메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Machine Learning methods for Quantitative Radiomic Biomarkers

Author keywords

[No Author keywords available]

Indexed keywords

TUMOR MARKER;

EID: 84939498419     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep13087     Document Type: Article
Times cited : (818)

References (41)
  • 1
    • 84908497841 scopus 로고    scopus 로고
    • Translational research in oncology-10 years of progress and future prospects
    • Doroshow, J., Kummar, S. Translational research in oncology-10 years of progress and future prospects. Nat. Rev. Clin. Oncol. 11, 649 (2014).
    • (2014) Nat. Rev. Clin. Oncol , vol.11 , pp. 649
    • Doroshow, J.1    Kummar, S.2
  • 2
    • 84871609385 scopus 로고    scopus 로고
    • Predicting outcomes in radiation oncology-multifactorial decision support systems
    • Lambin, P. et al. Predicting outcomes in radiation oncology-multifactorial decision support systems. Nat. Rev. Clin. Oncol. 10, 27-40 (2013).
    • (2013) Nat. Rev. Clin. Oncol , vol.10 , pp. 27-40
    • Lambin, P.1
  • 3
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: Extracting more information from medical images using advanced feature analysis. Eur
    • Lambin, P. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. of Cancer 48, 441-446 (2012).
    • (2012) J. of Cancer , vol.48 , pp. 441-446
    • Lambin, P.1
  • 4
    • 84927569956 scopus 로고    scopus 로고
    • CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    • Coroller, T. P. et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiothe. Oncol. (2015), doi: http://dx.doi.org/10.1016/j.radonc.2015.02.015 (2015).
    • (2015) Radiothe. Oncol. , vol.2015
    • Coroller, T.P.1
  • 5
    • 84872015239 scopus 로고    scopus 로고
    • Are Pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?
    • Cook, G. J. et al. Are Pretreatment 18F-FDG PET Tumor Textural Features in Non-Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? J. Nucl. Med. 54, 19-26 (2013).
    • (2013) J. Nucl. Med , vol.54 , pp. 19-26
    • Cook, G.J.1
  • 6
    • 84871704418 scopus 로고    scopus 로고
    • Non-small cell lung cancer: Histopathologic correlates for texture parameters at CT
    • Ganeshan, B. et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266, 326-336 (2013).
    • (2013) Radiology , vol.266 , pp. 326-336
    • Ganeshan, B.1
  • 7
    • 84908702403 scopus 로고    scopus 로고
    • Glioblastoma multiforme: Exploratory radiogenomic analysis by using quantitative image features
    • Gevaert, O. et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273, 168-174 (2014).
    • (2014) Radiology , vol.273 , pp. 168-174
    • Gevaert, O.1
  • 8
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014).
    • (2014) Nat. Commun , vol.5
    • Aerts, H.J.1
  • 9
    • 84884562832 scopus 로고    scopus 로고
    • Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability
    • Leijenaar, R. T. et al. Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncol. 52, 1391-1397 (2013).
    • (2013) Acta Oncol , vol.52 , pp. 1391-1397
    • Leijenaar, R.T.1
  • 10
    • 84904248018 scopus 로고    scopus 로고
    • Robust radiomics feature quantification using semiautomatic volumetric segmentation
    • Parmar, C. et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLOS ONE 9, e102107 (2014).
    • (2014) PLOS ONE , vol.9 , pp. e102107
    • Parmar, C.1
  • 11
    • 77957909316 scopus 로고    scopus 로고
    • Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage
    • Ganeshan, B., Abaleke, S., Young, R. C., Chatwin, C. R., Miles, K. A. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10, 137 (2010).
    • (2010) Cancer Imaging , vol.10 , pp. 137
    • Ganeshan, B.1    Abaleke, S.2    Young, R.C.3    Chatwin, C.R.4    Miles, K.A.5
  • 12
    • 84908191509 scopus 로고    scopus 로고
    • Quantification of heterogeneity as a biomarker in tumor imaging: A systematic review
    • Alic, L., Niessen, W. J., Veenland, J. F. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLOS ONE 9, e110300 (2014).
    • (2014) PLOS ONE , vol.9 , pp. e110300
    • Alic, L.1    Niessen, W.J.2    Veenland, J.F.3
  • 13
    • 84905046756 scopus 로고    scopus 로고
    • Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: Focus on the nonenhancing component of the tumor
    • Jain, R. et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272, 484-493 (2014).
    • (2014) Radiology , vol.272 , pp. 484-493
    • Jain, R.1
  • 14
    • 84937640437 scopus 로고    scopus 로고
    • Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients
    • 2014
    • Nicolasjilwan, M. et al. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J. Neuroradiol. (2014), doi: 10.1016/j.neurad.2014.02.006. (2014).
    • (2014) J. Neuroradiol.
    • Nicolasjilwan, M.1
  • 15
    • 34250195010 scopus 로고    scopus 로고
    • Decoding global gene expression programs in liver cancer by noninvasive imaging
    • Segal, E. et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. biotechnol. 25, 675-680 (2007).
    • (2007) Nat. Biotechnol , vol.25 , pp. 675-680
    • Segal, E.1
  • 18
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182 (2003).
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 19
    • 84923319145 scopus 로고    scopus 로고
    • Predicting outcomes of nonsmall cell lung cancer using ct image features
    • Hawkins, S. H. et al. Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features. IEEE Access 2, 1418-1426 (2014).
    • (2014) IEEE Access , vol.2 , pp. 1418-1426
    • Hawkins, S.H.1
  • 20
    • 83755172956 scopus 로고    scopus 로고
    • Systems man, and cybernetics (SMC)
    • IEEE
    • Basu, S. et al. in Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on. 1306-1312 (IEEE).
    • (2011) IEEE International Conference on , pp. 1306-1312
    • Basu, S.1
  • 22
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • Galloway, M. M. Texture analysis using gray level run lengths. Comput. Vision Graph. 4, 172-179 (1975).
    • (1975) Comput. Vision Graph , vol.4 , pp. 172-179
    • Galloway, M.M.1
  • 23
    • 0037572347 scopus 로고    scopus 로고
    • CERR: A computational environment for adiotherapy research
    • Deasy, J. O., Blanco, A. I., Clark, V. H. CERR: a computational environment for radiotherapy research. Med. Phys. 30, 979-985 (2003).
    • (2003) Med. Phys , vol.30 , pp. 979-985
    • Deasy, J.O.1    Blanco, A.I.2    Clark, V.H.3
  • 24
    • 84908222160 scopus 로고    scopus 로고
    • A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: A step toward individualized care and shared decision making
    • Oberije, C. et al. A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making. Radiothe. Oncol. 112, 37-43 (2014).
    • (2014) Radiothe. Oncol , vol.112 , pp. 37-43
    • Oberije, C.1
  • 25
    • 15044352688 scopus 로고    scopus 로고
    • Clinical model to predict survival in chemonaive patients with advanced non-small-cell lung cancer treated with third-generation chemotherapy regimens based on eastern cooperative oncology group data
    • Hoang, T., Xu, R., Schiller, J. H., Bonomi, P., Johnson, D. H. Clinical model to predict survival in chemonaive patients with advanced non-small-cell lung cancer treated with third-generation chemotherapy regimens based on Eastern Cooperative Oncology Group data. J. Clin. Oncol. 23, 175-183 (2005).
    • (2005) J. Clin. Oncol , vol.23 , pp. 175-183
    • Hoang, T.1    Xu, R.2    Schiller, J.H.3    Bonomi, P.4    Johnson, D.H.5
  • 26
    • 84886566321 scopus 로고    scopus 로고
    • Prediction of 2 years-survival in patients with stage i and II non-small cell lung cancer utilizing 18F-FDG PET/CT SUV quantifica
    • Cistaro, A. et al. Prediction of 2 years-survival in patients with stage I and II non-small cell lung cancer utilizing 18F-FDG PET/CT SUV quantifica. Radiol. oncol. 47, 219-223 (2013).
    • (2013) Radiol. Oncol , vol.47 , pp. 219-223
    • Cistaro, A.1
  • 27
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • Brown, G., Pocock, A., Zhao, M.-J., Luján, M. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13, 27-66 (2012).
    • (2012) J. Mach. Learn. Res , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.-J.3    Luján, M.4
  • 29
    • 38349031393 scopus 로고    scopus 로고
    • Machine learning: A review of classification and combining techniques
    • Kotsiantis, Sotiris B., Ioannis, D. Zaharakis & Panayiotis, E. Pintelas. Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26.3, 159-190 (2006).
    • (2006) Artif. Intell. Rev , vol.26 , Issue.3 , pp. 159-190
    • Kotsiantis Sotiris, B.1    Ioannis, D.2    Panayiotis, Z.3    Pintelas, E.4
  • 30
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1-26 (2008).
    • (2008) J. Stat. Softw , vol.28 , pp. 1-26
    • Kuhn, M.1
  • 31
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems? J
    • Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133-3181 (2014).
    • (2014) Mach. Learn. Res , vol.15 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 33
    • 83755163963 scopus 로고    scopus 로고
    • The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
    • Haury, A.-C., Gestraud, P., Vert, J.-P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLOS ONE 6, e28210 (2011).
    • (2011) PLOS ONE , vol.6 , pp. e28210
    • Haury, A.-C.1    Gestraud, P.2    Vert, J.-P.3
  • 34
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • Kuhn, H. W. The Hungarian method for the assignment problem. Naval Res. Logis. Q. 2, 83-97 (1955).
    • (1955) Naval Res. Logis. Q , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 35
    • 84875211731 scopus 로고    scopus 로고
    • Cancer heterogeneity: Implications for targeted therapeutics. Br
    • Fisher, R., Pusztai, L., Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J Cancer 108, 479-485 (2013).
    • (2013) J Cancer , vol.108 , pp. 479-485
    • Fisher, R.1    Pusztai, L.2    Swanton, C.3
  • 36
    • 84867082692 scopus 로고    scopus 로고
    • Breast cancer intratumor genetic heterogeneity: Causes and implications
    • Ng, C., Pemberton, H., Reis-Filho, J. Breast cancer intratumor genetic heterogeneity: causes and implications. Expert Rev. Anticancer Ther. 12, 1021-1032 (2012).
    • (2012) Expert Rev. Anticancer Ther , vol.12 , pp. 1021-1032
    • Ng, C.1    Pemberton, H.2    Reis-Filho, J.3
  • 37
    • 84891506225 scopus 로고    scopus 로고
    • Quantitative assessment Ki-67 score for prediction of response to neoadjuvant chemotherapy in breast cancer
    • Brown, J. R., DiGiovanna, M. P., Killelea, B., Lannin, D. R., Rimm, D. L. Quantitative assessment Ki-67 score for prediction of response to neoadjuvant chemotherapy in breast cancer. Lab. Invest. 94, 98-106 (2014).
    • (2014) Lab. Invest , vol.94 , pp. 98-106
    • Brown, J.R.1    DiGiovanna, M.P.2    Killelea, B.3    Lannin, D.R.4    Rimm, D.L.5
  • 39
    • 0034685236 scopus 로고    scopus 로고
    • Extent and determinants of error in doctors' prognoses in terminally ill patients: Prospective cohort studyCommentary: Why do doctors overestimate? Commentary: Prognoses should be based on proved indices not intuition
    • Christakis, N. A., Smith, J. L., Parkes, C. M., Lamont, E. B. Extent and determinants of error in doctors' prognoses in terminally ill patients: prospective cohort studyCommentary: Why do doctors overestimate? Commentary: Prognoses should be based on proved indices not intuition. Bmj 320, 469-473 (2000).
    • (2000) BMJ , vol.320 , pp. 469-473
    • Christakis, N.A.1    Smith, J.L.2    Parkes, C.M.3    Lamont, E.B.4
  • 40
    • 0041669352 scopus 로고    scopus 로고
    • A systematic review of physicians' survival predictions in terminally ill cancer patients
    • Glare, P. et al. A systematic review of physicians' survival predictions in terminally ill cancer patients. Bmj 327, 195 (2003).
    • (2003) BMJ , vol.327 , pp. 195
    • Glare, P.1
  • 41
    • 77956105060 scopus 로고    scopus 로고
    • How accurate are physicians in the prediction of patient survival in advanced lung cancer?
    • Clément-Duchene, C., Carnin, C., Guillemin, F., Martinet, Y. How accurate are physicians in the prediction of patient survival in advanced lung cancer? Oncologist 15, 782-789 (2010).
    • (2010) Oncologist , vol.15 , pp. 782-789
    • Clément-Duchene, C.1    Carnin, C.2    Guillemin, F.3    Martinet, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.