메뉴 건너뛰기




Volumn 31, Issue 8, 2013, Pages 1426-1438

State of the art survey on MRI brain tumor segmentation

Author keywords

Brain tumor; MRI; Segmentation

Indexed keywords

ARTIFICIAL NEURAL NETWORK; AUTOMATION; BRAIN REGION; BRAIN TUMOR; DIAGNOSTIC IMAGING; HUMAN; IMAGE ANALYSIS; IMAGE DISPLAY; IMAGE ENHANCEMENT; IMAGE PROCESSING; IMAGE QUALITY; IMAGE RECONSTRUCTION; IMAGING SYSTEM; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PATHOLOGICAL ANATOMY; PRIORITY JOURNAL; REVIEW; TUMOR LOCALIZATION; TUMOR VOLUME;

EID: 84883741497     PISSN: 0730725X     EISSN: 18735894     Source Type: Journal    
DOI: 10.1016/j.mri.2013.05.002     Document Type: Review
Times cited : (612)

References (103)
  • 1
    • 84859629095 scopus 로고    scopus 로고
    • Medical image segmentation: methods and applications in functional imaging
    • Wong K. Medical image segmentation: methods and applications in functional imaging. Handb Biomed Image Anal Segmentation Models Part B 2005, 2:111-182.
    • (2005) Handb Biomed Image Anal Segmentation Models Part B , vol.2 , pp. 111-182
    • Wong, K.1
  • 2
    • 0031588803 scopus 로고    scopus 로고
    • Multiscale image segmentation using a hierarchical self-organizing map
    • Bhandarkar S., Koh J., Suk M. Multiscale image segmentation using a hierarchical self-organizing map. Neurocomputing 1997, 14:241-272.
    • (1997) Neurocomputing , vol.14 , pp. 241-272
    • Bhandarkar, S.1    Koh, J.2    Suk, M.3
  • 3
    • 43049179622 scopus 로고    scopus 로고
    • Efficient multilevel brain tumor segmentation with integrated Bayesian model classification
    • Corso J., Sharon E., Dube S., El-Saden S., Sinha U., Yuille A. Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans Med Imaging 2008, 27(5):629-640.
    • (2008) IEEE Trans Med Imaging , vol.27 , Issue.5 , pp. 629-640
    • Corso, J.1    Sharon, E.2    Dube, S.3    El-Saden, S.4    Sinha, U.5    Yuille, A.6
  • 6
    • 0035384134 scopus 로고    scopus 로고
    • Interaction in the segmentation of medical images: a survey
    • Olabarriaga S., Smeulders A. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001, 5:127-142.
    • (2001) Med Image Anal , vol.5 , pp. 127-142
    • Olabarriaga, S.1    Smeulders, A.2
  • 7
    • 0347252327 scopus 로고    scopus 로고
    • Automatic brain tumor segmentation by subject specific modification of atlas priors
    • Prastawa M., Bullitt E., Moon N., Van Leemput K., Gerig G. Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad Radiol 2003, 10(12):1341-1348.
    • (2003) Acad Radiol , vol.10 , Issue.12 , pp. 1341-1348
    • Prastawa, M.1    Bullitt, E.2    Moon, N.3    Van Leemput, K.4    Gerig, G.5
  • 8
    • 0032959082 scopus 로고    scopus 로고
    • Intra and interoperator variations in region-of-interest drawing and their effect on the measurement of glomerular filtration rates
    • White D., Houston A., Sampson W., Wilkins G. Intra and interoperator variations in region-of-interest drawing and their effect on the measurement of glomerular filtration rates. Clin NM 1999, 24:177-181.
    • (1999) Clin NM , vol.24 , pp. 177-181
    • White, D.1    Houston, A.2    Sampson, W.3    Wilkins, G.4
  • 9
    • 16544366594 scopus 로고    scopus 로고
    • Brain tumor target determination for radiation treatment planning through automated MRI segmentation
    • Mazzara G., Velthuizen R., Pearlman J., Greenberg H., Wagner H. Brain tumor target determination for radiation treatment planning through automated MRI segmentation. Int J Radiat Oncol Biol Phys 2004, 59(1):300-312.
    • (2004) Int J Radiat Oncol Biol Phys , vol.59 , Issue.1 , pp. 300-312
    • Mazzara, G.1    Velthuizen, R.2    Pearlman, J.3    Greenberg, H.4    Wagner, H.5
  • 10
    • 84883741191 scopus 로고    scopus 로고
    • A new deformable model using dynamic gradient vector flow and adaptive balloon forces
    • Luo S., Li R., Ourselin S. A new deformable model using dynamic gradient vector flow and adaptive balloon forces. APRS Workshop on Dig Image Comp 2003, 9-14.
    • (2003) APRS Workshop on Dig Image Comp , pp. 9-14
    • Luo, S.1    Li, R.2    Ourselin, S.3
  • 12
    • 52649131914 scopus 로고    scopus 로고
    • Minimization of region-scalable fitting energy for image segmentation
    • Li C., Kao C., Gore J., Ding Z. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 2008, 17(10):1940-1949.
    • (2008) IEEE Trans Image Process , vol.17 , Issue.10 , pp. 1940-1949
    • Li, C.1    Kao, C.2    Gore, J.3    Ding, Z.4
  • 13
    • 79959576791 scopus 로고    scopus 로고
    • A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
    • Li C., Huang R., Ding Z., Gatenby C., Metaxas C., Gore J. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 2011, 20(7):2007-2016.
    • (2011) IEEE Trans Image Process , vol.20 , Issue.7 , pp. 2007-2016
    • Li, C.1    Huang, R.2    Ding, Z.3    Gatenby, C.4    Metaxas, C.5    Gore, J.6
  • 14
    • 79954625130 scopus 로고    scopus 로고
    • Polynomial surface fitting based method for retrospective correction of intensity inhomogeneity in MR images
    • Sing J., Khan K., Basu D., Nasipuri M., Saha P. Polynomial surface fitting based method for retrospective correction of intensity inhomogeneity in MR images. Communications and Signal Processing Intl Conf 2011, 405-409.
    • (2011) Communications and Signal Processing Intl Conf , pp. 405-409
    • Sing, J.1    Khan, K.2    Basu, D.3    Nasipuri, M.4    Saha, P.5
  • 16
    • 33751563521 scopus 로고    scopus 로고
    • Level set evolution with region competition: automatic 3-D segmentation of brain tumors
    • Ho S., Bullitt E., Gerig G. Level set evolution with region competition: automatic 3-D segmentation of brain tumors. Int Conf Pattern Rec 2002, I:532-535.
    • (2002) Int Conf Pattern Rec , vol.1 , pp. 532-535
    • Ho, S.1    Bullitt, E.2    Gerig, G.3
  • 17
    • 4444333897 scopus 로고    scopus 로고
    • A brain tumor segmentation framework based on outlier detection
    • Prastawa M., Bullitt E., Ho S., Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal 2004, 8(3):275-283.
    • (2004) Med Image Anal , vol.8 , Issue.3 , pp. 275-283
    • Prastawa, M.1    Bullitt, E.2    Ho, S.3    Gerig, G.4
  • 19
    • 33845339640 scopus 로고    scopus 로고
    • A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images
    • Dou W., Ruan S., Chen Y., Bloyet D., Constans J.M. A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vis Comput 2007, 25:164-171.
    • (2007) Image Vis Comput , vol.25 , pp. 164-171
    • Dou, W.1    Ruan, S.2    Chen, Y.3    Bloyet, D.4    Constans, J.M.5
  • 20
    • 62949196900 scopus 로고    scopus 로고
    • 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models
    • Khotanlou H., Colliot O., Atif J., Bloch I. 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Set Syst 2009, 160(10):1457-1473.
    • (2009) Fuzzy Set Syst , vol.160 , Issue.10 , pp. 1457-1473
    • Khotanlou, H.1    Colliot, O.2    Atif, J.3    Bloch, I.4
  • 21
  • 23
    • 80051883946 scopus 로고    scopus 로고
    • Development of image-processing software for automatic segmentation of brain tumors in MR images
    • Vijayakumar C., Gharpure D.C. Development of image-processing software for automatic segmentation of brain tumors in MR images. Med Phys 2011, 36:147-158.
    • (2011) Med Phys , vol.36 , pp. 147-158
    • Vijayakumar, C.1    Gharpure, D.C.2
  • 24
    • 84883740914 scopus 로고    scopus 로고
    • Automatic MRI brain tumor segmentation system based on localizing active contour models
    • Wang Y., Lin Z., Cao J., Li M. Automatic MRI brain tumor segmentation system based on localizing active contour models. Adv Mater Res 2011, 2134:219-220.
    • (2011) Adv Mater Res , vol.2134 , pp. 219-220
    • Wang, Y.1    Lin, Z.2    Cao, J.3    Li, M.4
  • 25
    • 84883739784 scopus 로고    scopus 로고
    • Automatic brain tumor detection and isolation of tumor cells from MRI images
    • Kumar D., Halder A. Automatic brain tumor detection and isolation of tumor cells from MRI images. Int J Comput Appl 2012, 39(16):26-30.
    • (2012) Int J Comput Appl , vol.39 , Issue.16 , pp. 26-30
    • Kumar, D.1    Halder, A.2
  • 27
    • 33646706434 scopus 로고    scopus 로고
    • Automatic brain tumor segmentation
    • Master's thesis, University of Alberta
    • Schmidt M. Automatic brain tumor segmentation. Master's thesis, University of Alberta, 2005.
    • (2005)
    • Schmidt, M.1
  • 28
    • 0027275316 scopus 로고
    • Review of MR imaging segmentation techniques using pattern recognition
    • Bezdek J., Hall L., Clarke L. Review of MR imaging segmentation techniques using pattern recognition. Med Phys 1993, 20(4):1033-1048.
    • (1993) Med Phys , vol.20 , Issue.4 , pp. 1033-1048
    • Bezdek, J.1    Hall, L.2    Clarke, L.3
  • 29
    • 30844445816 scopus 로고    scopus 로고
    • Unsupervised segmentation using fuzzy logic based texture spectrum for MRI brain images
    • Wiselin G., Ganesan L. Unsupervised segmentation using fuzzy logic based texture spectrum for MRI brain images. World Acad Sci Eng Technol 2005, 5:155-157.
    • (2005) World Acad Sci Eng Technol , vol.5 , pp. 155-157
    • Wiselin, G.1    Ganesan, L.2
  • 31
    • 33847774807 scopus 로고    scopus 로고
    • A review of methods for correction of intensity inhomogeneity in MRI
    • Vovk U., Pernus F., Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007, 26(3):405-421.
    • (2007) IEEE Trans Med Imaging , vol.26 , Issue.3 , pp. 405-421
    • Vovk, U.1    Pernus, F.2    Likar, B.3
  • 32
    • 33749522350 scopus 로고    scopus 로고
    • A review on MR image intensity inhomogeneity correction
    • Hou Zujun A review on MR image intensity inhomogeneity correction. Int J Biomed Imaging 2006, 1-11.
    • (2006) Int J Biomed Imaging , pp. 1-11
    • Hou, Z.1
  • 33
    • 18844365683 scopus 로고    scopus 로고
    • Interplay between intensity standardization and inhomogeneity correction in MR image processing
    • Madabhushi A., Udupa J. Interplay between intensity standardization and inhomogeneity correction in MR image processing. IEEE Trans Med Imaging 2005, 24(5):561-576.
    • (2005) IEEE Trans Med Imaging , vol.24 , Issue.5 , pp. 561-576
    • Madabhushi, A.1    Udupa, J.2
  • 34
    • 3142676666 scopus 로고    scopus 로고
    • Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information
    • Capelle A., Colot O., Fernandez-Maloigne C. Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information. Inf Fusion 2004, 5(3):203-216.
    • (2004) Inf Fusion , vol.5 , Issue.3 , pp. 203-216
    • Capelle, A.1    Colot, O.2    Fernandez-Maloigne, C.3
  • 36
    • 84883743463 scopus 로고    scopus 로고
    • A fully automatic approach to detect brain cancer using random walk algorithm
    • Choubey M., Agrawal S. A fully automatic approach to detect brain cancer using random walk algorithm. Int J Comput Technol Appl 2012, 3(1):265-268.
    • (2012) Int J Comput Technol Appl , vol.3 , Issue.1 , pp. 265-268
    • Choubey, M.1    Agrawal, S.2
  • 37
    • 57949084975 scopus 로고    scopus 로고
    • Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques
    • Shanthi K.J., Sasi Kumar M. Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. Conf Intelligent Adv Sys 2007, 422-426.
    • (2007) Conf Intelligent Adv Sys , pp. 422-426
    • Shanthi, K.J.1    Sasi Kumar, M.2
  • 38
    • 33748654013 scopus 로고    scopus 로고
    • Skull-stripping magnetic resonance brain images using a model-based level set
    • Zhuang A., Valentino D., Toga A. Skull-stripping magnetic resonance brain images using a model-based level set. Neuroimage 2006, 32(1):79-92.
    • (2006) Neuroimage , vol.32 , Issue.1 , pp. 79-92
    • Zhuang, A.1    Valentino, D.2    Toga, A.3
  • 41
    • 0034575445 scopus 로고    scopus 로고
    • Current methods in medical image segmentation
    • Xu C., Pham D., Prince J. Current methods in medical image segmentation. Ann Rev Biomed Eng Ann Rev 2000, 2:315-337.
    • (2000) Ann Rev Biomed Eng Ann Rev , vol.2 , pp. 315-337
    • Xu, C.1    Pham, D.2    Prince, J.3
  • 43
    • 35748986116 scopus 로고    scopus 로고
    • An electrostatic deformable model for medical image segmentation
    • Chang H., Valentino D. An electrostatic deformable model for medical image segmentation. Comput Med Imaging Graph 2008, 32:22-35.
    • (2008) Comput Med Imaging Graph , vol.32 , pp. 22-35
    • Chang, H.1    Valentino, D.2
  • 44
    • 24944475665 scopus 로고    scopus 로고
    • Semi-automated brain tumor and edema segmentation using MRI
    • Xie K., Yang J., Zhang Z., Zhu Y. Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol 2005, 56:12-19.
    • (2005) Eur J Radiol , vol.56 , pp. 12-19
    • Xie, K.1    Yang, J.2    Zhang, Z.3    Zhu, Y.4
  • 45
    • 0029909342 scopus 로고    scopus 로고
    • Tumour determination from MR images by morphological segmentation
    • Gibbs P., Buckley D., Blackb S., Horsman A. Tumour determination from MR images by morphological segmentation. Phys Med Biol 1996, 41:2437-2446.
    • (1996) Phys Med Biol , vol.41 , pp. 2437-2446
    • Gibbs, P.1    Buckley, D.2    Blackb, S.3    Horsman, A.4
  • 46
    • 84883741550 scopus 로고    scopus 로고
    • Threshold estimation for region segmentation on MR image of brain having the partial artifact
    • ChangSun Y., SunHan K., JunSong C., MooNoh S., WonPark J. Threshold estimation for region segmentation on MR image of brain having the partial artifact. ICSP2000 2000, 1000-1009.
    • (2000) ICSP2000 , pp. 1000-1009
    • ChangSun, Y.1    SunHan, K.2    JunSong, C.3    MooNoh, S.4    WonPark, J.5
  • 47
    • 5644300389 scopus 로고    scopus 로고
    • Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas
    • Stadlbauer A., Moser E., Gruber S., Buslei R., Nimsky C., Fahlbusch R., et al. Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. Neuroimage 2004, 23:454-461.
    • (2004) Neuroimage , vol.23 , pp. 454-461
    • Stadlbauer, A.1    Moser, E.2    Gruber, S.3    Buslei, R.4    Nimsky, C.5    Fahlbusch, R.6
  • 52
    • 33846939577 scopus 로고    scopus 로고
    • Validation techniques for quantitative brain tumor measurements
    • Salman Y, Badawi A. Validation techniques for quantitative brain tumor measurements. Int Conf IEEE EMBS 2005. p. 7048-51.
    • (2005) Int Conf IEEE EMBS , pp. 7048-7051
    • Salman, Y.1    Badawi, A.2
  • 53
    • 0034440713 scopus 로고    scopus 로고
    • A gradient magnitude based region growing algorithm for accurate segmentation
    • Sato M., Lakare S., Wan M., Kaufman A. A gradient magnitude based region growing algorithm for accurate segmentation. Int Conf Image Process 2000, 3:448-451.
    • (2000) Int Conf Image Process , vol.3 , pp. 448-451
    • Sato, M.1    Lakare, S.2    Wan, M.3    Kaufman, A.4
  • 55
    • 84857468606 scopus 로고    scopus 로고
    • Modified technique for volumetric brain tumor measurements
    • Salman Y. Modified technique for volumetric brain tumor measurements. J Biomed Sci Eng 2009, 2:16-19.
    • (2009) J Biomed Sci Eng , vol.2 , pp. 16-19
    • Salman, Y.1
  • 57
    • 78650643472 scopus 로고    scopus 로고
    • MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve
    • Deng W., Xiao W., Deng H., Liu J. MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. Int Conf Biomed Eng Informatics 2010, 393-396.
    • (2010) Int Conf Biomed Eng Informatics , pp. 393-396
    • Deng, W.1    Xiao, W.2    Deng, H.3    Liu, J.4
  • 59
    • 10044288373 scopus 로고    scopus 로고
    • Integrating automatic and interactive brain tumor segmentation
    • Dam E., Loog M., Letteboer M. Integrating automatic and interactive brain tumor segmentation. Int Conf Pattern Rec 2004, 3:790-793.
    • (2004) Int Conf Pattern Rec , vol.3 , pp. 790-793
    • Dam, E.1    Loog, M.2    Letteboer, M.3
  • 60
    • 27144510108 scopus 로고    scopus 로고
    • Case study: an evaluation of user-assisted hierarchical watershed segmentation
    • Cates J., Whitaker R., Jones G. Case study: an evaluation of user-assisted hierarchical watershed segmentation. Med Image Anal 2005, 566-578.
    • (2005) Med Image Anal , pp. 566-578
    • Cates, J.1    Whitaker, R.2    Jones, G.3
  • 61
    • 84863104094 scopus 로고    scopus 로고
    • Multiparameter segmentation and quantization of brain tumor from MRI images
    • Ratan R., Sharma S., Sharma S.K. Multiparameter segmentation and quantization of brain tumor from MRI images. Indian J Sci Technol 2009, 2(2):11-15.
    • (2009) Indian J Sci Technol , vol.2 , Issue.2 , pp. 11-15
    • Ratan, R.1    Sharma, S.2    Sharma, S.K.3
  • 62
    • 0033907806 scopus 로고    scopus 로고
    • Watershed-based segmentation and region merging
    • Bleau A., Leon L. Watershed-based segmentation and region merging. Comput Vis Image Under 2000, 77(3):317-370.
    • (2000) Comput Vis Image Under , vol.77 , Issue.3 , pp. 317-370
    • Bleau, A.1    Leon, L.2
  • 63
    • 20444502528 scopus 로고    scopus 로고
    • Statistical solution to watershed over-segmentation
    • Gies V., Bernard T. Statistical solution to watershed over-segmentation. Int Conf Image Process 2004, 1863-1866.
    • (2004) Int Conf Image Process , pp. 1863-1866
    • Gies, V.1    Bernard, T.2
  • 65
    • 84883742928 scopus 로고    scopus 로고
    • Applications of fuzzy systems
    • Bezdek J., Sutton M. Applications of fuzzy systems. Image Process Med 1999, p. 363-416.
    • (1999) Image Process Med , pp. 363-416
    • Bezdek, J.1    Sutton, M.2
  • 66
    • 46449107351 scopus 로고    scopus 로고
    • Segmentation of magnetic resonance images using discrete curve evolution and fuzzy clustering
    • Supot S., Thanapong C., Chuchart P., Manas S. Segmentation of magnetic resonance images using discrete curve evolution and fuzzy clustering. IEEE Int Conf Integration Tech 2007, 697-700.
    • (2007) IEEE Int Conf Integration Tech , pp. 697-700
    • Supot, S.1    Thanapong, C.2    Chuchart, P.3    Manas, S.4
  • 67
    • 0028923807 scopus 로고
    • Application of fuzzy C-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme
    • Phillips W., Velthuizen R., Phupanich S., Hall L., Clarke L., Silbiger M. Application of fuzzy C-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme. Magn Reson Imaging 1995, 13(2):277-290.
    • (1995) Magn Reson Imaging , vol.13 , Issue.2 , pp. 277-290
    • Phillips, W.1    Velthuizen, R.2    Phupanich, S.3    Hall, L.4    Clarke, L.5    Silbiger, M.6
  • 69
    • 0035185610 scopus 로고    scopus 로고
    • Automatic segmentation of nonenhancing brain tumors in magnetic resonance images
    • Fletcher L., Hall L., Goldgof D., Reed F. Automatic segmentation of nonenhancing brain tumors in magnetic resonance images. Artif Intell Med 2001, 21:43-63.
    • (2001) Artif Intell Med , vol.21 , pp. 43-63
    • Fletcher, L.1    Hall, L.2    Goldgof, D.3    Reed, F.4
  • 70
    • 38449093227 scopus 로고    scopus 로고
    • Fuzzy spatial growing for glioblastoma multiforme segmentation on brain magnetic resonance imaging
    • Veloz A., Chabert S., Salas R., Orellana A., Vielma J. Fuzzy spatial growing for glioblastoma multiforme segmentation on brain magnetic resonance imaging. LNCS 2008, 4756:861-870.
    • (2008) LNCS , vol.4756 , pp. 861-870
    • Veloz, A.1    Chabert, S.2    Salas, R.3    Orellana, A.4    Vielma, J.5
  • 71
    • 24344477133 scopus 로고    scopus 로고
    • An intelligent modified fuzzy C-means based algorithm for bias field estimation and segmentation of brain MRI
    • Siyal M., Yu L. An intelligent modified fuzzy C-means based algorithm for bias field estimation and segmentation of brain MRI. Pattern Recognit Lett 2005, 26:2052-2062.
    • (2005) Pattern Recognit Lett , vol.26 , pp. 2052-2062
    • Siyal, M.1    Yu, L.2
  • 72
    • 50149110607 scopus 로고    scopus 로고
    • A new segmentation system for brain MR images based on fuzzy techniques
    • Kannan S. A new segmentation system for brain MR images based on fuzzy techniques. Appl Soft Comput 2008, 8:1599-1606.
    • (2008) Appl Soft Comput , vol.8 , pp. 1599-1606
    • Kannan, S.1
  • 73
    • 37849038370 scopus 로고    scopus 로고
    • A modified fuzzy C-means algorithm for MR brain image segmentation
    • Szilágyi L., Szilágyi S., BenyÛ Z. A modified fuzzy C-means algorithm for MR brain image segmentation. LNCS 2007, 4633:866-877.
    • (2007) LNCS , vol.4633 , pp. 866-877
    • Szilágyi, L.1    Szilágyi, S.2    BenyÛ, Z.3
  • 74
    • 75749157687 scopus 로고    scopus 로고
    • Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation
    • Forouzanfar M., Forghani N., Teshnehlab M. Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation. Eng Appl Artif Intell 2010, 23:160-168.
    • (2010) Eng Appl Artif Intell , vol.23 , pp. 160-168
    • Forouzanfar, M.1    Forghani, N.2    Teshnehlab, M.3
  • 75
    • 1542272476 scopus 로고    scopus 로고
    • MR brain image segmentation using an enhanced fuzzy C-means algorithm
    • Szilágyi L., BenyÛ Z., Szilágyi S., Adam H. MR brain image segmentation using an enhanced fuzzy C-means algorithm. Int Conf IEEE EMBS 2003, 25:724-726.
    • (2003) Int Conf IEEE EMBS , vol.25 , pp. 724-726
    • Szilágyi, L.1    BenyÛ, Z.2    Szilágyi, S.3    Adam, H.4
  • 76
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
    • Chen S., Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B Cybern 2004, 34:1907-1916.
    • (2004) IEEE Trans Syst Man Cybern B Cybern , vol.34 , pp. 1907-1916
    • Chen, S.1    Zhang, D.2
  • 77
    • 33750512945 scopus 로고    scopus 로고
    • Fast and robust fuzzy C-means algorithms incorporating local information for image segmentation
    • Cai W., Chen S., Zhang D. Fast and robust fuzzy C-means algorithms incorporating local information for image segmentation. Pattern Recognit 2007, 40:825-838.
    • (2007) Pattern Recognit , vol.40 , pp. 825-838
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 81
    • 67349168722 scopus 로고    scopus 로고
    • Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field
    • Nie J., Xue Z., Liu T., Young G., Setayesh K., Guoc L., et al. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field. Comput Med Imaging Graph 2009, 33:431-441.
    • (2009) Comput Med Imaging Graph , vol.33 , pp. 431-441
    • Nie, J.1    Xue, Z.2    Liu, T.3    Young, G.4    Setayesh, K.5    Guoc, L.6
  • 82
    • 80055058259 scopus 로고    scopus 로고
    • Segmentation of brain tumor images based on atlas-registration combined with a Markov-random-field lesion growth model
    • Bauer S., Nolte L., Reyes M. Segmentation of brain tumor images based on atlas-registration combined with a Markov-random-field lesion growth model. IEEE Int Symp Biomedical Imaging: From Nano to Macro 2011, 2018-2021.
    • (2011) IEEE Int Symp Biomedical Imaging: From Nano to Macro , pp. 2018-2021
    • Bauer, S.1    Nolte, L.2    Reyes, M.3
  • 83
    • 24944435111 scopus 로고    scopus 로고
    • Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine
    • Zhang J., Ma K., Er M., Chong V. Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. Int Workshop Adv Image Technol 2004, 207-211.
    • (2004) Int Workshop Adv Image Technol , pp. 207-211
    • Zhang, J.1    Ma, K.2    Er, M.3    Chong, V.4
  • 84
    • 33646288387 scopus 로고
    • MR image segmentation using MLM and artificial neural nets
    • Clarke L. MR image segmentation using MLM and artificial neural nets. Med Phys 1991, 18(3):673.
    • (1991) Med Phys , vol.18 , Issue.3 , pp. 673
    • Clarke, L.1
  • 85
    • 0027662763 scopus 로고
    • Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study
    • Ozkan M., Dawant B., Maciunas R. Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study. IEEE Trans Med Imaging 1993, 12(3):534-544.
    • (1993) IEEE Trans Med Imaging , vol.12 , Issue.3 , pp. 534-544
    • Ozkan, M.1    Dawant, B.2    Maciunas, R.3
  • 86
    • 0031064485 scopus 로고    scopus 로고
    • Using neural networks to automatically detect brain tumours in MR images
    • Dickson S., Thomas B. Using neural networks to automatically detect brain tumours in MR images. Int J Neural Syst 1997, 4(1):91-99.
    • (1997) Int J Neural Syst , vol.4 , Issue.1 , pp. 91-99
    • Dickson, S.1    Thomas, B.2
  • 87
    • 46749122279 scopus 로고    scopus 로고
    • A neuro-difference fuzzy technique for automatic segmentation of region of interest in medical imaging
    • Tayel M., Abodou M. A neuro-difference fuzzy technique for automatic segmentation of region of interest in medical imaging. NRSC 2006, 1-7.
    • (2006) NRSC , pp. 1-7
    • Tayel, M.1    Abodou, M.2
  • 88
    • 34548034210 scopus 로고    scopus 로고
    • Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps
    • Vijayakumar C., Damayanti G., Pant R., Sreedhar C. Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput Med Imaging Graph 2007, 31:473-484.
    • (2007) Comput Med Imaging Graph , vol.31 , pp. 473-484
    • Vijayakumar, C.1    Damayanti, G.2    Pant, R.3    Sreedhar, C.4
  • 89
    • 0031283432 scopus 로고    scopus 로고
    • Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
    • Reddick W., Glass J., Cook E., Elkin T., Deaton R. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 1997, 16(6):911-918.
    • (1997) IEEE Trans Med Imaging , vol.16 , Issue.6 , pp. 911-918
    • Reddick, W.1    Glass, J.2    Cook, E.3    Elkin, T.4    Deaton, R.5
  • 90
    • 77952112186 scopus 로고    scopus 로고
    • An improved implementation of brain tumor detection using segmentation based on neuro fuzzy technique
    • Murugavalli S., Rajamani V. An improved implementation of brain tumor detection using segmentation based on neuro fuzzy technique. J Comput Sci 2007, 3(11):841-846.
    • (2007) J Comput Sci , vol.3 , Issue.11 , pp. 841-846
    • Murugavalli, S.1    Rajamani, V.2
  • 92
    • 0035248865 scopus 로고    scopus 로고
    • Active contours without edges
    • Chan T., Vese L. Active contours without edges. IEEE Trans Image Process 2001, 10(2):266-277.
    • (2001) IEEE Trans Image Process , vol.10 , Issue.2 , pp. 266-277
    • Chan, T.1    Vese, L.2
  • 93
    • 73549109121 scopus 로고    scopus 로고
    • Automated medical image segmentation using a new deformable surface model
    • Luo S. Automated medical image segmentation using a new deformable surface model. Int J Comput Sci Netw Secur 2006, 6(5A):109-115.
    • (2006) Int J Comput Sci Netw Secur , vol.6 , Issue.5 A , pp. 109-115
    • Luo, S.1
  • 94
    • 0036906843 scopus 로고    scopus 로고
    • A fast deformable region model for brain tumor boundary extraction
    • Law A., Lam F., Chan F. A fast deformable region model for brain tumor boundary extraction. Int Conf EMBS 2002, 2:1055-1056.
    • (2002) Int Conf EMBS , vol.2 , pp. 1055-1056
    • Law, A.1    Lam, F.2    Chan, F.3
  • 95
    • 34249767150 scopus 로고
    • A geometric model for active contours in image processing
    • Caselles V., Catte F., Coll T., Dibos F. A geometric model for active contours in image processing. Numerical Math 1993, 66:1-31.
    • (1993) Numerical Math , vol.66 , pp. 1-31
    • Caselles, V.1    Catte, F.2    Coll, T.3    Dibos, F.4
  • 97
    • 44749084234 scopus 로고
    • Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations
    • Osher S., Sethian Y.A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988, 79(1):12-49.
    • (1988) J Comput Phys , vol.79 , Issue.1 , pp. 12-49
    • Osher, S.1    Sethian, Y.A.2
  • 101
    • 33748032079 scopus 로고    scopus 로고
    • Image segmentation using a charged fluid method
    • Chang H., Valentino D. Image segmentation using a charged fluid method. J Electron Imaging 2006, 15(2):023011.
    • (2006) J Electron Imaging , vol.15 , Issue.2 , pp. 023011
    • Chang, H.1    Valentino, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.