메뉴 건너뛰기




Volumn 5, Issue DEC, 2015, Pages

Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer

Author keywords

Cancer; Computational science; Machine learning; Quantitative imaging; Radiology; Radiomics

Indexed keywords

ARTICLE; CLASSIFIER; COMPUTER ASSISTED EMISSION TOMOGRAPHY; DISCRIMINANT ANALYSIS; HEAD AND NECK CANCER; HUMAN; MACHINE LEARNING; MAJOR CLINICAL STUDY; OVERALL SURVIVAL; RECEIVER OPERATING CHARACTERISTIC; REDUNDANCY ANALYSIS; TUMOR VOLUME;

EID: 84954549862     PISSN: None     EISSN: 2234943X     Source Type: Journal    
DOI: 10.3389/fonc.2015.00272     Document Type: Article
Times cited : (317)

References (43)
  • 1
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: extracting more information from medical images using advanced feature analysis
    • Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer (2012) 48(4):441-6. doi:10.1016/j.ejca.2011.11.036.
    • (2012) Eur J Cancer , vol.48 , Issue.4 , pp. 441-446
    • Lambin, P.1    Rios-Velazquez, E.2    Leijenaar, R.3    Carvalho, S.4    van Stiphout, R.G.5    Granton, P.6
  • 2
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun (2014) 5:4006. doi:10.1038/ncomms5006.
    • (2014) Nat Commun , vol.5 , pp. 4006
    • Aerts, H.J.1    Velazquez, E.R.2    Leijenaar, R.T.3    Parmar, C.4    Grossmann, P.5    Carvalho, S.6
  • 3
    • 84875211731 scopus 로고    scopus 로고
    • Cancer heterogeneity: implications for targeted therapeutics
    • Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer (2013) 108(3):479-85. doi:10.1038/bjc.2012.581.
    • (2013) Br J Cancer , vol.108 , Issue.3 , pp. 479-485
    • Fisher, R.1    Pusztai, L.2    Swanton, C.3
  • 4
    • 84867082692 scopus 로고    scopus 로고
    • Breast cancer intratumor genetic heterogeneity: causes and implications
    • Ng CK, Pemberton HN, Reis-Filho JS. Breast cancer intratumor genetic heterogeneity: causes and implications. Expert Rev Anticancer Ther (2012) 12(8):1021-32. doi:10.1586/era.12.85.
    • (2012) Expert Rev Anticancer Ther , vol.12 , Issue.8 , pp. 1021-1032
    • Ng, C.K.1    Pemberton, H.N.2    Reis-Filho, J.S.3
  • 5
    • 84857397985 scopus 로고    scopus 로고
    • Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response
    • Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A (2012) 109(8):3041-6. doi:10.1073/pnas.1114033109.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.8 , pp. 3041-3046
    • Szerlip, N.J.1    Pedraza, A.2    Chakravarty, D.3    Azim, M.4    McGuire, J.5    Fang, Y.6
  • 6
    • 84857820489 scopus 로고    scopus 로고
    • Tumor heterogeneity and personalized medicine
    • Longo DL. Tumor heterogeneity and personalized medicine. N Engl J Med (2012) 366(10):956-7. doi:10.1056/NEJMe1200656.
    • (2012) N Engl J Med , vol.366 , Issue.10 , pp. 956-957
    • Longo, D.L.1
  • 7
    • 84908191509 scopus 로고    scopus 로고
    • Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review
    • Alic L, Niessen WJ, Veenland JF. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS One (2014) 9(10):e110300. doi:10.1371/journal.pone.0110300.
    • (2014) PLoS One , vol.9 , Issue.10
    • Alic, L.1    Niessen, W.J.2    Veenland, J.F.3
  • 8
    • 84884579594 scopus 로고    scopus 로고
    • Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer
    • Carvalho S, Leijenaar RT, Velazquez ER, Oberije C, Parmar C, Van Elmpt W, et al. Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncol (2013) 52(7):1398-404. doi:10.3109/0284186X.2013.812795.
    • (2013) Acta Oncol , vol.52 , Issue.7 , pp. 1398-1404
    • Carvalho, S.1    Leijenaar, R.T.2    Velazquez, E.R.3    Oberije, C.4    Parmar, C.5    Van Elmpt, W.6
  • 9
    • 84908702403 scopus 로고    scopus 로고
    • Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features
    • Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, Steinberg GK, et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology (2014) 273(1):168-74. doi:10.1148/radiol.14131731.
    • (2014) Radiology , vol.273 , Issue.1 , pp. 168-174
    • Gevaert, O.1    Mitchell, L.A.2    Achrol, A.S.3    Xu, J.4    Echegaray, S.5    Steinberg, G.K.6
  • 10
    • 84885428106 scopus 로고    scopus 로고
    • Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma
    • Hatt M, Tixier F, Le Rest CC, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging (2013) 40(11):1662-71. doi:10.1007/s00259-013-2486-8.
    • (2013) Eur J Nucl Med Mol Imaging , vol.40 , Issue.11 , pp. 1662-1671
    • Hatt, M.1    Tixier, F.2    Le Rest, C.C.3    Pradier, O.4    Visvikis, D.5
  • 11
    • 84905046756 scopus 로고    scopus 로고
    • Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor
    • Jain R, Poisson LM, Gutman D, Scarpace L, Hwang SN, Holder CA, et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology (2014) 272(2):484-93. doi:10.1148/radiol.14131691.
    • (2014) Radiology , vol.272 , Issue.2 , pp. 484-493
    • Jain, R.1    Poisson, L.M.2    Gutman, D.3    Scarpace, L.4    Hwang, S.N.5    Holder, C.A.6
  • 12
    • 84884562832 scopus 로고    scopus 로고
    • Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability
    • Leijenaar RT, Carvalho S, Velazquez ER, Van Elmpt WJ, Parmar C, Hoekstra OS, et al. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol (2013) 52(7):1391-7. doi:10.3109/0284186X.2013.812798.
    • (2013) Acta Oncol , vol.52 , Issue.7 , pp. 1391-1397
    • Leijenaar, R.T.1    Carvalho, S.2    Velazquez, E.R.3    Van Elmpt, W.J.4    Parmar, C.5    Hoekstra, O.S.6
  • 13
    • 84904248018 scopus 로고    scopus 로고
    • Robust radiomics feature quantification using semiautomatic volumetric segmentation
    • Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One (2014) 9(7):e102107. doi:10.1371/journal.pone.0102107.
    • (2014) PLoS One , vol.9 , Issue.7
    • Parmar, C.1    Velazquez, E.R.2    Leijenaar, R.3    Jermoumi, M.4    Carvalho, S.5    Mak, R.H.6
  • 14
    • 84890056425 scopus 로고    scopus 로고
    • High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images
    • Hunter LA, Krafft S, Stingo F, Choi H, Martel MK, Kry SF. High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images. Med Phys (2013) 40(12):121916. doi:10.1118/1.4829514.
    • (2013) Med Phys , vol.40 , Issue.12
    • Hunter, L.A.1    Krafft, S.2    Stingo, F.3    Choi, H.4    Martel, M.K.5    Kry, S.F.6
  • 15
    • 83755172956 scopus 로고    scopus 로고
    • Developing a classifier model for lung tumors in CT-scan images. Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference On
    • (Anchorage, AK)
    • Basu S, Hall LO, Goldgof DB, Gu Y, Kumar V, Choi J, et al., editors. Developing a classifier model for lung tumors in CT-scan images. Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference On. IEEE (2011) (Anchorage, AK). p. 1306-12.
    • (2011) IEEE , pp. 1306-1312
    • Basu, S.1    Hall, L.O.2    Goldgof, D.B.3    Gu, Y.4    Kumar, V.5    Choi, J.6
  • 16
    • 84938850455 scopus 로고    scopus 로고
    • Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer
    • Parmar C, Leijenaar RT, Grossmann P, Velazquez ER, Bussink J, Rietveld D, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep (2015) 5:11044. doi:10.1038/srep11044.
    • (2015) Sci Rep , vol.5 , pp. 11044
    • Parmar, C.1    Leijenaar, R.T.2    Grossmann, P.3    Velazquez, E.R.4    Bussink, J.5    Rietveld, D.6
  • 17
    • 84871704418 scopus 로고    scopus 로고
    • Non-small cell lung cancer: histopathologic correlates for texture parameters at CT
    • Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology (2013) 266(1):326-36. doi:10.1148/radiol.12112428.
    • (2013) Radiology , vol.266 , Issue.1 , pp. 326-336
    • Ganeshan, B.1    Goh, V.2    Mandeville, H.C.3    Ng, Q.S.4    Hoskin, P.J.5    Miles, K.A.6
  • 18
    • 84886566321 scopus 로고    scopus 로고
    • Prediction of 2 years-survival in patients with stage I and II non-small cell lung cancer utilizing 18F-FDG PET/CT SUV quantifica
    • Cistaro A, Quartuccio N, Mojtahedi A, Fania P, Filosso PL, Campenni A, et al. Prediction of 2 years-survival in patients with stage I and II non-small cell lung cancer utilizing 18F-FDG PET/CT SUV quantifica. Radiol Oncol (2013) 47(3):219-23. doi:10.2478/raon-2013-0023.
    • (2013) Radiol Oncol , vol.47 , Issue.3 , pp. 219-223
    • Cistaro, A.1    Quartuccio, N.2    Mojtahedi, A.3    Fania, P.4    Filosso, P.L.5    Campenni, A.6
  • 19
    • 84872015239 scopus 로고    scopus 로고
    • Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?
    • Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med (2013) 54(1):19-26. doi:10.2967/jnumed.112.107375.
    • (2013) J Nucl Med , vol.54 , Issue.1 , pp. 19-26
    • Cook, G.J.1    Yip, C.2    Siddique, M.3    Goh, V.4    Chicklore, S.5    Roy, A.6
  • 21
    • 77957909316 scopus 로고    scopus 로고
    • Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage
    • Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging (2010) 10(1):137. doi:10.1102/1470-7330.2010.0021.
    • (2010) Cancer Imaging , vol.10 , Issue.1 , pp. 137
    • Ganeshan, B.1    Abaleke, S.2    Young, R.C.3    Chatwin, C.R.4    Miles, K.A.5
  • 22
    • 84927569956 scopus 로고    scopus 로고
    • CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    • Coroller TP, Grossmann P, Hou Y, Velazquez ER, Leijenaar RT, Hermann G, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol (2015) 114(3):345-50. doi:10.1016/j.radonc.2015.02.015.
    • (2015) Radiother Oncol , vol.114 , Issue.3 , pp. 345-350
    • Coroller, T.P.1    Grossmann, P.2    Hou, Y.3    Velazquez, E.R.4    Leijenaar, R.T.5    Hermann, G.6
  • 23
    • 69949186449 scopus 로고    scopus 로고
    • Prognostic value of pre-treatment DCE-MRI parameters in predicting disease free and overall survival for breast cancer patients undergoing neoadjuvant chemotherapy
    • Pickles MD, Manton DJ, Lowry M, Turnbull LW. Prognostic value of pre-treatment DCE-MRI parameters in predicting disease free and overall survival for breast cancer patients undergoing neoadjuvant chemotherapy. Eur J Radiol (2009) 71(3):498-505. doi:10.1016/j.ejrad.2008.05.007.
    • (2009) Eur J Radiol , vol.71 , Issue.3 , pp. 498-505
    • Pickles, M.D.1    Manton, D.J.2    Lowry, M.3    Turnbull, L.W.4
  • 24
    • 34250195010 scopus 로고    scopus 로고
    • Decoding global gene expression programs in liver cancer by noninvasive imaging
    • Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol (2007) 25(6):675-80. doi:10.1038/nbt1306.
    • (2007) Nat Biotechnol , vol.25 , Issue.6 , pp. 675-680
    • Segal, E.1    Sirlin, C.B.2    Ooi, C.3    Adler, A.S.4    Gollub, J.5    Chen, X.6
  • 25
    • 84937640437 scopus 로고    scopus 로고
    • Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients
    • Nicolasjilwan M, Hu Y, Yan C, Meerzaman D, Holder CA, Gutman D, et al. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J Neuroradiol (2015) 42:212-21. doi:10.1016/j.neurad.2014.02.006.
    • (2015) J Neuroradiol , vol.42 , pp. 212-221
    • Nicolasjilwan, M.1    Hu, Y.2    Yan, C.3    Meerzaman, D.4    Holder, C.A.5    Gutman, D.6
  • 29
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, André E. An introduction to variable and feature selection. J Mach Learn Res (2003) 3:1157-82.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    André, E.2
  • 30
    • 84939498419 scopus 로고    scopus 로고
    • Machine learning methods for quantitative radiomic biomarkers
    • Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep (2015) 5:13087. doi:10.1038/srep13087.
    • (2015) Sci Rep , vol.5 , pp. 13087
    • Parmar, C.1    Grossmann, P.2    Bussink, J.3    Lambin, P.4    Aerts, H.J.5
  • 31
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
    • Brown G, Pocock A, Zhao M-J, Luján M. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res (2012) 13(1):27-66.
    • (2012) J Mach Learn Res , vol.13 , Issue.1 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.-J.3    Luján, M.4
  • 33
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res (2014) 15(1):3133-81.
    • (2014) J Mach Learn Res , vol.15 , Issue.1 , pp. 3133-3181
    • Fernández-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 35
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • Galloway MM. Texture analysis using gray level run lengths. Comput Graphics Image Process (1975) 4(2):172-9. doi:10.1016/S0146-664X(75)80008-6.
    • (1975) Comput Graphics Image Process , vol.4 , Issue.2 , pp. 172-179
    • Galloway, M.M.1
  • 36
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn M. Building predictive models in R using the caret package. J Stat Softw (2008) 28(5):1-26. doi:10.18637/jss.v028.i05.
    • (2008) J Stat Softw , vol.28 , Issue.5 , pp. 1-26
    • Kuhn, M.1
  • 37
    • 83755163963 scopus 로고    scopus 로고
    • The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
    • Haury A-C, Gestraud P, Vert J-P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One (2011) 6(12):e28210. doi:10.1371/journal.pone.0028210.
    • (2011) PLoS One , vol.6 , Issue.12
    • Haury, A.-C.1    Gestraud, P.2    Vert, J.-P.3
  • 38
    • 84908222160 scopus 로고    scopus 로고
    • A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making
    • Oberije C, Nalbantov G, Dekker A, Boersma L, Borger J, Reymen B, et al. A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making. Radiother Oncol (2014) 112(1):37-43. doi:10.1016/j.radonc.2014.04.012.
    • (2014) Radiother Oncol , vol.112 , Issue.1 , pp. 37-43
    • Oberije, C.1    Nalbantov, G.2    Dekker, A.3    Boersma, L.4    Borger, J.5    Reymen, B.6
  • 39
    • 84943774122 scopus 로고    scopus 로고
    • Measuring computed tomography scanner variability of radiomics features
    • Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol (2015) 50(11):757-65. doi:10.1097/RLI.0000000000000180.
    • (2015) Invest Radiol , vol.50 , Issue.11 , pp. 757-765
    • Mackin, D.1    Fave, X.2    Zhang, L.3    Fried, D.4    Yang, J.5    Taylor, B.6
  • 40
    • 84902489272 scopus 로고    scopus 로고
    • Exploring variability in CT characterization of tumors: a preliminary phantom study
    • Zhao B, Tan Y, Tsai WY, Schwartz LH, Lu L. Exploring variability in CT characterization of tumors: a preliminary phantom study. Transl Oncol (2014) 7(1):88-93. doi:10.1593/tlo.13865.
    • (2014) Transl Oncol , vol.7 , Issue.1 , pp. 88-93
    • Zhao, B.1    Tan, Y.2    Tsai, W.Y.3    Schwartz, L.H.4    Lu, L.5
  • 42
    • 77956565862 scopus 로고    scopus 로고
    • Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
    • Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol (2010) 49(7):1012-6. doi:10.3109/0284186X.2010.498437.
    • (2010) Acta Oncol , vol.49 , Issue.7 , pp. 1012-1016
    • Galavis, P.E.1    Hollensen, C.2    Jallow, N.3    Paliwal, B.4    Jeraj, R.5
  • 43
    • 84938942773 scopus 로고    scopus 로고
    • The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis
    • Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep (2015) 5:11075. doi:10.1038/srep11075.
    • (2015) Sci Rep , vol.5 , pp. 11075
    • Leijenaar, R.T.1    Nalbantov, G.2    Carvalho, S.3    van Elmpt, W.J.4    Troost, E.G.5    Boellaard, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.