et al. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage. 2010;49:1398-1405.
-
(2010)
Neuroimage.
, vol.49
, pp. 1398-1405
-
-
Drabycz, S.1
Roldan, G.2
De Robles, P.3
-
114
-
-
84969855998
-
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
-
Korfiatis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys. 2016;43:2835.
-
(2016)
Med Phys.
, vol.43
, pp. 2835
-
-
Korfiatis, P.1
Kline, T.L.2
Coufalova, L.3
-
115
-
-
85013225834
-
Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas
-
[Epub ahead of print]
-
Zhang B, Chang K, Ramkissoon S, et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol;. 2016 [Epub ahead of print].
-
(2016)
Neuro Oncol;.
-
-
Zhang, B.1
Chang, K.2
Ramkissoon, S.3
-
116
-
-
42249088264
-
The useof magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma
-
Brown R, Zlatescu M, Sijben A, et al. The useof magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma. Clin Cancer Res. 2008;14:2357-2362.
-
(2008)
Clin Cancer Res.
, vol.14
, pp. 2357-2362
-
-
Brown, R.1
Zlatescu, M.2
Sijben, A.3
-
117
-
-
85013217092
-
139 clinically applicable and biologically validated MRI radiomic test method predicts glioblastoma genomic landscape and survival
-
Zinn PO, Singh SK, Kotrotsou A, et al. 139 clinically applicable and biologically validated MRI radiomic test method predicts glioblastoma genomic landscape and survival. Neurosurgery. 2016;63(Suppl 1): 156-157.
-
(2016)
Neurosurgery.
, vol.63
, pp. 156-157
-
-
Zinn, P.O.1
Singh, S.K.2
Kotrotsou, A.3
-
119
-
-
0018112252
-
Intracranial metastases from systemic cancer
-
Posner JB, Chernik NL. Intracranial metastases from systemic cancer. Adv Neurol. 1978;19:579-592.
-
(1978)
Adv Neurol.
, vol.19
, pp. 579-592
-
-
Posner, J.B.1
Chernik, N.L.2
-
120
-
-
68649104529
-
Quality of life in brain metastases radiation trials: A literature review
-
Wong J, Hird A, Kirou-Mauro A, et al. Quality of life in brain metastases radiation trials: a literature review. Curr Oncol. 2008;15:25-45.
-
(2008)
Curr Oncol.
, vol.15
, pp. 25-45
-
-
Wong, J.1
Hird, A.2
Kirou-Mauro, A.3
-
121
-
-
85011710220
-
Prognostic value of MR imaging texture analysis in brain non-small cell lung cancer oligo-metastases undergoing stereotactic irradiation
-
Nardone V, Tini P, Biondi M, et al. Prognostic value of MR imaging texture analysis in brain non-small cell lung cancer oligo-metastases undergoing stereotactic irradiation. Cureus. 2016;8:e584.
-
(2016)
Cureus.
, vol.8
, pp. e584
-
-
Nardone, V.1
Tini, P.2
Biondi, M.3
-
122
-
-
84991672118
-
Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR
-
Li Z, Mao Y, Li H, et al. Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med. 2016;76:1410-1419.
-
(2016)
Magn Reson Med.
, vol.76
, pp. 1410-1419
-
-
Li, Z.1
Mao, Y.2
Li, H.3
-
124
-
-
84949669471
-
Big data and the future of radiology informatics
-
Kansagra AP, Yu JP, Chatterjee AR, et al. Big data and the future of radiology informatics. Acad Radiol. 2016;23:30-42.
-
(2016)
Acad Radiol.
, vol.23
, pp. 30-42
-
-
Kansagra, A.P.1
Yu, J.P.2
Chatterjee, A.R.3
-
125
-
-
85104094046
-
Big data analytics in healthcare: Promise and potential
-
Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2:3.
-
(2014)
Health Inf Sci Syst.
, vol.2
, pp. 3
-
-
Raghupathi, W.1
Raghupathi, V.2
-
129
-
-
84878979335
-
Biology: The big challenges of big data
-
Marx V. Biology: the big challenges of big data. Nature. 2013;498:255-260.
-
(2013)
Nature.
, vol.498
, pp. 255-260
-
-
Marx, V.1
-
130
-
-
85017065785
-
-
Accessed September 30, 2015
-
Marr B. Big Data: 20 Mind-Boggling Facts Everyone Must Read. Available at: http://www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-boggl ing-facts-everyone-must-read/#119f9e786c1d. Accessed September 30, 2015.
-
Big Data: 20 Mind-Boggling Facts Everyone Must Read
-
-
Marr, B.1
-
131
-
-
84976466056
-
Big data and machine learning in radiation oncology: Stateof the art and future prospects
-
Bibault JE, Giraud P, Burgun A. Big data and machine learning in radiation oncology: stateof the art and future prospects. Cancer Lett 2016; 382:110-117.
-
(2016)
Cancer Lett
, vol.382
, pp. 110-117
-
-
Bibault, J.E.1
Giraud, P.2
Burgun, A.3
-
132
-
-
70249130850
-
Data sharing: Empty archives
-
Nelson B. Data sharing: empty archives. Nature. 2009;461:160-163.
-
(2009)
Nature.
, vol.461
, pp. 160-163
-
-
Nelson, B.1
|