메뉴 건너뛰기




Volumn 382, Issue 1, 2016, Pages 110-117

Big Data and machine learning in radiation oncology: State of the art and future prospects

Author keywords

Big Data; Machine learning; Predictive model; Radiation oncology

Indexed keywords

ANTINEOPLASTIC AGENT;

EID: 84976466056     PISSN: 03043835     EISSN: 18727980     Source Type: Journal    
DOI: 10.1016/j.canlet.2016.05.033     Document Type: Review
Times cited : (254)

References (70)
  • 1
    • 84938423827 scopus 로고    scopus 로고
    • Five critical elements to ensure the precision medicine
    • [1] Chen, C., He, M., Zhu, Y., Shi, L., Wang, X., Five critical elements to ensure the precision medicine. Cancer Metastasis Rev 34 (2015), 313–318, 10.1007/s10555-015-9555-3.
    • (2015) Cancer Metastasis Rev , vol.34 , pp. 313-318
    • Chen, C.1    He, M.2    Zhu, Y.3    Shi, L.4    Wang, X.5
  • 2
    • 2342624080 scopus 로고    scopus 로고
    • EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy
    • [2] Paez, J.G., Jänne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S., et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304 (2004), 1497–1500, 10.1126/science.1099314.
    • (2004) Science , vol.304 , pp. 1497-1500
    • Paez, J.G.1    Jänne, P.A.2    Lee, J.C.3    Tracy, S.4    Greulich, H.5    Gabriel, S.6
  • 3
    • 77954801079 scopus 로고    scopus 로고
    • Improved survival with ipilimumab in patients with metastatic melanoma
    • [3] Hodi, F.S., O'Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med 363 (2010), 711–723, 10.1056/NEJMoa1003466.
    • (2010) N. Engl. J. Med , vol.363 , pp. 711-723
    • Hodi, F.S.1    O'Day, S.J.2    McDermott, D.F.3    Weber, R.W.4    Sosman, J.A.5    Haanen, J.B.6
  • 4
    • 84941877398 scopus 로고    scopus 로고
    • Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches
    • [4] Georgakilas, A.G., Pavlopoulou, A., Louka, M., Nikitaki, Z., Vorgias, C.E., Bagos, P.G., et al. Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett 368 (2015), 164–172, 10.1016/j.canlet.2015.03.021.
    • (2015) Cancer Lett , vol.368 , pp. 164-172
    • Georgakilas, A.G.1    Pavlopoulou, A.2    Louka, M.3    Nikitaki, Z.4    Vorgias, C.E.5    Bagos, P.G.6
  • 6
    • 79951475133 scopus 로고    scopus 로고
    • A decade's perspective on DNA sequencing technology
    • [6] Mardis, E.R., A decade's perspective on DNA sequencing technology. Nature 470 (2011), 198–203, 10.1038/nature09796.
    • (2011) Nature , vol.470 , pp. 198-203
    • Mardis, E.R.1
  • 7
    • 72849144434 scopus 로고    scopus 로고
    • Sequencing technologies – the next generation
    • [7] Metzker, M.L., Sequencing technologies – the next generation. Nat. Rev. Genet 11 (2010), 31–46, 10.1038/nrg2626.
    • (2010) Nat. Rev. Genet , vol.11 , pp. 31-46
    • Metzker, M.L.1
  • 8
    • 84872050996 scopus 로고    scopus 로고
    • DNA sequencing costs
    • n.d. accessed 12.03.16
    • [8] DNA sequencing costs. n.d. http://www.genome.gov/sequencingcosts/ accessed 12.03.16.
  • 9
    • 85012141204 scopus 로고    scopus 로고
    • Do cancer clinical trial populations truly represent cancer patients? A comparison of open clinical trials to the cancer genome atlas
    • [9] Geifman, N., Butte, A.J., Do cancer clinical trial populations truly represent cancer patients? A comparison of open clinical trials to the cancer genome atlas. Pac. Symp. Biocomput 21 (2016), 309–320.
    • (2016) Pac. Symp. Biocomput , vol.21 , pp. 309-320
    • Geifman, N.1    Butte, A.J.2
  • 10
    • 84871682979 scopus 로고    scopus 로고
    • A glimpse of the next 100 years in medicine
    • [10] Kohane, I.S., Drazen, J.M., Campion, E.W., A glimpse of the next 100 years in medicine. N. Engl. J. Med 367 (2012), 2538–2539, 10.1056/NEJMe1213371.
    • (2012) N. Engl. J. Med , vol.367 , pp. 2538-2539
    • Kohane, I.S.1    Drazen, J.M.2    Campion, E.W.3
  • 12
    • 84890311454 scopus 로고    scopus 로고
    • Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review
    • [12] Bibault, J.-E., Fumagalli, I., Ferté, C., Chargari, C., Soria, J.-C., Deutsch, E., Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review. Cancer Metastasis Rev 32 (2013), 479–492, 10.1007/s10555-013-9419-7.
    • (2013) Cancer Metastasis Rev , vol.32 , pp. 479-492
    • Bibault, J.-E.1    Fumagalli, I.2    Ferté, C.3    Chargari, C.4    Soria, J.-C.5    Deutsch, E.6
  • 13
    • 47949120077 scopus 로고    scopus 로고
    • Clinical biomarkers for hypoxia targeting
    • [13] Le, Q.-T., Courter, D., Clinical biomarkers for hypoxia targeting. Cancer Metastasis Rev 27 (2008), 351–362, 10.1007/s10555-008-9144-9.
    • (2008) Cancer Metastasis Rev , vol.27 , pp. 351-362
    • Le, Q.-T.1    Courter, D.2
  • 14
    • 47949130710 scopus 로고    scopus 로고
    • Molecular markers of radiation-related normal tissue toxicity
    • [14] Okunieff, P., Chen, Y., Maguire, D.J., Huser, A.K., Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev 27 (2008), 363–374, 10.1007/s10555-008-9138-7.
    • (2008) Cancer Metastasis Rev , vol.27 , pp. 363-374
    • Okunieff, P.1    Chen, Y.2    Maguire, D.J.3    Huser, A.K.4
  • 15
    • 84946716146 scopus 로고    scopus 로고
    • Machine learning approaches for predicting radiation therapy outcomes: a clinician's perspective
    • [15] Kang, J., Schwartz, R., Flickinger, J., Beriwal, S., Machine learning approaches for predicting radiation therapy outcomes: a clinician's perspective. Int. J. Radiat. Oncol. Biol. Phys 93 (2015), 1127–1135, 10.1016/j.ijrobp.2015.07.2286.
    • (2015) Int. J. Radiat. Oncol. Biol. Phys , vol.93 , pp. 1127-1135
    • Kang, J.1    Schwartz, R.2    Flickinger, J.3    Beriwal, S.4
  • 16
    • 85032202334 scopus 로고    scopus 로고
    • Improving survival in patients treated for a lung cancer using self-evaluated symptoms reported through a web application
    • [16] Denis, F., Yossi, S., Septans, A.-L., Charron, A., Voog, E., Dupuis, O., et al. Improving survival in patients treated for a lung cancer using self-evaluated symptoms reported through a web application. Am. J. Clin. Oncol, 2015, 10.1097/COC.0000000000000189.
    • (2015) Am. J. Clin. Oncol
    • Denis, F.1    Yossi, S.2    Septans, A.-L.3    Charron, A.4    Voog, E.5    Dupuis, O.6
  • 17
    • 84974577095 scopus 로고    scopus 로고
    • Use of mobile device technology to continuously collect patient-reported symptoms during radiotherapy for head and neck cancer: a prospective feasibility study, Adv
    • [17] Falchook, A.D., Tracton, G., Stravers, L., Fleming, M.E., Snavely, A.C., Noe, J.F., et al. Use of mobile device technology to continuously collect patient-reported symptoms during radiotherapy for head and neck cancer: a prospective feasibility study, Adv. Radiat. Oncol, 2016, 10.1016/j.adro.2016.02.001.
    • (2016) Radiat. Oncol
    • Falchook, A.D.1    Tracton, G.2    Stravers, L.3    Fleming, M.E.4    Snavely, A.C.5    Noe, J.F.6
  • 18
    • 84872006849 scopus 로고    scopus 로고
    • Securing personal health records in cloud computing: patient-centric and fine-grained data access control in multi-owner settings
    • S. Jajodia J. Zhou Springer Berlin Heidelberg accessed 21.05.16
    • [18] Li, M., Yu, S., Ren, K., Lou, W., Securing personal health records in cloud computing: patient-centric and fine-grained data access control in multi-owner settings. Jajodia, S., Zhou, J., (eds.) Security and Privacy in Communication Networks, 2010, Springer Berlin, Heidelberg, 89–106 http://link.springer.com/chapter/10.1007/978-3-642-16161-2_6 accessed 21.05.16.
    • (2010) Security and Privacy in Communication Networks , pp. 89-106
    • Li, M.1    Yu, S.2    Ren, K.3    Lou, W.4
  • 19
    • 84905646484 scopus 로고    scopus 로고
    • Translational research platforms integrating clinical and omics data: a review of publicly available solutions
    • [19] Canuel, V., Rance, B., Avillach, P., Degoulet, P., Burgun, A., Translational research platforms integrating clinical and omics data: a review of publicly available solutions. Brief. Bioinform 16 (2015), 280–290, 10.1093/bib/bbu006.
    • (2015) Brief. Bioinform , vol.16 , pp. 280-290
    • Canuel, V.1    Rance, B.2    Avillach, P.3    Degoulet, P.4    Burgun, A.5
  • 21
    • 85083147240 scopus 로고    scopus 로고
    • Systematized nomenclature of medicine – clinical terms – summary | NCBO BioPortal
    • n.d. accessed 07.03.16
    • [21] Systematized nomenclature of medicine – clinical terms – summary | NCBO BioPortal. n.d. https://bioportal.bioontology.org/ontologies/SNOMEDCT accessed 07.03.16.
  • 22
    • 85083148105 scopus 로고    scopus 로고
    • National cancer institute thesaurus – summary | NCBO BioPortal
    • n.d. accessed 07.03.16
    • [22] National cancer institute thesaurus – summary | NCBO BioPortal. n.d. https://bioportal.bioontology.org/ontologies/NCIT accessed 07.03.16.
  • 23
    • 85083134576 scopus 로고    scopus 로고
    • Common terminology criteria for adverse events – summary | NCBO BioPortal
    • n.d. accessed 07.03.16
    • [23] Common terminology criteria for adverse events – summary | NCBO BioPortal. n.d. https://bioportal.bioontology.org/ontologies/CTCAE accessed 07.03.16.
  • 24
    • 85083124124 scopus 로고    scopus 로고
    • Fact SheetUMLS® Metathesaurus®
    • n.d. accessed 07.03.16
    • [24] Fact SheetUMLS® Metathesaurus®. n.d. https://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html accessed 07.03.16.
  • 25
    • 85083142897 scopus 로고    scopus 로고
    • Radiation oncology ontology – summary | NCBO BioPortal
    • n.d. accessed 07.03.16
    • [25] Radiation oncology ontology – summary | NCBO BioPortal. n.d. http://bioportal.bioontology.org/ontologies/ROO accessed 07.03.16.
  • 26
    • 33644534479 scopus 로고    scopus 로고
    • Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors
    • [26] El Naqa, I., Bradley, J., Blanco, A.I., Lindsay, P.E., Vicic, M., Hope, A., et al. Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors. Int. J. Radiat. Oncol. Biol. Phys 64 (2006), 1275–1286, 10.1016/j.ijrobp.2005.11.022.
    • (2006) Int. J. Radiat. Oncol. Biol. Phys , vol.64 , pp. 1275-1286
    • El Naqa, I.1    Bradley, J.2    Blanco, A.I.3    Lindsay, P.E.4    Vicic, M.5    Hope, A.6
  • 27
    • 84896541567 scopus 로고    scopus 로고
    • Using multivariate regression model with least absolute shrinkage and selection operator (LASSO) to predict the incidence of Xerostomia after intensity-modulated radiotherapy for head and neck cancer
    • [27] Lee, T.-F., Chao, P.-J., Ting, H.-M., Chang, L., Huang, Y.-J., Wu, J.-M., et al. Using multivariate regression model with least absolute shrinkage and selection operator (LASSO) to predict the incidence of Xerostomia after intensity-modulated radiotherapy for head and neck cancer. PLoS ONE, 9, 2014, e89700, 10.1371/journal.pone.0089700.
    • (2014) PLoS ONE , vol.9 , pp. e89700
    • Lee, T.-F.1    Chao, P.-J.2    Ting, H.-M.3    Chang, L.4    Huang, Y.-J.5    Wu, J.-M.6
  • 28
    • 84906815268 scopus 로고    scopus 로고
    • LASSO NTCP predictors for the incidence of xerostomia in patients with head and neck squamous cell carcinoma and nasopharyngeal carcinoma
    • [28] Lee, T.-F., Liou, M.-H., Huang, Y.-J., Chao, P.-J., Ting, H.-M., Lee, H.-Y., et al. LASSO NTCP predictors for the incidence of xerostomia in patients with head and neck squamous cell carcinoma and nasopharyngeal carcinoma. Sci. Rep, 4, 2014, 6217, 10.1038/srep06217.
    • (2014) Sci. Rep , vol.4 , pp. 6217
    • Lee, T.-F.1    Liou, M.-H.2    Huang, Y.-J.3    Chao, P.-J.4    Ting, H.-M.5    Lee, H.-Y.6
  • 29
    • 33744584654 scopus 로고
    • Induction of decision trees
    • [29] Quinlan, J.R., Induction of decision trees. Mach. Learn 1 (1986), 81–106.
    • (1986) Mach. Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 30
    • 0026992322 scopus 로고
    • An analysis of Bayesian classifiers
    • AAAI
    • [30] Langley, P., Iba, W., Thompson, K., An analysis of Bayesian classifiers. AAAI, 1992, 223–228.
    • (1992) , pp. 223-228
    • Langley, P.1    Iba, W.2    Thompson, K.3
  • 32
    • 0038136319 scopus 로고
    • A generalized k-nearest neighbor rule
    • [32] Patrick, E.A., Fischer, F.P. III, A generalized k-nearest neighbor rule. Inf. Control 16 (1970), 128–152, 10.1016/S0019-9958(70)90081-1.
    • (1970) Inf. Control , vol.16 , pp. 128-152
    • Patrick, E.A.1    Fischer, F.P.2
  • 33
    • 0003969585 scopus 로고
    • Estimation of Dependences Based on Empirical Data
    • Springer Verlag New York
    • [33] Vapnik, V., Estimation of Dependences Based on Empirical Data. 1982, Springer Verlag, New York.
    • (1982)
    • Vapnik, V.1
  • 34
    • 0003444646 scopus 로고
    • Parallel Distributed Processing: Explorations in the Microstructure of Cognition
    • MIT Press Cambridge
    • [34] Rumelhart, D.E., McClelland, J., Parallel Distributed Processing: Explorations in the Microstructure of Cognition. 1986, MIT Press, Cambridge.
    • (1986)
    • Rumelhart, D.E.1    McClelland, J.2
  • 35
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • [35] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444, 10.1038/nature14539.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 36
    • 34748905317 scopus 로고    scopus 로고
    • Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis
    • [36] Chen, S., Zhou, S., Yin, F.-F., Marks, L.B., Das, S.K., Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis. Med. Phys 34 (2007), 3808–3814.
    • (2007) Med. Phys , vol.34 , pp. 3808-3814
    • Chen, S.1    Zhou, S.2    Yin, F.-F.3    Marks, L.B.4    Das, S.K.5
  • 37
    • 84893834249 scopus 로고    scopus 로고
    • Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer
    • [37] Klement, R.J., Allgäuer, M., Appold, S., Dieckmann, K., Ernst, I., Ganswindt, U., et al. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys 88 (2014), 732–738, 10.1016/j.ijrobp.2013.11.216.
    • (2014) Int. J. Radiat. Oncol. Biol. Phys , vol.88 , pp. 732-738
    • Klement, R.J.1    Allgäuer, M.2    Appold, S.3    Dieckmann, K.4    Ernst, I.5    Ganswindt, U.6
  • 38
    • 28144441052 scopus 로고    scopus 로고
    • Possible prediction of chemoradiosensitivity of esophageal cancer by serum protein profiling
    • [38] Hayashida, Y., Honda, K., Osaka, Y., Hara, T., Umaki, T., Tsuchida, A., et al. Possible prediction of chemoradiosensitivity of esophageal cancer by serum protein profiling. Clin. Cancer Res 11 (2005), 8042–8047, 10.1158/1078-0432.CCR-05-0656.
    • (2005) Clin. Cancer Res , vol.11 , pp. 8042-8047
    • Hayashida, Y.1    Honda, K.2    Osaka, Y.3    Hara, T.4    Umaki, T.5    Tsuchida, A.6
  • 39
    • 0032076928 scopus 로고    scopus 로고
    • Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck
    • [39] Bryce, T.J., Dewhirst, M.W., Floyd, C.E., Hars, V., Brizel, D.M., Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys 41 (1998), 339–345.
    • (1998) Int. J. Radiat. Oncol. Biol. Phys , vol.41 , pp. 339-345
    • Bryce, T.J.1    Dewhirst, M.W.2    Floyd, C.E.3    Hars, V.4    Brizel, D.M.5
  • 40
    • 1842527859 scopus 로고    scopus 로고
    • Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate
    • [40] Gulliford, S.L., Webb, S., Rowbottom, C.G., Corne, D.W., Dearnaley, D.P., Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate. Radiother. Oncol 71 (2004), 3–12, 10.1016/j.radonc.2003.03.001.
    • (2004) Radiother. Oncol , vol.71 , pp. 3-12
    • Gulliford, S.L.1    Webb, S.2    Rowbottom, C.G.3    Corne, D.W.4    Dearnaley, D.P.5
  • 41
    • 79958798015 scopus 로고    scopus 로고
    • Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy
    • [41] Pella, A., Cambria, R., Riboldi, M., Jereczek-Fossa, B.A., Fodor, C., Zerini, D., et al. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy. Med. Phys 38 (2011), 2859–2867.
    • (2011) Med. Phys , vol.38 , pp. 2859-2867
    • Pella, A.1    Cambria, R.2    Riboldi, M.3    Jereczek-Fossa, B.A.4    Fodor, C.5    Zerini, D.6
  • 42
    • 84857527050 scopus 로고    scopus 로고
    • Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model
    • [42] Tomatis, S., Rancati, T., Fiorino, C., Vavassori, V., Fellin, G., Cagna, E., et al. Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model. Phys. Med. Biol 57 (2012), 1399–1412, 10.1088/0031-9155/57/5/1399.
    • (2012) Phys. Med. Biol , vol.57 , pp. 1399-1412
    • Tomatis, S.1    Rancati, T.2    Fiorino, C.3    Vavassori, V.4    Fellin, G.5    Cagna, E.6
  • 43
    • 34548317203 scopus 로고    scopus 로고
    • A neural network model to predict lung radiation-induced pneumonitis
    • [43] Chen, S., Zhou, S., Zhang, J., Yin, F.-F., Marks, L.B., Das, S.K., A neural network model to predict lung radiation-induced pneumonitis. Med. Phys 34 (2007), 3420–3427.
    • (2007) Med. Phys , vol.34 , pp. 3420-3427
    • Chen, S.1    Zhou, S.2    Zhang, J.3    Yin, F.-F.4    Marks, L.B.5    Das, S.K.6
  • 44
    • 14644395498 scopus 로고    scopus 로고
    • An artificial neural network for predicting the incidence of radiation pneumonitis
    • [44] Su, M., Miften, M., Whiddon, C., Sun, X., Light, K., Marks, L., An artificial neural network for predicting the incidence of radiation pneumonitis. Med. Phys 32 (2005), 318–325.
    • (2005) Med. Phys , vol.32 , pp. 318-325
    • Su, M.1    Miften, M.2    Whiddon, C.3    Sun, X.4    Light, K.5    Marks, L.6
  • 45
    • 0036808137 scopus 로고    scopus 로고
    • Survival prediction using artificial neural networks in patients with uterine cervical cancer treated by radiation therapy alone
    • [45] Ochi, T., Murase, K., Fujii, T., Kawamura, M., Ikezoe, J., Survival prediction using artificial neural networks in patients with uterine cervical cancer treated by radiation therapy alone. Int. J. Clin. Oncol 7 (2002), 294–300, 10.1007/s101470200043.
    • (2002) Int. J. Clin. Oncol , vol.7 , pp. 294-300
    • Ochi, T.1    Murase, K.2    Fujii, T.3    Kawamura, M.4    Ikezoe, J.5
  • 46
    • 84939781083 scopus 로고    scopus 로고
    • Computer-aided classification of lung nodules on computed tomography images via deep learning technique
    • [46] Hua, K.-L., Hsu, C.-H., Hidayati, S.C., Cheng, W.-H., Chen, Y.-J., Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther 8 (2015), 2015–2022, 10.2147/OTT.S80733.
    • (2015) Onco Targets Ther , vol.8 , pp. 2015-2022
    • Hua, K.-L.1    Hsu, C.-H.2    Hidayati, S.C.3    Cheng, W.-H.4    Chen, Y.-J.5
  • 47
    • 84963878431 scopus 로고    scopus 로고
    • Deformable MR prostate segmentation via deep feature learning and sparse patch matching
    • [47] Guo, Y., Gao, Y., Shen, D., Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging, 2015, 10.1109/TMI.2015.2508280.
    • (2015) IEEE Trans. Med. Imaging
    • Guo, Y.1    Gao, Y.2    Shen, D.3
  • 49
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • [49] Cruz, J.A., Wishart, D.S., Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2 (2006), 59–77.
    • (2006) Cancer Inform , vol.2 , pp. 59-77
    • Cruz, J.A.1    Wishart, D.S.2
  • 52
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions
    • [52] Somorjai, R.L., Dolenko, B., Baumgartner, R., Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 19 (2003), 1484–1491.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 53
    • 85083127286 scopus 로고    scopus 로고
    • TensorFlow – an open source software library for machine intelligence
    • n.d. accessed 12.03.16
    • [53] TensorFlow – an open source software library for machine intelligence. n.d. https://www.tensorflow.org/ accessed 12.03.16.
  • 54
    • 84950300744 scopus 로고    scopus 로고
    • Systems medicine in oncology: signaling network modeling and new-generation decision-support systems
    • [54] Parodi, S., Riccardi, G., Castagnino, N., Tortolina, L., Maffei, M., Zoppoli, G., et al. Systems medicine in oncology: signaling network modeling and new-generation decision-support systems. Methods Mol. Biol 1386 (2016), 181–219, 10.1007/978-1-4939-3283-2_10.
    • (2016) Methods Mol. Biol , vol.1386 , pp. 181-219
    • Parodi, S.1    Riccardi, G.2    Castagnino, N.3    Tortolina, L.4    Maffei, M.5    Zoppoli, G.6
  • 55
    • 85083127827 scopus 로고    scopus 로고
    • Watson oncology
    • n.d. accessed 10.03.16
    • [55] Memorial Sloan Kettering Cancer Center, Watson oncology. n.d. https://www.mskcc.org/about/innovative-collaborations/watson-oncology accessed 10.03.16.
  • 56
    • 84930945281 scopus 로고    scopus 로고
    • The coming era of human phenotyping
    • [56] The coming era of human phenotyping. Nat. Biotechnol, 33, 2015, 567, 10.1038/nbt.3266.
    • (2015) Nat. Biotechnol , vol.33 , pp. 567
  • 57
    • 84946230924 scopus 로고    scopus 로고
    • Mobile data: made to measure
    • [57] Savage, N., Mobile data: made to measure. Nature 527 (2015), S12–S13, 10.1038/527S12a.
    • (2015) Nature , vol.527 , pp. S12-S13
    • Savage, N.1
  • 58
    • 84905642719 scopus 로고    scopus 로고
    • Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial
    • [58] Servant, N., Roméjon, J., Gestraud, P., La Rosa, P., Lucotte, G., Lair, S., et al. Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front. Genet, 5, 2014, 152, 10.3389/fgene.2014.00152.
    • (2014) Front. Genet , vol.5 , pp. 152
    • Servant, N.1    Roméjon, J.2    Gestraud, P.3    La Rosa, P.4    Lucotte, G.5    Lair, S.6
  • 59
    • 84969774580 scopus 로고    scopus 로고
    • How will big data impact clinical decision making and precision medicine in radiation therapy
    • [59] Chen, R.C., Gabriel, P.E., Kavanagh, B.D., McNutt, T.R., How will big data impact clinical decision making and precision medicine in radiation therapy. Int. J. Radiat. Oncol. Biol. Phys, 2015, 10.1016/j.ijrobp.2015.10.052.
    • (2015) Int. J. Radiat. Oncol. Biol. Phys
    • Chen, R.C.1    Gabriel, P.E.2    Kavanagh, B.D.3    McNutt, T.R.4
  • 60
    • 79953184609 scopus 로고    scopus 로고
    • Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries
    • [60] Berrington de Gonzalez, A., Curtis, R.E., Kry, S.F., Gilbert, E., Lamart, S., Berg, C.D., et al. Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol 12 (2011), 353–360, 10.1016/S1470-2045(11)70061-4.
    • (2011) Lancet Oncol , vol.12 , pp. 353-360
    • Berrington de Gonzalez, A.1    Curtis, R.E.2    Kry, S.F.3    Gilbert, E.4    Lamart, S.5    Berg, C.D.6
  • 62
    • 22944477780 scopus 로고    scopus 로고
    • Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries
    • [62] Darby, S.C., McGale, P., Taylor, C.W., Peto, R., Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 6 (2005), 557–565, 10.1016/S1470-2045(05)70251-5.
    • (2005) Lancet Oncol , vol.6 , pp. 557-565
    • Darby, S.C.1    McGale, P.2    Taylor, C.W.3    Peto, R.4
  • 63
    • 0032976638 scopus 로고    scopus 로고
    • Information on radiation treatment in patients with breast cancer: the advantages of the linked medicare and SEER data. Surveillance, epidemiology and end results
    • [63] Du, X., Freeman, J.L., Goodwin, J.S., Information on radiation treatment in patients with breast cancer: the advantages of the linked medicare and SEER data. Surveillance, epidemiology and end results. J. Clin. Epidemiol 52 (1999), 463–470.
    • (1999) J. Clin. Epidemiol , vol.52 , pp. 463-470
    • Du, X.1    Freeman, J.L.2    Goodwin, J.S.3
  • 64
    • 84971669587 scopus 로고    scopus 로고
    • Survival benefit of radiotherapy to patients with small cell esophagus carcinoma – an analysis of Surveillance Epidemiology and End Results (SEER) data
    • [64] Song, Y., Wang, W., Tao, G., Zhu, W., Zhou, X., Pan, P., Survival benefit of radiotherapy to patients with small cell esophagus carcinoma – an analysis of Surveillance Epidemiology and End Results (SEER) data. Oncotarget, 2015, 10.18632/oncotarget.6764.
    • (2015) Oncotarget
    • Song, Y.1    Wang, W.2    Tao, G.3    Zhu, W.4    Zhou, X.5    Pan, P.6
  • 65
    • 84869141791 scopus 로고    scopus 로고
    • Fully automated simultaneous integrated boosted-intensity modulated radiation therapy treatment planning is feasible for head-and-neck cancer: a prospective clinical study
    • [65] Wu, B., McNutt, T., Zahurak, M., Simari, P., Pang, D., Taylor, R., et al. Fully automated simultaneous integrated boosted-intensity modulated radiation therapy treatment planning is feasible for head-and-neck cancer: a prospective clinical study. Int. J. Radiat. Oncol. Biol. Phys 84 (2012), e647–e653, 10.1016/j.ijrobp.2012.06.047.
    • (2012) Int. J. Radiat. Oncol. Biol. Phys , vol.84 , pp. e647-e653
    • Wu, B.1    McNutt, T.2    Zahurak, M.3    Simari, P.4    Pang, D.5    Taylor, R.6
  • 66
    • 79951951726 scopus 로고    scopus 로고
    • Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning
    • [66] Wu, B., Ricchetti, F., Sanguineti, G., Kazhdan, M., Simari, P., Jacques, R., et al. Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning. Int. J. Radiat. Oncol. Biol. Phys 79 (2011), 1241–1247, 10.1016/j.ijrobp.2010.05.026.
    • (2011) Int. J. Radiat. Oncol. Biol. Phys , vol.79 , pp. 1241-1247
    • Wu, B.1    Ricchetti, F.2    Sanguineti, G.3    Kazhdan, M.4    Simari, P.5    Jacques, R.6
  • 67
    • 84455189055 scopus 로고    scopus 로고
    • Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma
    • [67] Petit, S.F., Wu, B., Kazhdan, M., Dekker, A., Simari, P., Kumar, R., et al. Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma. Radiother. Oncol 102 (2012), 38–44, 10.1016/j.radonc.2011.05.025.
    • (2012) Radiother. Oncol , vol.102 , pp. 38-44
    • Petit, S.F.1    Wu, B.2    Kazhdan, M.3    Dekker, A.4    Simari, P.5    Kumar, R.6
  • 68
    • 84870905344 scopus 로고    scopus 로고
    • Predicting dose-volume histograms for organs-at-risk in IMRT planning
    • [68] Appenzoller, L.M., Michalski, J.M., Thorstad, W.L., Mutic, S., Moore, K.L., Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med. Phys 39 (2012), 7446–7461, 10.1118/1.4761864.
    • (2012) Med. Phys , vol.39 , pp. 7446-7461
    • Appenzoller, L.M.1    Michalski, J.M.2    Thorstad, W.L.3    Mutic, S.4    Moore, K.L.5
  • 69
    • 79551664662 scopus 로고    scopus 로고
    • A planning quality evaluation tool for prostate adaptive IMRT based on machine learning
    • [69] Zhu, X., Ge, Y., Li, T., Thongphiew, D., Yin, F.-F., Wu, Q.J., A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med. Phys 38 (2011), 719–726.
    • (2011) Med. Phys , vol.38 , pp. 719-726
    • Zhu, X.1    Ge, Y.2    Li, T.3    Thongphiew, D.4    Yin, F.-F.5    Wu, Q.J.6
  • 70
    • 84933059854 scopus 로고    scopus 로고
    • A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients
    • [70] Robertson, S.P., Quon, H., Kiess, A.P., Moore, J.A., Yang, W., Cheng, Z., et al. A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients. Med. Phys 42 (2015), 4329–4337, 10.1118/1.4922686.
    • (2015) Med. Phys , vol.42 , pp. 4329-4337
    • Robertson, S.P.1    Quon, H.2    Kiess, A.P.3    Moore, J.A.4    Yang, W.5    Cheng, Z.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.