-
1
-
-
84908497841
-
Translational research in oncology-10 years of progress and future prospects
-
Doroshow, J., Kummar, S. Translational research in oncology-10 years of progress and future prospects. Nat. Rev. Clin. Oncol. 11, 649 (2014).
-
(2014)
Nat. Rev. Clin. Oncol
, vol.11
, pp. 649
-
-
Doroshow, J.1
Kummar, S.2
-
2
-
-
84871609385
-
Predicting outcomes in radiation oncology-multifactorial decision support systems
-
Lambin, P. et al. Predicting outcomes in radiation oncology-multifactorial decision support systems. Nat. Rev. Clin. Oncol. 10, 27-40 (2013).
-
(2013)
Nat. Rev. Clin. Oncol
, vol.10
, pp. 27-40
-
-
Lambin, P.1
-
3
-
-
84857037061
-
Radiomics: Extracting more information from medical images using advanced feature analysis. Eur
-
Lambin, P. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. of Cancer 48, 441-446 (2012).
-
(2012)
J. of Cancer
, vol.48
, pp. 441-446
-
-
Lambin, P.1
-
4
-
-
84927569956
-
CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
-
Coroller, T. P. et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiothe. Oncol. (2015), doi: http://dx.doi.org/10.1016/j.radonc.2015.02.015 (2015).
-
(2015)
Radiothe. Oncol.
, vol.2015
-
-
Coroller, T.P.1
-
5
-
-
84872015239
-
Are Pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?
-
Cook, G. J. et al. Are Pretreatment 18F-FDG PET Tumor Textural Features in Non-Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? J. Nucl. Med. 54, 19-26 (2013).
-
(2013)
J. Nucl. Med
, vol.54
, pp. 19-26
-
-
Cook, G.J.1
-
6
-
-
84871704418
-
Non-small cell lung cancer: Histopathologic correlates for texture parameters at CT
-
Ganeshan, B. et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266, 326-336 (2013).
-
(2013)
Radiology
, vol.266
, pp. 326-336
-
-
Ganeshan, B.1
-
7
-
-
84908702403
-
Glioblastoma multiforme: Exploratory radiogenomic analysis by using quantitative image features
-
Gevaert, O. et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273, 168-174 (2014).
-
(2014)
Radiology
, vol.273
, pp. 168-174
-
-
Gevaert, O.1
-
8
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014).
-
(2014)
Nat. Commun
, vol.5
-
-
Aerts, H.J.1
-
9
-
-
84884562832
-
Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability
-
Leijenaar, R. T. et al. Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncol. 52, 1391-1397 (2013).
-
(2013)
Acta Oncol
, vol.52
, pp. 1391-1397
-
-
Leijenaar, R.T.1
-
10
-
-
84904248018
-
Robust radiomics feature quantification using semiautomatic volumetric segmentation
-
Parmar, C. et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLOS ONE 9, e102107 (2014).
-
(2014)
PLOS ONE
, vol.9
, pp. e102107
-
-
Parmar, C.1
-
11
-
-
77957909316
-
Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage
-
Ganeshan, B., Abaleke, S., Young, R. C., Chatwin, C. R., Miles, K. A. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10, 137 (2010).
-
(2010)
Cancer Imaging
, vol.10
, pp. 137
-
-
Ganeshan, B.1
Abaleke, S.2
Young, R.C.3
Chatwin, C.R.4
Miles, K.A.5
-
12
-
-
84908191509
-
Quantification of heterogeneity as a biomarker in tumor imaging: A systematic review
-
Alic, L., Niessen, W. J., Veenland, J. F. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLOS ONE 9, e110300 (2014).
-
(2014)
PLOS ONE
, vol.9
, pp. e110300
-
-
Alic, L.1
Niessen, W.J.2
Veenland, J.F.3
-
13
-
-
84905046756
-
Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: Focus on the nonenhancing component of the tumor
-
Jain, R. et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272, 484-493 (2014).
-
(2014)
Radiology
, vol.272
, pp. 484-493
-
-
Jain, R.1
-
14
-
-
84937640437
-
Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients
-
2014
-
Nicolasjilwan, M. et al. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J. Neuroradiol. (2014), doi: 10.1016/j.neurad.2014.02.006. (2014).
-
(2014)
J. Neuroradiol.
-
-
Nicolasjilwan, M.1
-
15
-
-
34250195010
-
Decoding global gene expression programs in liver cancer by noninvasive imaging
-
Segal, E. et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. biotechnol. 25, 675-680 (2007).
-
(2007)
Nat. Biotechnol
, vol.25
, pp. 675-680
-
-
Segal, E.1
-
16
-
-
84877770961
-
-
Ch. 1 MIT press
-
Mohri, M., Rostamizadeh, A., Talwalkar, A. Foundations of machine learning. Ch. 1, 1-3, (MIT press, 2012).
-
(2012)
Foundations of Machine Learning
, pp. 1-3
-
-
Mohri, M.1
Rostamizadeh, A.2
Talwalkar, A.3
-
18
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I., Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182 (2003).
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
19
-
-
84923319145
-
Predicting outcomes of nonsmall cell lung cancer using ct image features
-
Hawkins, S. H. et al. Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features. IEEE Access 2, 1418-1426 (2014).
-
(2014)
IEEE Access
, vol.2
, pp. 1418-1426
-
-
Hawkins, S.H.1
-
20
-
-
83755172956
-
Systems man, and cybernetics (SMC)
-
IEEE
-
Basu, S. et al. in Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on. 1306-1312 (IEEE).
-
(2011)
IEEE International Conference on
, pp. 1306-1312
-
-
Basu, S.1
-
21
-
-
0015680481
-
Textural features for image classification
-
Haralick, R. M., Shanmugam, K., Dinstein, I. H. Textural features for image classification. IEEE Trans. Syst., Man Cybern. 6, 610-621 (1973).
-
(1973)
IEEE Trans. Syst Man Cybern
, vol.6
, pp. 610-621
-
-
Haralick, R.M.1
Shanmugam, K.2
Dinstein, I.H.3
-
22
-
-
0001416258
-
Texture analysis using gray level run lengths
-
Galloway, M. M. Texture analysis using gray level run lengths. Comput. Vision Graph. 4, 172-179 (1975).
-
(1975)
Comput. Vision Graph
, vol.4
, pp. 172-179
-
-
Galloway, M.M.1
-
23
-
-
0037572347
-
CERR: A computational environment for adiotherapy research
-
Deasy, J. O., Blanco, A. I., Clark, V. H. CERR: a computational environment for radiotherapy research. Med. Phys. 30, 979-985 (2003).
-
(2003)
Med. Phys
, vol.30
, pp. 979-985
-
-
Deasy, J.O.1
Blanco, A.I.2
Clark, V.H.3
-
24
-
-
84908222160
-
A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: A step toward individualized care and shared decision making
-
Oberije, C. et al. A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making. Radiothe. Oncol. 112, 37-43 (2014).
-
(2014)
Radiothe. Oncol
, vol.112
, pp. 37-43
-
-
Oberije, C.1
-
25
-
-
15044352688
-
Clinical model to predict survival in chemonaive patients with advanced non-small-cell lung cancer treated with third-generation chemotherapy regimens based on eastern cooperative oncology group data
-
Hoang, T., Xu, R., Schiller, J. H., Bonomi, P., Johnson, D. H. Clinical model to predict survival in chemonaive patients with advanced non-small-cell lung cancer treated with third-generation chemotherapy regimens based on Eastern Cooperative Oncology Group data. J. Clin. Oncol. 23, 175-183 (2005).
-
(2005)
J. Clin. Oncol
, vol.23
, pp. 175-183
-
-
Hoang, T.1
Xu, R.2
Schiller, J.H.3
Bonomi, P.4
Johnson, D.H.5
-
26
-
-
84886566321
-
Prediction of 2 years-survival in patients with stage i and II non-small cell lung cancer utilizing 18F-FDG PET/CT SUV quantifica
-
Cistaro, A. et al. Prediction of 2 years-survival in patients with stage I and II non-small cell lung cancer utilizing 18F-FDG PET/CT SUV quantifica. Radiol. oncol. 47, 219-223 (2013).
-
(2013)
Radiol. Oncol
, vol.47
, pp. 219-223
-
-
Cistaro, A.1
-
27
-
-
84863403768
-
Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
-
Brown, G., Pocock, A., Zhao, M.-J., Luján, M. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 13, 27-66 (2012).
-
(2012)
J. Mach. Learn. Res
, vol.13
, pp. 27-66
-
-
Brown, G.1
Pocock, A.2
Zhao, M.-J.3
Luján, M.4
-
29
-
-
38349031393
-
Machine learning: A review of classification and combining techniques
-
Kotsiantis, Sotiris B., Ioannis, D. Zaharakis & Panayiotis, E. Pintelas. Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26.3, 159-190 (2006).
-
(2006)
Artif. Intell. Rev
, vol.26
, Issue.3
, pp. 159-190
-
-
Kotsiantis Sotiris, B.1
Ioannis, D.2
Panayiotis, Z.3
Pintelas, E.4
-
30
-
-
56249113343
-
Building predictive models in R using the caret package
-
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1-26 (2008).
-
(2008)
J. Stat. Softw
, vol.28
, pp. 1-26
-
-
Kuhn, M.1
-
31
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems? J
-
Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133-3181 (2014).
-
(2014)
Mach. Learn. Res
, vol.15
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
33
-
-
83755163963
-
The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
-
Haury, A.-C., Gestraud, P., Vert, J.-P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLOS ONE 6, e28210 (2011).
-
(2011)
PLOS ONE
, vol.6
, pp. e28210
-
-
Haury, A.-C.1
Gestraud, P.2
Vert, J.-P.3
-
34
-
-
0002719797
-
The Hungarian method for the assignment problem
-
Kuhn, H. W. The Hungarian method for the assignment problem. Naval Res. Logis. Q. 2, 83-97 (1955).
-
(1955)
Naval Res. Logis. Q
, vol.2
, pp. 83-97
-
-
Kuhn, H.W.1
-
35
-
-
84875211731
-
Cancer heterogeneity: Implications for targeted therapeutics. Br
-
Fisher, R., Pusztai, L., Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J Cancer 108, 479-485 (2013).
-
(2013)
J Cancer
, vol.108
, pp. 479-485
-
-
Fisher, R.1
Pusztai, L.2
Swanton, C.3
-
36
-
-
84867082692
-
Breast cancer intratumor genetic heterogeneity: Causes and implications
-
Ng, C., Pemberton, H., Reis-Filho, J. Breast cancer intratumor genetic heterogeneity: causes and implications. Expert Rev. Anticancer Ther. 12, 1021-1032 (2012).
-
(2012)
Expert Rev. Anticancer Ther
, vol.12
, pp. 1021-1032
-
-
Ng, C.1
Pemberton, H.2
Reis-Filho, J.3
-
37
-
-
84891506225
-
Quantitative assessment Ki-67 score for prediction of response to neoadjuvant chemotherapy in breast cancer
-
Brown, J. R., DiGiovanna, M. P., Killelea, B., Lannin, D. R., Rimm, D. L. Quantitative assessment Ki-67 score for prediction of response to neoadjuvant chemotherapy in breast cancer. Lab. Invest. 94, 98-106 (2014).
-
(2014)
Lab. Invest
, vol.94
, pp. 98-106
-
-
Brown, J.R.1
DiGiovanna, M.P.2
Killelea, B.3
Lannin, D.R.4
Rimm, D.L.5
-
38
-
-
84905179334
-
A review of microarray datasets and applied feature selection methods
-
Bolón-Canedo, V., Sánchez-Marono, N., Alonso-Betanzos, A., Benítez, J., Herrera, F. A review of microarray datasets and applied feature selection methods. Inform. Sciences 282, 111-135 (2014).
-
(2014)
Inform. Sciences
, vol.282
, pp. 111-135
-
-
Bolón-Canedo, V.1
Sánchez-Marono, N.2
Alonso-Betanzos, A.3
Benítez, J.4
Herrera, F.5
-
39
-
-
0034685236
-
Extent and determinants of error in doctors' prognoses in terminally ill patients: Prospective cohort studyCommentary: Why do doctors overestimate? Commentary: Prognoses should be based on proved indices not intuition
-
Christakis, N. A., Smith, J. L., Parkes, C. M., Lamont, E. B. Extent and determinants of error in doctors' prognoses in terminally ill patients: prospective cohort studyCommentary: Why do doctors overestimate? Commentary: Prognoses should be based on proved indices not intuition. Bmj 320, 469-473 (2000).
-
(2000)
BMJ
, vol.320
, pp. 469-473
-
-
Christakis, N.A.1
Smith, J.L.2
Parkes, C.M.3
Lamont, E.B.4
-
40
-
-
0041669352
-
A systematic review of physicians' survival predictions in terminally ill cancer patients
-
Glare, P. et al. A systematic review of physicians' survival predictions in terminally ill cancer patients. Bmj 327, 195 (2003).
-
(2003)
BMJ
, vol.327
, pp. 195
-
-
Glare, P.1
-
41
-
-
77956105060
-
How accurate are physicians in the prediction of patient survival in advanced lung cancer?
-
Clément-Duchene, C., Carnin, C., Guillemin, F., Martinet, Y. How accurate are physicians in the prediction of patient survival in advanced lung cancer? Oncologist 15, 782-789 (2010).
-
(2010)
Oncologist
, vol.15
, pp. 782-789
-
-
Clément-Duchene, C.1
Carnin, C.2
Guillemin, F.3
Martinet, Y.4
|