메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

3D-printed biopolymers for tissue engineering application

Author keywords

[No Author keywords available]

Indexed keywords

3D MODELING; APPLICATION PROGRAMS; BIOMOLECULES; BIOPOLYMERS; THREE DIMENSIONAL COMPUTER GRAPHICS; TISSUE; TISSUE ENGINEERING;

EID: 84901049672     PISSN: 16879422     EISSN: 16879430     Source Type: Journal    
DOI: 10.1155/2014/829145     Document Type: Review
Times cited : (165)

References (123)
  • 2
    • 77950243401 scopus 로고    scopus 로고
    • Current investigations into carbon nanotubes for biomedical application
    • 2-s2.0-77950243401 10.1088/1748-6041/5/2/022001 022001
    • Li X., Fan Y., Watari F., Current investigations into carbon nanotubes for biomedical application. Biomedical Materials 2010 5 2 2-s2.0-77950243401 10.1088/1748-6041/5/2/022001 022001
    • (2010) Biomedical Materials , vol.5 , Issue.2
    • Li, X.1    Fan, Y.2    Watari, F.3
  • 3
    • 84879418183 scopus 로고    scopus 로고
    • Osteochondral tissue engineering: Current strategies and challenges
    • Nukavarapu S. P., Dorcemus D. L., Osteochondral tissue engineering: current strategies and challenges. Biotechnology Advances 2013 31 706 721
    • (2013) Biotechnology Advances , vol.31 , pp. 706-721
    • Nukavarapu, S.P.1    Dorcemus, D.L.2
  • 4
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • 2-s2.0-0034672872
    • Hutmacher D. W., Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000 21 24 2529 2543 2-s2.0-0034672872
    • (2000) Biomaterials , vol.21 , Issue.24 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 5
    • 79251632163 scopus 로고    scopus 로고
    • Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing
    • 2-s2.0-79251632163 10.1016/j.actbio.2010.09.039
    • Butscher A., Bohner M., Hofmann S., Gauckler L., Müller R., Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomaterialia 2011 7 3 907 920 2-s2.0-79251632163 10.1016/j.actbio.2010.09.039
    • (2011) Acta Biomaterialia , vol.7 , Issue.3 , pp. 907-920
    • Butscher, A.1    Bohner, M.2    Hofmann, S.3    Gauckler, L.4    Müller, R.5
  • 6
    • 26944471657 scopus 로고    scopus 로고
    • Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering
    • DOI 10.1016/j.biomaterials.2005.07.015, PII S0142961205006241
    • Mathieu L. M., Mueller T. L., Bourban P.-E., Pioletti D. P., Müller R., Månson J.-A. E., Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 2006 27 6 905 916 2-s2.0-26944471657 10.1016/j.biomaterials.2005.07.015 (Pubitemid 41484123)
    • (2006) Biomaterials , vol.27 , Issue.6 , pp. 905-916
    • Mathieu, L.M.1    Mueller, T.L.2    Bourban, P.-E.3    Pioletti, D.P.4    Muller, R.5    Manson, J.-A.E.6
  • 7
    • 20644461236 scopus 로고    scopus 로고
    • Synthesis and characterization of porous β-tricalcium phosphate blocks
    • DOI 10.1016/j.biomaterials.2005.03.026, PII S0142961205002619
    • Bohner M., Van Lenthe G. H., Grünenfelder S., Hirsiger W., Evison R., Müller R., Synthesis and characterization of porous β -tricalcium phosphate blocks. Biomaterials 2005 26 31 6099 6105 2-s2.0-20644461236 10.1016/j.biomaterials.2005.03.026 (Pubitemid 40834284)
    • (2005) Biomaterials , vol.26 , Issue.31 , pp. 6099-6105
    • Bohner, M.1    Van Lenthe, G.H.2    Grunenfelder, S.3    Hirsiger, W.4    Evison, R.5    Muller, R.6
  • 9
    • 74249112625 scopus 로고    scopus 로고
    • A biodegradable porous composite scaffold of PGA/ β -TCP for bone tissue engineering
    • 2-s2.0-74249112625 10.1016/j.bone.2009.09.031
    • Cao H., Kuboyama N., A biodegradable porous composite scaffold of PGA/ β -TCP for bone tissue engineering. Bone 2010 46 2 386 395 2-s2.0-74249112625 10.1016/j.bone.2009.09.031
    • (2010) Bone , vol.46 , Issue.2 , pp. 386-395
    • Cao, H.1    Kuboyama, N.2
  • 10
    • 18144382993 scopus 로고    scopus 로고
    • Porous poly-L-lactic acid scaffold reinforced by chitin fibers
    • DOI 10.1007/s00289-005-0364-7
    • Li X., Feng Q., Porous poly-L-lactic acid scaffold reinforced by chitin fibers. Polymer Bulletin 2005 54 1-2 47 55 2-s2.0-18144382993 10.1007/s00289-005-0364-7 (Pubitemid 40609406)
    • (2005) Polymer Bulletin , vol.54 , Issue.1-2 , pp. 47-55
    • Li, X.1    Feng, Q.2
  • 11
    • 1642515777 scopus 로고    scopus 로고
    • Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation
    • DOI 10.1016/j.biomaterials.2003.09.011
    • Kim H. D., Bae E. H., Kwon I. C., Pal R. R., Nam J. D., Lee D. S., Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials 2004 25 12 2319 2329 2-s2.0-1642515777 10.1016/j.biomaterials.2003.09.011 (Pubitemid 38111183)
    • (2004) Biomaterials , vol.25 , Issue.12 , pp. 2319-2329
    • Kim, H.D.1    Bae, E.H.2    Kwon, I.C.3    Pal, R.R.4    Nam, J.D.5    Lee, D.S.6
  • 12
    • 84877026627 scopus 로고    scopus 로고
    • Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter
    • Grey C. P., Newton S. T., Bowlin G. L., Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter. Biomaterials 2013 34 4993 5006
    • (2013) Biomaterials , vol.34 , pp. 4993-5006
    • Grey, C.P.1    Newton, S.T.2    Bowlin, G.L.3
  • 13
    • 84877038843 scopus 로고    scopus 로고
    • Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration
    • Jun Lee Y., Lee J.-H., Cho H.-J., Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials 2013 34 5059 5069
    • (2013) Biomaterials , vol.34 , pp. 5059-5069
    • Jun Lee, Y.1    Lee, J.-H.2    Cho, H.-J.3
  • 16
    • 84874330979 scopus 로고    scopus 로고
    • Investigating surface roughness of parts produced by SLS process
    • 2-s2.0-84860110578 10.1007/s00170-012-4118-z
    • Sachdeva A., Singh S., Sharma V. S., Investigating surface roughness of parts produced by SLS process. International Journal of Advanced Manufacturing Technology 2012 64 1505 1516 2-s2.0-84860110578 10.1007/s00170-012-4118-z
    • (2012) International Journal of Advanced Manufacturing Technology , vol.64 , pp. 1505-1516
    • Sachdeva, A.1    Singh, S.2    Sharma, V.S.3
  • 17
    • 84867787345 scopus 로고    scopus 로고
    • 3D printing of poly(3-hydroxybutyrate) porous structures using selective laser sintering
    • Pereira T. F., Oliveira M. F., Maia I. A., 3D printing of poly(3-hydroxybutyrate) porous structures using selective laser sintering. Macromolecular Symposia 2012 319 64 73
    • (2012) Macromolecular Symposia , vol.319 , pp. 64-73
    • Pereira, T.F.1    Oliveira, M.F.2    Maia, I.A.3
  • 18
    • 67349097716 scopus 로고    scopus 로고
    • Influence of building strategies on the accuracy of parts in selective laser sintering
    • 2-s2.0-67349097716 10.1016/j.matdes.2009.01.009
    • Senthilkumaran K., Pandey P. M., Rao P. V. M., Influence of building strategies on the accuracy of parts in selective laser sintering. Materials and Design 2009 30 8 2946 2954 2-s2.0-67349097716 10.1016/j.matdes.2009.01.009
    • (2009) Materials and Design , vol.30 , Issue.8 , pp. 2946-2954
    • Senthilkumaran, K.1    Pandey, P.M.2    Rao, P.V.M.3
  • 20
    • 84873975723 scopus 로고    scopus 로고
    • Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices
    • McCullough E. J., Yadavalli V. K., Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Materials Processing Technology 2013 213 947 954
    • (2013) Journal of Materials Processing Technology , vol.213 , pp. 947-954
    • McCullough, E.J.1    Yadavalli, V.K.2
  • 21
    • 84889102399 scopus 로고    scopus 로고
    • Surface modification of nanofibrouspolycaprolactone/gelatin composite scaffold by collagen type i grafting for skin tissue engineering
    • Gautam S., Chou C.-F., Dinda A. K., Surface modification of nanofibrouspolycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Materials Science and Engineering C 2014 34 402 409
    • (2014) Materials Science and Engineering C , vol.34 , pp. 402-409
    • Gautam, S.1    Chou, C.-F.2    Dinda, A.K.3
  • 22
    • 79957767371 scopus 로고    scopus 로고
    • Skin tissue engineering - In vivo and in vitro applications
    • 2-s2.0-79957767371 10.1016/j.addr.2011.01.005
    • Groeber F., Holeiter M., Hampel M., Hinderer S., Schenke-Layland K., Skin tissue engineering-in vivo and in vitro applications. Advanced Drug Delivery Reviews 2011 63 4 352 366 2-s2.0-79957767371 10.1016/j.addr.2011.01.005
    • (2011) Advanced Drug Delivery Reviews , vol.63 , Issue.4 , pp. 352-366
    • Groeber, F.1    Holeiter, M.2    Hampel, M.3    Hinderer, S.4    Schenke-Layland, K.5
  • 23
    • 3342981338 scopus 로고    scopus 로고
    • A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells
    • DOI 10.1016/j.biomaterials.2004.03.005, PII S0142961204002480
    • Li W.-J., Tuli R., Okafor C., Derfoul A., Danielson K. G., Hall D. J., Tuan R. S., A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005 26 6 599 609 2-s2.0-3342981338 10.1016/j.biomaterials.2004.03.005 (Pubitemid 38988302)
    • (2005) Biomaterials , vol.26 , Issue.6 , pp. 599-609
    • Li, W.-J.1    Tuli, R.2    Okafor, C.3    Derfoul, A.4    Danielson, K.G.5    Hall, D.J.6    Tuan, R.S.7
  • 24
    • 84865448171 scopus 로고    scopus 로고
    • Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering
    • Rodrigues A. I., Gomes M. E., Leonor I. B., Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Acta Biomaterialia 2012 8 3765 3776
    • (2012) Acta Biomaterialia , vol.8 , pp. 3765-3776
    • Rodrigues, A.I.1    Gomes, M.E.2    Leonor, I.B.3
  • 25
    • 33646370751 scopus 로고    scopus 로고
    • Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering
    • DOI 10.1002/jbm.b.30425
    • Li X., Feng Q., Wang W., Cui F., Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering. Journal of Biomedical Materials Research B: Applied Biomaterials 2006 77 2 219 226 2-s2.0-33646370751 10.1002/jbm.b.30425 (Pubitemid 43667444)
    • (2006) Journal of Biomedical Materials Research - Part B Applied Biomaterials , vol.77 , Issue.2 , pp. 219-226
    • Li, X.1    Feng, Q.2    Wang, W.3    Cui, F.4
  • 26
    • 77249156728 scopus 로고    scopus 로고
    • Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications
    • 2-s2.0-77249156728 10.1016/j.diff.2009.11.001
    • Sahoo S., Ang L.-T., Cho-Hong Goh J., Toh S.-L., Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation 2010 79 2 102 110 2-s2.0-77249156728 10.1016/j.diff.2009.11.001
    • (2010) Differentiation , vol.79 , Issue.2 , pp. 102-110
    • Sahoo, S.1    Ang, L.-T.2    Cho-Hong Goh, J.3    Toh, S.-L.4
  • 27
    • 77956011359 scopus 로고    scopus 로고
    • Porous nanofibrous PLLA scaffolds for vascular tissue engineering
    • 2-s2.0-77956011359 10.1016/j.biomaterials.2010.07.028
    • Hu J., Sun X., Ma H., Xie C., Chen Y. E., Ma P. X., Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 2010 31 31 7971 7977 2-s2.0-77956011359 10.1016/j.biomaterials.2010.07.028
    • (2010) Biomaterials , vol.31 , Issue.31 , pp. 7971-7977
    • Hu, J.1    Sun, X.2    Ma, H.3    Xie, C.4    Chen, Y.E.5    Ma, P.X.6
  • 28
    • 84888644567 scopus 로고    scopus 로고
    • Electrospun scaffolds for tissue engineering of vascular graft
    • Hasan A., Memic A., Annabi N., Electrospun scaffolds for tissue engineering of vascular graft. Acta Biomaterial 2014 10 11 25
    • (2014) Acta Biomaterial , vol.10 , pp. 11-25
    • Hasan, A.1    Memic, A.2    Annabi, N.3
  • 29
    • 52049100789 scopus 로고    scopus 로고
    • Electrospun poly(ε -caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering
    • 2-s2.0-52049100789 10.1016/j.biomaterials.2008.08.007
    • Ghasemi-Mobarakeh L., Prabhakaran M. P., Morshed M., Nasr-Esfahani M.-H., Ramakrishna S., Electrospun poly(ε -caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008 29 34 4532 4539 2-s2.0-52049100789 10.1016/j.biomaterials.2008.08.007
    • (2008) Biomaterials , vol.29 , Issue.34 , pp. 4532-4539
    • Ghasemi-Mobarakeh, L.1    Prabhakaran, M.P.2    Morshed, M.3    Nasr-Esfahani, M.-H.4    Ramakrishna, S.5
  • 30
    • 10044252141 scopus 로고    scopus 로고
    • Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications
    • DOI 10.1016/j.biomaterials.2004.07.011, PII S0142961204006647
    • Pattison M. A., Wurster S., Webster T. J., Haberstroh K. M., Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 2005 26 15 2491 2500 2-s2.0-10044252141 10.1016/j.biomaterials.2004.07.011 (Pubitemid 39600701)
    • (2005) Biomaterials , vol.26 , Issue.15 , pp. 2491-2500
    • Pattison, M.A.1    Wurster, S.2    Webster, T.J.3    Haberstroh, K.M.4
  • 31
    • 84855287898 scopus 로고    scopus 로고
    • Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering
    • 2-s2.0-84855287898 10.1016/j.msec.2011.10.034
    • Chen F., Tian M., Zhang D., Wang J., Wang Q., Yu X., Zhang X., Wan C., Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Materials Science and Engineering C 2012 32 2 310 320 2-s2.0-84855287898 10.1016/j.msec.2011.10. 034
    • (2012) Materials Science and Engineering C , vol.32 , Issue.2 , pp. 310-320
    • Chen, F.1    Tian, M.2    Zhang, D.3    Wang, J.4    Wang, Q.5    Yu, X.6    Zhang, X.7    Wan, C.8
  • 33
    • 28844471652 scopus 로고    scopus 로고
    • Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model
    • DOI 10.1016/j.biomaterials.2005.11.013, PII S0142961205010318
    • Li X., Feng Q., Liu X., Dong W., Cui F., Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials 2006 27 9 1917 1923 2-s2.0-28844471652 10.1016/j.biomaterials.2005.11.013 (Pubitemid 41760436)
    • (2006) Biomaterials , vol.27 , Issue.9 , pp. 1917-1923
    • Li, X.1    Feng, Q.2    Liu, X.3    Dong, W.4    Cui, F.5
  • 34
    • 84890217392 scopus 로고    scopus 로고
    • Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair
    • Serrano M. C., Nardecchia S., García-Rama C., Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair. Biomaterials 2014 35 1543 1551
    • (2014) Biomaterials , vol.35 , pp. 1543-1551
    • Serrano, M.C.1    Nardecchia, S.2    García-Rama, C.3
  • 35
    • 84891503986 scopus 로고    scopus 로고
    • Hyaluronic acid/chondroitin sulfate-based hydrogel prepared bygamma irradiation technique
    • Zhao L., Gwon H.-J., Lim Y.-M., Hyaluronic acid/chondroitin sulfate-based hydrogel prepared bygamma irradiation technique. Carbohydrate Polymers 2014 102 598 605
    • (2014) Carbohydrate Polymers , vol.102 , pp. 598-605
    • Zhao, L.1    Gwon, H.-J.2    Lim, Y.-M.3
  • 37
    • 79951516715 scopus 로고    scopus 로고
    • Biomedical applications of chitin hydrogel membranes and scaffolds
    • 2-s2.0-79951516715 10.1016/j.carbpol.2010.06.001
    • Tamura H., Furuike T., Nair S. V., Jayakumar R., Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydrate Polymers 2011 84 2 820 824 2-s2.0-79951516715 10.1016/j.carbpol.2010.06.001
    • (2011) Carbohydrate Polymers , vol.84 , Issue.2 , pp. 820-824
    • Tamura, H.1    Furuike, T.2    Nair, S.V.3    Jayakumar, R.4
  • 38
    • 84885439373 scopus 로고    scopus 로고
    • Synthesis of hybrid polymer networks of irradiated chitosan/poly(vinyl acohol) for biomedical applications
    • Islam A., Yasin T., Ur Rehman I., Synthesis of hybrid polymer networks of irradiated chitosan/poly(vinyl acohol) for biomedical applications. Physics and Chemistry 2014 96 115 119
    • (2014) Physics and Chemistry , vol.96 , pp. 115-119
    • Islam, A.1    Yasin, T.2    Ur Rehman, I.3
  • 39
    • 21244476308 scopus 로고    scopus 로고
    • Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering
    • DOI 10.1002/pi.1804
    • Li X., Feng Q., Jiao Y., Cui F., Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polymer International 2005 54 7 1034 1040 2-s2.0-21244476308 10.1002/pi.1804 (Pubitemid 40899859)
    • (2005) Polymer International , vol.54 , Issue.7 , pp. 1034-1040
    • Li, X.1    Feng, Q.2    Jiao, Y.3    Cui, F.4
  • 40
    • 84891706159 scopus 로고    scopus 로고
    • PCL scaffolds with collagen bioactivator for applications in Tissue Engineering
    • Sousa I., Mendes A., Bártolo P. J., PCL scaffolds with collagen bioactivator for applications in Tissue Engineering. Procedia Engineering 2013 59 279 284
    • (2013) Procedia Engineering , vol.59 , pp. 279-284
    • Sousa, I.1    Mendes, A.2    Bártolo, P.J.3
  • 41
    • 29144514781 scopus 로고    scopus 로고
    • Osteochondral tissue engineering using a PLGA-collagen hybrid mesh
    • DOI 10.1016/j.msec.2005.08.042, PII S0928493105004686
    • Chen G., Tanaka J., Tateishi T., Osteochondral tissue engineering using a PLGA-collagen hybrid mesh. Materials Science and Engineering C 2006 26 1 124 129 2-s2.0-29144514781 10.1016/j.msec.2005.08.042 (Pubitemid 41817135)
    • (2006) Materials Science and Engineering C , vol.26 , Issue.1 , pp. 124-129
    • Chen, G.1    Tanaka, J.2    Tateishi, T.3
  • 42
    • 79960989336 scopus 로고    scopus 로고
    • Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering
    • 2-s2.0-79960989336 10.1016/j.actbio.2011.05.024
    • Zhang C., Sangaj N., Hwang Y., Phadke A., Chang C.-W., Varghese S., Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering. Acta Biomaterialia 2011 7 9 3362 3369 2-s2.0-79960989336 10.1016/j.actbio.2011.05.024
    • (2011) Acta Biomaterialia , vol.7 , Issue.9 , pp. 3362-3369
    • Zhang, C.1    Sangaj, N.2    Hwang, Y.3    Phadke, A.4    Chang, C.-W.5    Varghese, S.6
  • 43
    • 28744438866 scopus 로고    scopus 로고
    • The in vivo degradation, absorption and excretion of PCL-based implant
    • DOI 10.1016/j.biomaterials.2005.09.019, PII S0142961205008604
    • Sun H., Mei L., Song C., Cui X., Wang P., The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006 27 9 1735 1740 2-s2.0-28744438866 10.1016/j.biomaterials.2005.09.019 (Pubitemid 41759467)
    • (2006) Biomaterials , vol.27 , Issue.9 , pp. 1735-1740
    • Sun, H.1    Mei, L.2    Song, C.3    Cui, X.4    Wang, P.5
  • 44
    • 28244447684 scopus 로고    scopus 로고
    • Electrospinning polydioxanone for biomedical applications
    • DOI 10.1016/j.actbio.2004.09.003, PII S1742706104000078
    • Boland E. D., Coleman B. D., Barnes C. P., Simpson D. G., Wnek G. E., Bowlin G. L., Electrospinning polydioxanone for biomedical applications. Acta Biomaterialia 2005 1 1 115 123 2-s2.0-28244447684 10.1016/j.actbio.2004.09.003 (Pubitemid 43348813)
    • (2005) Acta Biomaterialia , vol.1 , Issue.1 , pp. 115-123
    • Boland, E.D.1    Coleman, B.D.2    Barnes, C.P.3    Simpson, D.G.4    Wnek, G.E.5    Bowlin, G.L.6
  • 45
    • 36249027057 scopus 로고    scopus 로고
    • Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: A feasibility study
    • DOI 10.1016/j.actbio.2007.08.001, PII S1742706107001225
    • Smith M. J., McClure M. J., Sell S. A., Barnes C. P., Walpoth B. H., Simpson D. G., Bowlin G. L., Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study. Acta Biomaterialia 2008 4 1 58 66 2-s2.0-36249027057 10.1016/j.actbio. 2007.08.001 (Pubitemid 350131560)
    • (2008) Acta Biomaterialia , vol.4 , Issue.1 , pp. 58-66
    • Smith, M.J.1    McClure, M.J.2    Sell, S.A.3    Barnes, C.P.4    Walpoth, B.H.5    Simpson, D.G.6    Bowlin, G.L.7
  • 46
    • 84901067443 scopus 로고    scopus 로고
    • CHAPTER II.6.3 tissue engineering scaffolds. SECTION II.6 Applications of biomaterials in functional tissue engineering 1138-1159
    • Singh M., Kurtis Kasper F., Mikos A. G.,. CHAPTER II.6.3 tissue engineering scaffolds. SECTION II.6 Applications of biomaterials in functional tissue engineering 1138-1159
    • Singh, M.1    Kurtis Kasper, F.2    Mikos, A.G.3
  • 47
    • 34748872232 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering and delivery of tissue-inducing substances
    • DOI 10.1002/jps.20873
    • Baroli B., Hydrogels for tissue engineering and delivery of tissue-inducing substances. Journal of Pharmaceutical Sciences 2007 96 9 2197 2223 2-s2.0-34748872232 10.1002/jps.20873 (Pubitemid 47477880)
    • (2007) Journal of Pharmaceutical Sciences , vol.96 , Issue.9 , pp. 2197-2223
    • Baroli, B.1
  • 48
    • 20444384374 scopus 로고    scopus 로고
    • Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique
    • DOI 10.1016/j.biomaterials.2005.02.027, PII S0142961205001936
    • Yan Y., Wang X., Pan Y., Liu H., Cheng J., Xiong Z., Lin F., Wu R., Zhang R., Lu Q., Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 2005 26 29 5864 5871 2-s2.0-20444384374 10.1016/j.biomaterials.2005.02.027 (Pubitemid 40798277)
    • (2005) Biomaterials , vol.26 , Issue.29 , pp. 5864-5871
    • Yan, Y.1    Wang, X.2    Pan, Y.3    Liu, H.4    Cheng, J.5    Xiong, Z.6    Lin, F.7    Wu, R.8    Zhang, R.9    Lu, Q.10
  • 49
    • 0037205335 scopus 로고    scopus 로고
    • Scaffold development using 3D printing with a starch-based polymer
    • DOI 10.1016/S0928-4931(02)00012-7, PII S0928493102000127, Biomimetic and supramolecular systems, sympossium B: Biomaterials and tissue engineering. International conference on materials for advanced technologies (ICMAT 2001), July 1-6, 2001
    • Lam C. X. F., Mo X. M., Teoh S. H., Hutmacher D. W., Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C 2002 20 1-2 49 56 2-s2.0-0037205335 10.1016/S0928-4931(02)00012-7 (Pubitemid 34718477)
    • (2002) Materials Science and Engineering C , vol.20 , Issue.1-2 , pp. 49-56
    • Lam, C.X.F.1    Mo, X.M.2    Teoh, S.H.3    Hutmacher, D.W.4
  • 51
    • 0036206262 scopus 로고    scopus 로고
    • Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems
    • DOI 10.1016/S0142-9612(01)00322-2, PII S0142961201003222
    • Elvira C., Mano J. F., San Román J., Reis R. L., Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 2002 23 9 1955 1966 2-s2.0-0036206262 10.1016/S0142- 9612(01)00322-2 (Pubitemid 34251069)
    • (2002) Biomaterials , vol.23 , Issue.9 , pp. 1955-1966
    • Elvira, C.1    Mano, J.F.2    San Roman, J.3    Reis, R.L.4
  • 52
    • 0029256492 scopus 로고
    • Subperiosteal behaviour of alginate and cellulose wound dressing materials
    • 2-s2.0-0029256492 10.1016/0142-9612(95)93254-B
    • Matthew I. R., Browne R. M., Frame J. W., Millar B. G., Subperiosteal behaviour of alginate and cellulose wound dressing materials. Biomaterials 1995 16 4 275 278 2-s2.0-0029256492 10.1016/0142-9612(95)93254-B
    • (1995) Biomaterials , vol.16 , Issue.4 , pp. 275-278
    • Matthew, I.R.1    Browne, R.M.2    Frame, J.W.3    Millar, B.G.4
  • 53
    • 0037089652 scopus 로고    scopus 로고
    • New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers
    • DOI 10.1016/S0142-9612(01)00315-5, PII S0142961201003155
    • Espigares I., Elvira C., Mano J. F., Vázquez B., San Román J., Reis R. L., New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 2002 23 8 1883 1895 2-s2.0-0037089652 10.1016/S0142-9612(01)00315-5 (Pubitemid 34218976)
    • (2002) Biomaterials , vol.23 , Issue.8 , pp. 1883-1895
    • Espigares, I.1    Elvira, C.2    Mano, J.F.3    Vazquez, B.4    San Roman, J.5    Reis, R.L.6
  • 54
    • 67650045993 scopus 로고    scopus 로고
    • Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering
    • 2-s2.0-67650045993 10.1016/j.polymertesting.2009.05.008
    • Salmoria G. V., Klauss P., Paggi R. A., Kanis L. A., Lago A., Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polymer Testing 2009 28 6 648 652 2-s2.0-67650045993 10.1016/j.polymertesting.2009.05.008
    • (2009) Polymer Testing , vol.28 , Issue.6 , pp. 648-652
    • Salmoria, G.V.1    Klauss, P.2    Paggi, R.A.3    Kanis, L.A.4    Lago, A.5
  • 55
    • 79952011307 scopus 로고    scopus 로고
    • Tissue engineering by self-assembly and bio-printing of living cells
    • 2-s2.0-79952011307 10.1088/1758-5082/2/2/022001 022001
    • Jakab K., Norotte C., Marga F., Murphy K., Vunjak-Novakovic G., Forgacs G., Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2010 2 2-s2.0-79952011307 10.1088/1758-5082/2/2/022001 022001
    • (2010) Biofabrication , vol.2
    • Jakab, K.1    Norotte, C.2    Marga, F.3    Murphy, K.4    Vunjak-Novakovic, G.5    Forgacs, G.6
  • 56
    • 84858779329 scopus 로고    scopus 로고
    • Toward engineering functional organ modules by additive manufacturing
    • 2-s2.0-84858779329 10.1088/1758-5082/4/2/022001 022001
    • Marga F., Jakab K., Khatiwala C., Shepherd B., Dorfman S., Hubbard B., Colbert S., Gabor F., Toward engineering functional organ modules by additive manufacturing. Biofabrication 2012 4 2-s2.0-84858779329 10.1088/1758-5082/4/2/ 022001 022001
    • (2012) Biofabrication , vol.4
    • Marga, F.1    Jakab, K.2    Khatiwala, C.3    Shepherd, B.4    Dorfman, S.5    Hubbard, B.6    Colbert, S.7    Gabor, F.8
  • 57
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • 2-s2.0-69249208450 10.1016/j.biomaterials.2009.06.034
    • Norotte C., Marga F. S., Niklason L. E., Forgacs G., Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009 30 30 5910 5917 2-s2.0-69249208450 10.1016/j.biomaterials.2009.06.034
    • (2009) Biomaterials , vol.30 , Issue.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 58
    • 84862808511 scopus 로고    scopus 로고
    • Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography
    • 2-s2.0-84858291510 10.1016/j.biomaterials.2012.01.048
    • Gauvin R., Chen Y.-C., Lee J. W., Soman P., Zorlutuna P., Nichol J. W., Bae H., Chen S., Khademhosseini A., Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012 33 15 3824 3834 2-s2.0-84858291510 10.1016/j.biomaterials.2012.01.048
    • (2012) Biomaterials , vol.33 , Issue.15 , pp. 3824-3834
    • Gauvin, R.1    Chen, Y.-C.2    Lee, J.W.3    Soman, P.4    Zorlutuna, P.5    Nichol, J.W.6    Bae, H.7    Chen, S.8    Khademhosseini, A.9
  • 59
    • 84887016191 scopus 로고    scopus 로고
    • The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
    • Billiet T., Gevaert E., De Schryver T., The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 2014 35 49 62
    • (2014) Biomaterials , vol.35 , pp. 49-62
    • Billiet, T.1    Gevaert, E.2    De Schryver, T.3
  • 60
    • 67749119148 scopus 로고    scopus 로고
    • Repairing 25mm bone defect using fibres reinforced scaffolds as well as autograft bone
    • article S94
    • Li X. M., Liu X. H., Zhang G. P., Dong W., Sha Z. Y., Feng Q. L., Cui F. Z., Watari F., Repairing 25mm bone defect using fibres reinforced scaffolds as well as autograft bone. Bone 2008 43 article S94
    • (2008) Bone , vol.43
    • Li, X.M.1    Liu, X.H.2    Zhang, G.P.3    Dong, W.4    Sha, Z.Y.5    Feng, Q.L.6    Cui, F.Z.7    Watari, F.8
  • 61
    • 84873432870 scopus 로고    scopus 로고
    • Anano-hydroxyapatite - Pullulan/dexran polysaccharide composite macroporous materials for bone tissue engineering
    • Christophe Fricain J., Schlaubitz S., Le Visage C., Anano-hydroxyapatite- pullulan/dexran polysaccharide composite macroporous materials for bone tissue engineering. Biomaterials 2013 34 2947 2959
    • (2013) Biomaterials , vol.34 , pp. 2947-2959
    • Christophe Fricain, J.1    Schlaubitz, S.2    Le Visage, C.3
  • 62
    • 84864919690 scopus 로고    scopus 로고
    • Biocompatibility and toxicity of nanoparticles and nanotubes
    • 548389 10.1155/2012/548389
    • Li X. M., Wang L., Fan Y. B., Feng Q. L., Cui F. Z., Biocompatibility and toxicity of nanoparticles and nanotubes. Journal of Nanomaterials 2012 2012 19 548389 10.1155/2012/548389
    • (2012) Journal of Nanomaterials , vol.2012 , pp. 19
    • Li, X.M.1    Wang, L.2    Fan, Y.B.3    Feng, Q.L.4    Cui, F.Z.5
  • 63
    • 0037205343 scopus 로고    scopus 로고
    • Poly (ε-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent
    • DOI 10.1016/S0928-4931(02)00015-2, PII S0928493102000152, Biomimetic and supramolecular systems, sympossium B: Biomaterials and tissue engineering. International conference on materials for advanced technologies (ICMAT 2001), July 1-6, 2001
    • Khor H. L., Ng K. W., Schantz J. T., Phan T.-T., Lim T. C., Teoh S. H., Hutmacher D. W., Poly (ε -caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent. Materials Science and Engineering C 2002 20 1-2 71 75 2-s2.0-0037205343 10.1016/S0928-4931(02)00015-2 (Pubitemid 34718480)
    • (2002) Materials Science and Engineering C , vol.20 , Issue.1-2 , pp. 71-75
    • Khor, H.L.1    Ng, K.W.2    Schantz, J.T.3    Phan, T.-T.4    Lim, T.C.5    Teoh, S.H.6    Hutmacher, D.W.7
  • 64
    • 78650720318 scopus 로고    scopus 로고
    • Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds
    • 2-s2.0-78650720318 10.1016/j.actbio.2010.09.024
    • Sudarmadji N., Tan J. Y., Leong K. F., Chua C. K., Loh Y. T., Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomaterialia 2011 7 2 530 537 2-s2.0-78650720318 10.1016/j.actbio.2010.09.024
    • (2011) Acta Biomaterialia , vol.7 , Issue.2 , pp. 530-537
    • Sudarmadji, N.1    Tan, J.Y.2    Leong, K.F.3    Chua, C.K.4    Loh, Y.T.5
  • 65
    • 80053576730 scopus 로고    scopus 로고
    • Preparation of poly(ε -caprolactone)-based tissue engineering scaffolds by stereolithography
    • 2-s2.0-80053576730 10.1016/j.actbio.2011.06.039
    • Elomaa L., Teixeira S., Hakala R., Korhonen H., Grijpma D. W., Seppälä J. V., Preparation of poly(ε -caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomaterialia 2011 7 11 3850 3856 2-s2.0-80053576730 10.1016/j.actbio.2011.06.039
    • (2011) Acta Biomaterialia , vol.7 , Issue.11 , pp. 3850-3856
    • Elomaa, L.1    Teixeira, S.2    Hakala, R.3    Korhonen, H.4    Grijpma, D.W.5    Seppälä, J.V.6
  • 66
    • 0037082740 scopus 로고    scopus 로고
    • Fused deposition modeling of novel scaffold architectures for tissue engineering applications
    • DOI 10.1016/S0142-9612(01)00232-0, PII S0142961201002320
    • Zein I., Hutmacher D. W., Tan K. C., Teoh S. H., Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002 23 4 1169 1185 2-s2.0-0037082740 10.1016/S0142-9612(01)00232-0 (Pubitemid 33109049)
    • (2002) Biomaterials , vol.23 , Issue.4 , pp. 1169-1185
    • Zein, I.1    Hutmacher, D.W.2    Tan, K.C.3    Teoh, S.H.4
  • 67
    • 1542328773 scopus 로고    scopus 로고
    • Contractile cardiac grafts using a novel nanofibrous mesh
    • DOI 10.1016/j.biomaterials.2003.10.055, PII S0142961203010123
    • Shin M., Ishii O., Sueda T., Vacanti J. P., Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 2004 25 17 3717 3723 2-s2.0-1542328773 10.1016/j.biomaterials.2003.10.055 (Pubitemid 38327060)
    • (2004) Biomaterials , vol.25 , Issue.17 , pp. 3717-3723
    • Shin, M.1    Ishii, O.2    Sueda, T.3    Vacanti, J.P.4
  • 68
    • 24944496766 scopus 로고    scopus 로고
    • Regenerating the heart
    • DOI 10.1038/nbt1117
    • Laflamme M. A., Murry C. E., Regenerating the heart. Nature Biotechnology 2005 23 7 845 856 2-s2.0-24944496766 10.1038/nbt1117 (Pubitemid 43093128)
    • (2005) Nature Biotechnology , vol.23 , Issue.7 , pp. 845-856
    • Laflamme, M.A.1    Murry, C.E.2
  • 69
    • 77956633477 scopus 로고    scopus 로고
    • Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering
    • 2-s2.0-77956633477 10.1016/j.actbio.2009.12.033
    • Yeong W. Y., Sudarmadji N., Yu H. Y., Chua C. K., Leong K. F., Venkatraman S. S., Boey Y. C. F., Tan L. P., Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomaterialia 2010 6 6 2028 2034 2-s2.0-77956633477 10.1016/j.actbio.2009.12.033
    • (2010) Acta Biomaterialia , vol.6 , Issue.6 , pp. 2028-2034
    • Yeong, W.Y.1    Sudarmadji, N.2    Yu, H.Y.3    Chua, C.K.4    Leong, K.F.5    Venkatraman, S.S.6    Boey, Y.C.F.7    Tan, L.P.8
  • 70
    • 0035044085 scopus 로고    scopus 로고
    • Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function
    • DOI 10.1038/86498
    • Kocher A. A., Schuster M. D., Szabolcs M. J., Takuma S., Burkhoff D., Wang J., Homma S., Edwards N. M., Itescu S., Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine 2001 7 4 430 436 2-s2.0-0035044085 10.1038/86498 (Pubitemid 32298545)
    • (2001) Nature Medicine , vol.7 , Issue.4 , pp. 430-436
    • Kocher, A.A.1    Schuster, M.D.2    Szabolcs, M.J.3    Takuma, S.4    Burkhoff, D.5    Wang, J.6    Homma, S.7    Edwards, N.M.8    Itescu, S.9
  • 71
    • 0032471714 scopus 로고    scopus 로고
    • Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels
    • DOI 10.1097/00000658-199807000-00002
    • Kim S. S., Utsunomiya H., Koski J. A., Wu B. M., Cima M. J., Sohn J., Mukai K., Griffith L. G., Vacanti J. P., Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Annals of Surgery 1998 228 1 8 13 2-s2.0-0032471714 10.1097/00000658-199807000-00002 (Pubitemid 30190309)
    • (1998) Annals of Surgery , vol.228 , Issue.1 , pp. 8-13
    • Kim, S.S.1    Utsunomiya, H.2    Koski, J.A.3    Wu, B.M.4    Cima, M.J.5    Sohn, J.6    Mukai, K.7    Griffith, L.G.8    Vacanti, J.P.9
  • 72
    • 0034765279 scopus 로고    scopus 로고
    • Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition
    • DOI 10.1089/107632701753213183
    • Zeltinger J., Sherwood J. K., Graham D. A., Müeller R., Griffith L. G., Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Engineering 2001 7 5 557 572 2-s2.0-0034765279 10.1089/107632701753213183 (Pubitemid 33032379)
    • (2001) Tissue Engineering , vol.7 , Issue.5 , pp. 557-572
    • Zeltinger, J.1    Sherwood, J.K.2    Graham, D.A.3    Mueller, R.4    Griffith, L.G.5
  • 74
    • 70449462871 scopus 로고    scopus 로고
    • Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells
    • 2-s2.0-70449462871 10.1021/bm900693p
    • Seyednejad H., Vermonden T., Fedorovich N. E., Van Eijk R., Van Steenbergen M. J., Dhert W. J. A., Van Nostrum C. F., Hennink W. E., Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells. Biomacromolecules 2009 10 11 3048 3054 2-s2.0-70449462871 10.1021/bm900693p
    • (2009) Biomacromolecules , vol.10 , Issue.11 , pp. 3048-3054
    • Seyednejad, H.1    Vermonden, T.2    Fedorovich, N.E.3    Van Eijk, R.4    Van Steenbergen, M.J.5    Dhert, W.J.A.6    Van Nostrum, C.F.7    Hennink, W.E.8
  • 75
    • 84858862640 scopus 로고    scopus 로고
    • In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε -caprolactone)
    • 2-s2.0-84858862640 10.1016/j.biomaterials.2012.03.002
    • Seyednejad H., Gawlitta D., Kuiper R. V., De Bruin A., Van Nostrum C. F., Vermonden T., Dhert W. J. A., Hennink W. E., In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε -caprolactone). Biomaterials 2012 33 17 4309 4318 2-s2.0-84858862640 10.1016/j.biomaterials.2012.03.002
    • (2012) Biomaterials , vol.33 , Issue.17 , pp. 4309-4318
    • Seyednejad, H.1    Gawlitta, D.2    Kuiper, R.V.3    De Bruin, A.4    Van Nostrum, C.F.5    Vermonden, T.6    Dhert, W.J.A.7    Hennink, W.E.8
  • 77
    • 84892767539 scopus 로고    scopus 로고
    • 3D printing of cell-laden constructs for heterogeneous tissue regeneration
    • Pati F., Shim J.-H., Lee J.-S., 3D printing of cell-laden constructs for heterogeneous tissue regeneration. Manufacturing Letters 2013 1 49 53
    • (2013) Manufacturing Letters , vol.1 , pp. 49-53
    • Pati, F.1    Shim, J.-H.2    Lee, J.-S.3
  • 78
    • 75149183094 scopus 로고    scopus 로고
    • Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds
    • 2-s2.0-75149183094 10.1016/j.actbio.2009.08.017
    • Arcaute K., Mann B., Wicker R., Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia 2010 6 3 1047 1054 2-s2.0-75149183094 10.1016/j.actbio.2009.08.017
    • (2010) Acta Biomaterialia , vol.6 , Issue.3 , pp. 1047-1054
    • Arcaute, K.1    Mann, B.2    Wicker, R.3
  • 79
    • 84868210194 scopus 로고    scopus 로고
    • Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture
    • Lin H., Zhang D., Alexander P. G., Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 2013 34 331 339
    • (2013) Biomaterials , vol.34 , pp. 331-339
    • Lin, H.1    Zhang, D.2    Alexander, P.G.3
  • 80
    • 9344233837 scopus 로고    scopus 로고
    • Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography
    • DOI 10.1089/ten.2004.10.1316
    • Dhariwala B., Hunt E., Boland T., Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engineering 2004 10 9-10 1316 1322 2-s2.0-9344233837 10.1089/ten.2004.10.1316 (Pubitemid 39557836)
    • (2004) Tissue Engineering , vol.10 , Issue.9-10 , pp. 1316-1322
    • Dhariwala, B.1    Hunt, E.2    Boland, T.3
  • 81
    • 33748922161 scopus 로고    scopus 로고
    • A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds
    • DOI 10.1002/jbm.a.30601
    • Lu Y., Mapili G., Suhali G., Adigitalmicro-mirrordevice-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. Journal of Biomedical Materials Research Part A 2006 77A 2 396 405 (Pubitemid 47233542)
    • (2006) Journal of Biomedical Materials Research - Part A , vol.77 , Issue.2 , pp. 396-405
    • Lu, Y.1    Mapili, G.2    Suhali, G.3    Chen, S.4    Roy, K.5
  • 82
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • 2-s2.0-77953651502 10.1016/j.biomaterials.2010.04.050
    • Melchels F. P. W., Feijen J., Grijpma D. W., A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010 31 24 6121 6130 2-s2.0-77953651502 10.1016/j.biomaterials.2010.04.050
    • (2010) Biomaterials , vol.31 , Issue.24 , pp. 6121-6130
    • Melchels, F.P.W.1    Feijen, J.2    Grijpma, D.W.3
  • 83
    • 78649529363 scopus 로고    scopus 로고
    • Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(d,l-lactide)-based resins
    • 2-s2.0-78649529363 10.1016/j.jconrel.2010.07.111
    • Seck T. M., Melchels F. P. W., Feijen J., Grijpma D. W., Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(d,l-lactide)-based resins. Journal of Controlled Release 2010 148 1 34 41 2-s2.0-78649529363 10.1016/j.jconrel.2010.07.111
    • (2010) Journal of Controlled Release , vol.148 , Issue.1 , pp. 34-41
    • Seck, T.M.1    Melchels, F.P.W.2    Feijen, J.3    Grijpma, D.W.4
  • 84
    • 0029724374 scopus 로고    scopus 로고
    • Surface treatments of polymers for biocompatibility
    • Elbert D. L., Hubbell J. A., Surface treatments of polymers for biocompatibility. Annual Review of Materials Science 1996 26 1 365 394 2-s2.0-0029724374 (Pubitemid 126638470)
    • (1996) Annual Review of Materials Science , vol.26 , Issue.1 , pp. 365-394
    • Elbert, D.L.1    Hubbell, J.A.2
  • 85
    • 57849092082 scopus 로고    scopus 로고
    • Gradient collagen/nanohydroxyapatite composite scaffold: Development and characterization
    • 2-s2.0-57849092082 10.1016/j.actbio.2008.09.022
    • Liu C., Han Z., Czernuszka J. T., Gradient collagen/nanohydroxyapatite composite scaffold: development and characterization. Acta Biomaterialia 2009 5 2 661 669 2-s2.0-57849092082 10.1016/j.actbio.2008.09.022
    • (2009) Acta Biomaterialia , vol.5 , Issue.2 , pp. 661-669
    • Liu, C.1    Han, Z.2    Czernuszka, J.T.3
  • 86
    • 61349154225 scopus 로고    scopus 로고
    • Properties and in vitro biological evaluation of nano-hydroxyapatite/ chitosan membranes for bone guided regeneration
    • 2-s2.0-61349154225 10.1016/j.msec.2008.05.008
    • Xianmiao C., Yubao L., Yi Z., Li Z., Jidong L., Huanan W., Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering C 2009 29 1 29 35 2-s2.0-61349154225 10.1016/j.msec.2008.05.008
    • (2009) Materials Science and Engineering C , vol.29 , Issue.1 , pp. 29-35
    • Xianmiao, C.1    Yubao, L.2    Yi, Z.3    Li, Z.4    Jidong, L.5    Huanan, W.6
  • 87
    • 84873432870 scopus 로고    scopus 로고
    • A nano-hydroxyapatite e Pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering
    • Christophe Fricain J., Schlaubitz S., Le Visage C., A nano-hydroxyapatite e Pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 2013 34 2947 2959
    • (2013) Biomaterials , vol.34 , pp. 2947-2959
    • Christophe Fricain, J.1    Schlaubitz, S.2    Le Visage, C.3
  • 88
    • 84880080908 scopus 로고    scopus 로고
    • In situ synthesis and in vitro biocompatibility of needle-like nano-hydroxyapatiteinagar-gelatinco-hydrogel
    • Deng Y., Wang H., Zhang L., In situ synthesis and in vitro biocompatibility of needle-like nano-hydroxyapatiteinagar-gelatinco-hydrogel. Materials Letters 2013 104 8 12
    • (2013) Materials Letters , vol.104 , pp. 8-12
    • Deng, Y.1    Wang, H.2    Zhang, L.3
  • 89
    • 84890777338 scopus 로고    scopus 로고
    • Characterizations of biocompatible and bioactive hydroxyapatite particles
    • Salimi M. N., Anuar A., Characterizations of biocompatible and bioactive hydroxyapatite particles. Procedia Engineering 2013 53 192 196
    • (2013) Procedia Engineering , vol.53 , pp. 192-196
    • Salimi, M.N.1    Anuar, A.2
  • 90
    • 84879249702 scopus 로고    scopus 로고
    • Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells
    • 10.1016/j.archoralbio.2013.02.014
    • Suto M., Nemoto E., Kanay S., Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Archives of Oral Biology 2013 58 8 1021 1028 10.1016/j.archoralbio.2013.02.014
    • (2013) Archives of Oral Biology , vol.58 , Issue.8 , pp. 1021-1028
    • Suto, M.1    Nemoto, E.2    Kanay, S.3
  • 91
    • 34247846240 scopus 로고    scopus 로고
    • Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/ polyamide composite scaffolds for bone tissue engineering
    • DOI 10.1016/j.biomaterials.2007.04.014, PII S0142961207002815
    • Wang H., Li Y., Zuo Y., Li J., Ma S., Cheng L., Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007 28 22 3338 3348 2-s2.0-34247846240 10.1016/j.biomaterials.2007.04.014 (Pubitemid 46693973)
    • (2007) Biomaterials , vol.28 , Issue.22 , pp. 3338-3348
    • Wang, H.1    Li, Y.2    Zuo, Y.3    Li, J.4    Ma, S.5    Cheng, L.6
  • 92
    • 33751346057 scopus 로고    scopus 로고
    • Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
    • DOI 10.1016/j.actbio.2006.07.008, PII S1742706106001012
    • Wiria F. E., Leong K. F., Chua C. K., Liu Y., Poly- ε -caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia 2007 3 1 1 12 2-s2.0-33751346057 10.1016/j.actbio.2006.07.008 (Pubitemid 44804297)
    • (2007) Acta Biomaterialia , vol.3 , Issue.1 , pp. 1-12
    • Wiria, F.E.1    Leong, K.F.2    Chua, C.K.3    Liu, Y.4
  • 93
    • 77955868224 scopus 로고    scopus 로고
    • Selective laser sintering of hydroxyapatite/poly- ε -caprolactone scaffolds
    • 2-s2.0-77955868224 10.1016/j.actbio.2009.07.018
    • Eosoly S., Brabazon D., Lohfeld S., Looney L., Selective laser sintering of hydroxyapatite/poly- ε -caprolactone scaffolds. Acta Biomaterialia 2010 6 7 2511 2517 2-s2.0-77955868224 10.1016/j.actbio.2009.07.018
    • (2010) Acta Biomaterialia , vol.6 , Issue.7 , pp. 2511-2517
    • Eosoly, S.1    Brabazon, D.2    Lohfeld, S.3    Looney, L.4
  • 94
    • 84863214443 scopus 로고    scopus 로고
    • Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering
    • 2-s2.0-84860578042 10.1016/j.actbio.2012.04.022
    • Eshraghi S., Das S., Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomaterialia 2012 8 8 3138 3143 2-s2.0-84860578042 10.1016/j.actbio.2012.04.022
    • (2012) Acta Biomaterialia , vol.8 , Issue.8 , pp. 3138-3143
    • Eshraghi, S.1    Das, S.2
  • 95
    • 84875368121 scopus 로고    scopus 로고
    • Preparation of designed poly(D, L-lactide)/nanosized hydroxyapatite composite structures by stereolithography
    • Ronca A., Ambrosio L., Grijpma D. W., Preparation of designed poly(D, L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomaterialia 2013 9 5989 5996
    • (2013) Acta Biomaterialia , vol.9 , pp. 5989-5996
    • Ronca, A.1    Ambrosio, L.2    Grijpma, D.W.3
  • 96
    • 79952405303 scopus 로고    scopus 로고
    • Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics
    • 2-s2.0-79952405303 10.1002/jbm.b.31773
    • Li X., Liu H., Niu X., Fan Y., Feng Q., Cui F.-Z., Watari F., Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. Journal of Biomedical Materials Research B: Applied Biomaterials 2011 97 1 10 19 2-s2.0-79952405303 10.1002/jbm.b.31773
    • (2011) Journal of Biomedical Materials Research B: Applied Biomaterials , vol.97 , Issue.1 , pp. 10-19
    • Li, X.1    Liu, H.2    Niu, X.3    Fan, Y.4    Feng, Q.5    Cui, F.-Z.6    Watari, F.7
  • 97
    • 67749143037 scopus 로고    scopus 로고
    • Investigation on the mechanism of the osteoinduction for calcium phosphate
    • Li X. M., Liu X. H., Uo M., Feng Q. L., Cui F. Z., Watari F., Investigation on the mechanism of the osteoinduction for calcium phosphate. Bone 2008 43 S111 S112
    • (2008) Bone , vol.43
    • Li, X.M.1    Liu, X.H.2    Uo, M.3    Feng, Q.L.4    Cui, F.Z.5    Watari, F.6
  • 98
    • 84896545247 scopus 로고    scopus 로고
    • Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis - A review
    • Surmenev R. A., Surmeneva M. A., Ivanova A. A., Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis-a review. Acta Biomaterialia 2014 10 557 579
    • (2014) Acta Biomaterialia , vol.10 , pp. 557-579
    • Surmenev, R.A.1    Surmeneva, M.A.2    Ivanova, A.A.3
  • 99
    • 44349090265 scopus 로고    scopus 로고
    • The effect of calcium phosphate microstructure on bone-related cells in vitro
    • 2-s2.0-44349090265 10.1016/j.biomaterials.2008.04.039
    • Li X., van Blitterswijk C. A., Feng Q., Cui F., Watari F., The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials 2008 29 23 3306 3316 2-s2.0-44349090265 10.1016/j.biomaterials.2008.04.039
    • (2008) Biomaterials , vol.29 , Issue.23 , pp. 3306-3316
    • Li, X.1    Van Blitterswijk, C.A.2    Feng, Q.3    Cui, F.4    Watari, F.5
  • 100
    • 77958101381 scopus 로고    scopus 로고
    • Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering
    • 2-s2.0-77958101381 10.1016/j.actbio.2010.06.024
    • Duan B., Wang M., Zhou W. Y., Cheung W. L., Li Z. Y., Lu W. W., Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomaterialia 2010 6 12 4495 4505 2-s2.0-77958101381 10.1016/j.actbio.2010.06.024
    • (2010) Acta Biomaterialia , vol.6 , Issue.12 , pp. 4495-4505
    • Duan, B.1    Wang, M.2    Zhou, W.Y.3    Cheung, W.L.4    Li, Z.Y.5    Lu, W.W.6
  • 101
    • 0142059732 scopus 로고    scopus 로고
    • Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling
    • DOI 10.1016/S0928-4931(03)00052-3
    • Kalita S. J., Bose S., Hosick H. L., Bandyopadhyay A., Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science and Engineering C 2003 23 5 611 620 2-s2.0-0142059732 10.1016/S0928-4931(03)00052-3 (Pubitemid 37261901)
    • (2003) Materials Science and Engineering C , vol.23 , Issue.5 , pp. 611-620
    • Kalita, S.J.1    Bose, S.2    Hosick, H.L.3    Bandyopadhyay, A.4
  • 102
    • 0035093572 scopus 로고    scopus 로고
    • Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution
    • DOI 10.1002/1097-4636(200105) 55:2<151::AID-JBM1001>3.0.CO;2-D
    • Xynos D., Edgar A. J., Buttery L. D. K., Hench L. L., Polak J. M., Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. Biomedical Materials Research 2001 55 151 157 (Pubitemid 32198497)
    • (2001) Journal of Biomedical Materials Research , vol.55 , Issue.2 , pp. 151-157
    • Xynos, I.D.1    Edgar, A.J.2    Buttery, L.D.K.3    Hench, L.L.4    Polak, J.M.5
  • 103
    • 33751504614 scopus 로고    scopus 로고
    • Gene activation by bioactive glasses
    • DOI 10.1007/s10856-006-0435-9, Selected Papers from the Larry Hench Symposium, London, UK, September 2005
    • Jell G., Stevens M. M., Gene activation by bioactive glasses. Journal of Materials Science: Materials in Medicine 2006 17 11 997 1002 2-s2.0-33751504614 10.1007/s10856-006-0435-9 (Pubitemid 44835983)
    • (2006) Journal of Materials Science: Materials in Medicine , vol.17 , Issue.11 , pp. 997-1002
    • Jell, G.1    Stevens, M.M.2
  • 104
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular network for perfusable engineered three-dimensional tissues
    • Miller J. S., Stevens K. R., Yang M. T., Rapid casting of patterned vascular network for perfusable engineered three-dimensional tissues. Nature Materials 2012 11 768 774
    • (2012) Nature Materials , vol.11 , pp. 768-774
    • Miller, J.S.1    Stevens, K.R.2    Yang, M.T.3
  • 105
    • 84870220913 scopus 로고    scopus 로고
    • Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(e-caprolactone) by stereolithography
    • Elomaa L., Kokkari A., Närhi T., Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(e-caprolactone) by stereolithography. Composites Science and Technology 2013 74 99 106
    • (2013) Composites Science and Technology , vol.74 , pp. 99-106
    • Elomaa, L.1    Kokkari, A.2    Närhi, T.3
  • 106
    • 84873166089 scopus 로고    scopus 로고
    • High-resolution PLA-based composite scaffolds via 3-D printing technology
    • Serra T., Planell J. A., Navarro M., High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomaterialia 2013 9 5521 5530
    • (2013) Acta Biomaterialia , vol.9 , pp. 5521-5530
    • Serra, T.1    Planell, J.A.2    Navarro, M.3
  • 107
    • 84859880099 scopus 로고    scopus 로고
    • The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo
    • 2-s2.0-84859880099 10.1016/j.biomaterials.2012.03.045
    • Li X., Liu H., Niu X., Yu B., Fan Y., Feng Q., Cui F.-Z., Watari F., The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials 2012 33 19 4818 4827 2-s2.0-84859880099 10.1016/j.biomaterials.2012.03.045
    • (2012) Biomaterials , vol.33 , Issue.19 , pp. 4818-4827
    • Li, X.1    Liu, H.2    Niu, X.3    Yu, B.4    Fan, Y.5    Feng, Q.6    Cui, F.-Z.7    Watari, F.8
  • 108
    • 84865295074 scopus 로고    scopus 로고
    • Transferrin-conjugated boron nitride nanotubes: Protein grafting, characterization, and interaction with human endothelial cells
    • Ciofani G., Del Turco S., Graziana Genchia G., Transferrin-conjugated boron nitride nanotubes: protein grafting, characterization, and interaction with human endothelial cells. International Journal of Pharmaceutics 2012 436 444 453
    • (2012) International Journal of Pharmaceutics , vol.436 , pp. 444-453
    • Ciofani, G.1    Del Turco, S.2    Graziana Genchia, G.3
  • 109
    • 64949113517 scopus 로고    scopus 로고
    • Maturation of osteoblast-like SaoS2 induced by carbon nanotubes
    • 2-s2.0-64949113517 10.1088/1748-6041/4/1/015005 015005
    • Li X., Gao H., Uo M., Sato Y., Akasaka T., Abe S., Feng Q., Cui F., Watari F., Maturation of osteoblast-like SaoS2 induced by carbon nanotubes. Biomedical Materials 2009 4 2-s2.0-64949113517 10.1088/1748-6041/4/1/015005 015005
    • (2009) Biomedical Materials , vol.4
    • Li, X.1    Gao, H.2    Uo, M.3    Sato, Y.4    Akasaka, T.5    Abe, S.6    Feng, Q.7    Cui, F.8    Watari, F.9
  • 110
    • 34247376971 scopus 로고    scopus 로고
    • Assembled alginate/chitosan nanotubes for biological application
    • DOI 10.1016/j.biomaterials.2007.03.019, PII S0142961207002335
    • Yang Y., He Q., Duan L., Cui Y., Li J., Assembled alginate/chitosan nanotubes for biological application. Biomaterials 2007 28 20 3083 3090 2-s2.0-34247376971 10.1016/j.biomaterials.2007.03.019 (Pubitemid 46628835)
    • (2007) Biomaterials , vol.28 , Issue.20 , pp. 3083-3090
    • Yang, Y.1    He, Q.2    Duan, L.3    Cui, Y.4    Li, J.5
  • 111
    • 60949087258 scopus 로고    scopus 로고
    • Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method
    • 2-s2.0-60949087258 10.1016/j.ultsonch.2009.01.007
    • Poinern G. E., Brundavanam R. K., Mondinos N., Jiang Z.-T., Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrasonics Sonochemistry 2009 16 4 469 474 2-s2.0-60949087258 10.1016/j.ultsonch.2009.01.007
    • (2009) Ultrasonics Sonochemistry , vol.16 , Issue.4 , pp. 469-474
    • Poinern, G.E.1    Brundavanam, R.K.2    Mondinos, N.3    Jiang, Z.-T.4
  • 112
    • 33746825839 scopus 로고    scopus 로고
    • Carbon nanofiber-based glucose biosensor
    • DOI 10.1021/ac060551t
    • Vamvakaki V., Tsagaraki K., Chaniotakis N., Carbon nanofiber-based glucose biosensor. Analytical Chemistry 2006 78 15 5538 5542 2-s2.0-33746825839 10.1021/ac060551t (Pubitemid 44182375)
    • (2006) Analytical Chemistry , vol.78 , Issue.15 , pp. 5538-5542
    • Vamvakaki, V.1    Tsagaraki, K.2    Chaniotakis, N.3
  • 113
    • 53049099149 scopus 로고    scopus 로고
    • Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing
    • 2-s2.0-53049099149 10.1016/j.bios.2008.06.009
    • Wu L., Lei J., Zhang X., Ju H., Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing. Biosensors and Bioelectronics 2008 24 4 644 649 2-s2.0-53049099149 10.1016/j.bios.2008.06.009
    • (2008) Biosensors and Bioelectronics , vol.24 , Issue.4 , pp. 644-649
    • Wu, L.1    Lei, J.2    Zhang, X.3    Ju, H.4
  • 114
    • 84888878310 scopus 로고    scopus 로고
    • The use of nano-scaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials
    • 728130 10.1155/2013/728130
    • Li X. M., Cui R. R., Liu W., Yu B., Fan Y. B., Feng Q. L., Cui F. Z., Watari F., The use of nano-scaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials. Journal of Nanomaterials 2013 2013 16 728130 10.1155/2013/728130
    • (2013) Journal of Nanomaterials , vol.2013 , pp. 16
    • Li, X.M.1    Cui, R.R.2    Liu, W.3    Yu, B.4    Fan, Y.B.5    Feng, Q.L.6    Cui, F.Z.7    Watari, F.8
  • 115
    • 17044393064 scopus 로고    scopus 로고
    • Dynamic rheological behaviors of the bone scaffold reinforced by chitin fibres
    • PRICM 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing
    • Li X. M., Feng Q. L., Dynamic rheological behaviors of the bone scaffold reinforced by chitin fibres. Materials Science Forum 2005 475-479 2387 2390 (Pubitemid 40499635)
    • (2005) Materials Science Forum , vol.475-479 , pp. 2387-2390
    • Li, X.M.1    Feng, Q.L.2
  • 116
    • 84878335866 scopus 로고    scopus 로고
    • Bi-layer collagen/microporouselectrospunnanofiber scaffold improves the osteochondral regeneration
    • Zhang S., Chen L., Jiang Y., Bi-layer collagen/ microporouselectrospunnanofiber scaffold improves the osteochondral regeneration. Acta Biomaterialia 2013 9 7236 7247
    • (2013) Acta Biomaterialia , vol.9 , pp. 7236-7247
    • Zhang, S.1    Chen, L.2    Jiang, Y.3
  • 118
    • 80054120968 scopus 로고    scopus 로고
    • Biomedical investigation of CNT based coatings
    • 2-s2.0-80054120968 10.1016/j.surfcoat.2011.02.063
    • Li X., Liu X., Huang J., Fan Y., Cui F.-Z., Biomedical investigation of CNT based coatings. Surface and Coatings Technology 2011 206 4 759 766 2-s2.0-80054120968 10.1016/j.surfcoat.2011.02.063
    • (2011) Surface and Coatings Technology , vol.206 , Issue.4 , pp. 759-766
    • Li, X.1    Liu, X.2    Huang, J.3    Fan, Y.4    Cui, F.-Z.5
  • 120
    • 77954387475 scopus 로고    scopus 로고
    • The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites
    • 2-s2.0-77954387475 10.1016/j.biomaterials.2010.05.015
    • Hsu S.-H., Tseng H.-J., Lin Y.-C., The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 2010 31 26 6796 6808 2-s2.0-77954387475 10.1016/j.biomaterials.2010.05.015
    • (2010) Biomaterials , vol.31 , Issue.26 , pp. 6796-6808
    • Hsu, S.-H.1    Tseng, H.-J.2    Lin, Y.-C.3
  • 121
    • 84869079244 scopus 로고    scopus 로고
    • Carbon nanotubes/hydroxyapatite nanocomposites fabricated by spark plasma sintering for bonegraft applications
    • 2-s2.0-84860643998 10.1016/j.apsusc.2012.04.142
    • Wang W., Zhu Y., Watari F., Liao S., Yokoyama A., Omori M., Ai H., Cui F., Carbon nanotubes/hydroxyapatite nanocomposites fabricated by spark plasma sintering for bonegraft applications. Applied Surface Science 2012 262 194 199 2-s2.0-84860643998 10.1016/j.apsusc.2012.04.142
    • (2012) Applied Surface Science , vol.262 , pp. 194-199
    • Wang, W.1    Zhu, Y.2    Watari, F.3    Liao, S.4    Yokoyama, A.5    Omori, M.6    Ai, H.7    Cui, F.8
  • 123
    • 84876926333 scopus 로고    scopus 로고
    • 3D printing of multifunctional nanocomposites
    • Campbell T. A., Ivanova S. O., 3D printing of multifunctional nanocomposites. Nano Today 2013 8 119 120
    • (2013) Nano Today , vol.8 , pp. 119-120
    • Campbell, T.A.1    Ivanova, S.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.