메뉴 건너뛰기




Volumn 31, Issue 5, 2013, Pages 733-741

Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation

Author keywords

Image segmentation; Local and non local reconstruction error; Magnetic resonance image; Sparse representation

Indexed keywords

ACCURACY; ANALYTICAL ERROR; ARTICLE; AUTOMATION; BRAIN; CLUSTER ANALYSIS; COMPUTER SIMULATION; CONTROLLED STUDY; HUMAN; IMAGE ANALYSIS; IMAGE RECONSTRUCTION; IMAGE SEGMENTATION; IMAGING AND DISPLAY; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSICAL PARAMETERS; PRIORITY JOURNAL; SPARSE REPRESENTATION;

EID: 84877131798     PISSN: 0730725X     EISSN: 18735894     Source Type: Journal    
DOI: 10.1016/j.mri.2012.11.010     Document Type: Article
Times cited : (10)

References (33)
  • 1
    • 25844489923 scopus 로고    scopus 로고
    • MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
    • Shen S., Sandham W., Granat M., Sterr A. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 2005, 9.
    • (2005) IEEE Trans Inf Technol Biomed , vol.9
    • Shen, S.1    Sandham, W.2    Granat, M.3    Sterr, A.4
  • 2
    • 55649121609 scopus 로고    scopus 로고
    • A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints
    • Wang J., Kong J., Lub Y., Qi M., Zhang B. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Comput Med Imaging Graph 2008, 685-698.
    • (2008) Comput Med Imaging Graph , pp. 685-698
    • Wang, J.1    Kong, J.2    Lub, Y.3    Qi, M.4    Zhang, B.5
  • 5
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad M., Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 2006, 54(12).
    • (2006) IEEE Trans Image Process , vol.54 , Issue.12
    • Elad, M.1    Aharon, M.2
  • 9
    • 77952254057 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright J., Ma Y., Mairal J., Spairo G., Huang T., Yan S. Sparse representation for computer vision and pattern recognition. IEEE 2009.
    • (2009) IEEE
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Spairo, G.4    Huang, T.5    Yan, S.6
  • 10
    • 61849100967 scopus 로고    scopus 로고
    • Sparse linear discriminant analysis with applications to high dimensional low sample size data
    • Qiao Z., Zhou L., Huang J.Z. Sparse linear discriminant analysis with applications to high dimensional low sample size data. IAENG Int J Appl Math 2009.
    • (2009) IAENG Int J Appl Math
    • Qiao, Z.1    Zhou, L.2    Huang, J.Z.3
  • 11
    • 79958849492 scopus 로고    scopus 로고
    • Exploiting sparse representations in very high-dimensional feature spaces obtained from patch-based processing
    • Hunter J.E., Tugcu M., Wang X., Costello C., Wilkes D.M. Exploiting sparse representations in very high-dimensional feature spaces obtained from patch-based processing. Mach Vis Appl 2011, 22.
    • (2011) Mach Vis Appl , vol.22
    • Hunter, J.E.1    Tugcu, M.2    Wang, X.3    Costello, C.4    Wilkes, D.M.5
  • 13
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • Winn J., Criminisi A., Minka T. Object categorization by learned universal visual dictionary. Proc ICCV 2005.
    • (2005) Proc ICCV
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 14
    • 84891730131 scopus 로고    scopus 로고
    • Sparse representation for image classification: learning discriminative and reconstructive non-parametric dictionaries
    • Rodriguez F., Sapiro G. Sparse representation for image classification: learning discriminative and reconstructive non-parametric dictionaries. IMA Vol Math Its Appl 2008.
    • (2008) IMA Vol Math Its Appl
    • Rodriguez, F.1    Sapiro, G.2
  • 15
    • 77956342899 scopus 로고    scopus 로고
    • Text detection in images using sparse representation with discriminative dictionaries
    • Zhao M., Li S., Kwok J. Text detection in images using sparse representation with discriminative dictionaries. Image Vis Comput 2010.
    • (2010) Image Vis Comput
    • Zhao, M.1    Li, S.2    Kwok, J.3
  • 16
    • 48149093693 scopus 로고    scopus 로고
    • Texture classification based on discriminative features extracted in the frequency domain
    • Lillo A.D., Motta G., Storer J.A. Texture classification based on discriminative features extracted in the frequency domain. Proc ICIP 2007.
    • (2007) Proc ICIP
    • Lillo, A.D.1    Motta, G.2    Storer, J.A.3
  • 21
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp J.A. Greed is good: algorithmic results for sparse approximation. IEEE Trans IT 2004, 50(10).
    • (2004) IEEE Trans IT , vol.50 , Issue.10
    • Tropp, J.A.1
  • 22
    • 0037418225 scopus 로고    scopus 로고
    • Optimal sparse representation in general (non-orthogonal) dictionaries via ℓ1 minimization
    • Donoho D., Elad M. Optimal sparse representation in general (non-orthogonal) dictionaries via ℓ1 minimization. Proc Natl Acad Sci U S A 2003, 2197-2202.
    • (2003) Proc Natl Acad Sci U S A , pp. 2197-2202
    • Donoho, D.1    Elad, M.2
  • 24
    • 0027842081 scopus 로고
    • Matching pursuit in a time frequency dictionary
    • Mallat S., Zhang Z. Matching pursuit in a time frequency dictionary. IEEE Trans. SP 1993, 41(12).
    • (1993) IEEE Trans. SP , vol.41 , Issue.12
    • Mallat, S.1    Zhang, Z.2
  • 25
    • 33750383209 scopus 로고    scopus 로고
    • The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations
    • Elad M., Aharon M., Bruckstein A.M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans SP 2006, 54(11).
    • (2006) IEEE Trans SP , vol.54 , Issue.11
    • Elad, M.1    Aharon, M.2    Bruckstein, A.M.3
  • 27
    • 0032625443 scopus 로고    scopus 로고
    • Frame based signal compression using method of optimal directions (MOD)
    • Engan K., Aase S.O., Husøy J.H. Frame based signal compression using method of optimal directions (MOD). IEEE Int Symp Circuit Syst 1999.
    • (1999) IEEE Int Symp Circuit Syst
    • Engan, K.1    Aase, S.O.2    Husøy, J.H.3
  • 28
    • 33750383209 scopus 로고    scopus 로고
    • The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations
    • Aharon M., Elad M., Bruckstein A.M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans SP 2006, 54.
    • (2006) IEEE Trans SP , vol.54
    • Aharon, M.1    Elad, M.2    Bruckstein, A.M.3
  • 31
    • 0028686711 scopus 로고
    • Brain segmentation and white matter lesion detection in MR images
    • Zijdenbos A., Dawant B. Brain segmentation and white matter lesion detection in MR images. Crit Rev Biomed Eng 1994, 22.
    • (1994) Crit Rev Biomed Eng , vol.22
    • Zijdenbos, A.1    Dawant, B.2
  • 32
    • 18544389845 scopus 로고    scopus 로고
    • Enhancedneural gas network for prototype-based clustering
    • Suganthan P.N., Qin A.K. Enhancedneural gas network for prototype-based clustering. Pattern Recogn 2005, 38:1275-1288.
    • (2005) Pattern Recogn , vol.38 , pp. 1275-1288
    • Suganthan, P.N.1    Qin, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.