메뉴 건너뛰기




Volumn 62, Issue 1, 2015, Pages 215-223

A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses

Author keywords

Chip in the loop; memristor; memristor bridge synapse; neural learning hardware; neural network; random weight change

Indexed keywords

BACKPROPAGATION; MEMRISTORS; MULTILAYERS; NETWORK ARCHITECTURE; NEURAL NETWORKS; TIMING CIRCUITS;

EID: 84921409487     PISSN: 15498328     EISSN: 15580806     Source Type: Journal    
DOI: 10.1109/TCSI.2014.2359717     Document Type: Article
Times cited : (153)

References (27)
  • 1
    • 78649479499 scopus 로고
    • A bicmos analog neural networkwith dynamically updated weights
    • T. Morishita, Y. Tamura, T. Otsuki, and G. Kano, "A BiCMOS analog neural networkwith dynamically updated weights," IEICE Trans. Electron., vol. 75, no. 3, pp. 297-302, 1992.
    • (1992) IEICE Trans. Electron. , vol.75 , Issue.3 , pp. 297-302
    • Morishita, T.1    Tamura, Y.2    Otsuki, T.3    Kano, G.4
  • 3
    • 0024909727 scopus 로고
    • An electrically trainable artificial neutral network (etann) with 102 040 floating gate synapses
    • M. Holler, S. Tam, H. Castro, and R. Benson, "An electrically trainable artificial neutral network (ETANN) with 102 040 floating gate synapses," in Proc. Neural Netw. Int. Joint Conf., 1989, pp. 191-196.
    • (1989) Proc. Neural Netw. Int. Joint Conf. , pp. 191-196
    • Holler, M.1    Tam, S.2    Castro, H.3    Benson, R.4
  • 5
    • 79952950219 scopus 로고    scopus 로고
    • Resistance switching memories are memristors
    • L. O. Chua, "Resistance switching memories are memristors," Appl. Phys. A, vol. 102, pp. 765-783, 2011.
    • (2011) Appl. Phys. A , vol.102 , pp. 765-783
    • Chua, L.O.1
  • 7
    • 84896263555 scopus 로고    scopus 로고
    • Transient behaviors of multiple memristor circuits based on flux charge relationship
    • R. K. Budhathoki, M. P. Sah, C. Yang, H. Kim, and L. Chua, "Transient behaviors of multiple memristor circuits based on flux charge relationship," Int. J. Bifurcation Chaos, vol. 24, no. 2, pp. 1430006-1-1430006-14, 2014.
    • (2014) Int. J. Bifurcation Chaos , vol.24 , Issue.2 , pp. 14300061-143000614
    • Budhathoki, R.K.1    Sah, M.P.2    Yang, C.3    Kim, H.4    Chua, L.5
  • 8
    • 34548685897 scopus 로고    scopus 로고
    • Self-organized computation with unreliable, memristivenanodevices
    • G. Snider, "Self-organized computation with unreliable, memristivenanodevices," Nanotechnology, vol. 18, no. 36, pp. 1-13, 2007.
    • (2007) Nanotechnology , vol.18 , Issue.36 , pp. 1-13
    • Snider, G.1
  • 9
    • 79953272066 scopus 로고    scopus 로고
    • Dynamical properties and design analysis for nonvolatile memristor memories
    • Y. Ho,G.M.Huang, and P. Li, "Dynamical properties and design analysis for nonvolatile memristor memories," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 4, pp. 724-736, 2011.
    • (2011) IEEE Trans. Circuits Syst. I, Reg. Papers , vol.58 , Issue.4 , pp. 724-736
    • Ho, Y.1    Huang, G.M.2    Li, P.3
  • 12
    • 77951026760 scopus 로고    scopus 로고
    • Nanoscale memristor device as synapse in neuromorphic systems
    • S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P.Mazumder, andW. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett., vol. 10, pp. 1297-1301, 2010.
    • (2010) Nano Lett. , vol.10 , pp. 1297-1301
    • Jo, S.H.1    Chang, T.2    Ebong, I.3    Bhadviya, B.B.4    Mazumder, P.5    Lu, W.6
  • 13
    • 71249131272 scopus 로고    scopus 로고
    • Implementation of biologically plausible spiking neural network models on the memristor crossbarbased cmos/nano circuits
    • A. Afifi, A. Ayatollahi, and F. Raissi, "Implementation of biologically plausible spiking neural network models on the memristor crossbarbased CMOS/nano circuits," in Proc. Eur. Conf. Circuit Theory Design (ECCTD), 2009, pp. 563-566.
    • (2009) Proc. Eur. Conf. Circuit Theory Design (ECCTD) , pp. 563-566
    • Afifi, A.1    Ayatollahi, A.2    Raissi, F.3
  • 15
    • 80052632703 scopus 로고    scopus 로고
    • Hebbian learning in spiking neural networks with nano-crystalline silicon tfts and memristive synapses
    • Sep
    • K. D. Cantley, A. Subramaniam, H. Stiegler, R. Chapman, and E. Vogel, "Hebbian learning in spiking neural networks with nano-crystalline silicon TFTs and memristive synapses," IEEE Trans. Nanotechnol., vol. 10, no. 5, pp. 1066-1073, Sep. 2011.
    • (2011) IEEE Trans. Nanotechnol. , vol.10 , Issue.5 , pp. 1066-1073
    • Cantley, K.D.1    Subramaniam, A.2    Stiegler, H.3    Chapman, R.4    Vogel, E.5
  • 16
    • 51949112980 scopus 로고    scopus 로고
    • Spike-timing-dependent learning in memristive nanodevices
    • Jun
    • G. S. Snider, "Spike-timing-dependent learning in memristive nanodevices," in Proc. NANOARCH, Jun. 2008, pp. 85-92.
    • (2008) Proc. NANOARCH , pp. 85-92
    • Snider, G.S.1
  • 17
    • 84876895659 scopus 로고    scopus 로고
    • Memristor bridge synapse-based neural network and its learning
    • Sep
    • S. P. Adhikari, C. Yang, H. Kim, and L. O. Chua, "Memristor bridge synapse-based neural network and its learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1426-1435, Sep. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.9 , pp. 1426-1435
    • Adhikari, S.P.1    Yang, C.2    Kim, H.3    Chua, L.O.4
  • 18
    • 0026712578 scopus 로고
    • Weight perturbation: An optimal architecture and learning technique for analog vlsi feedforward and recurrent multilayer networks
    • M. Jabri and B. Flower, "Weight perturbation: An optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks," IEEE Trans. Neural Netw., vol. 3, no. 1, pp. 154-157, 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.1 , pp. 154-157
    • Jabri, M.1    Flower, B.2
  • 19
    • 0000610830 scopus 로고
    • Summed weight neuron perturbation: An o(n) improvement over weight perturbation
    • San Mateo, CA, USA: Morgan Kaufman
    • B. Flower and M. Jabri, "Summed weight neuron perturbation: An O(n) improvement over weight perturbation," in Advances in Neural Information Processing Systems. San Mateo, CA, USA: Morgan Kaufman, 1993, vol. 5.
    • (1993) Advances in Neural Information Processing Systems , vol.5
    • Flower, B.1    Jabri, M.2
  • 20
    • 0001149625 scopus 로고
    • A fast stochastic error-descent algorithmfor supervised learning and optimization
    • S. J. Hanson, J. D. Cowan, and C. Lee, Eds. San Mateo, CA, USA: Morgan Kaufman
    • G. Cauwenberghs, "A fast stochastic error-descent algorithmfor supervised learning and optimization," in Advances in Neural Information Processing Systems, S. J. Hanson, J. D. Cowan, and C. Lee, Eds. San Mateo, CA, USA: Morgan Kaufman, 1993, vol. 5.
    • (1993) Advances in Neural Information Processing Systems , vol.5
    • Cauwenberghs, G.1
  • 21
    • 0029048472 scopus 로고
    • A learning rule of neural networks via simultaneous perturbation and its hardware implementation
    • Y. Maeda, H. Hirano, and Y. Kanata, "A learning rule of neural networks via simultaneous perturbation and its hardware implementation," Neural Netw., vol. 8, no. 2, pp. 251-259, 1995.
    • (1995) Neural Netw. , vol.8 , Issue.2 , pp. 251-259
    • Maeda, Y.1    Hirano, H.2    Kanata, Y.3
  • 23
    • 0027872973 scopus 로고    scopus 로고
    • An analog neural network chip with random weight change learning algorithm
    • K. Hirotsu and M. A. Brooke, "An analog neural network chip with random weight change learning algorithm," in Proc. 1993 Int. Joint Conf. Neural Netw., pp. 3031-3034.
    • Proc. 1993 Int. Joint Conf. Neural Netw , pp. 3031-3034
    • Hirotsu, K.1    Brooke, M.A.2
  • 24
    • 0031143347 scopus 로고    scopus 로고
    • Identification and control of induction motor stator currents using fast on-line random training of a neural network
    • May
    • B. Burton, F. Kamran, R. G. Harley, T. G. Habetler, M. A. Brooke, and R. Poddar, "Identification and control of induction motor stator currents using fast on-line random training of a neural network," IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 697-704, May 1997.
    • (1997) IEEE Trans. Ind. Appl. , vol.33 , Issue.3 , pp. 697-704
    • Burton, B.1    Kamran, F.2    Harley, R.G.3    Habetler, T.G.4    Brooke, M.A.5    Poddar, R.6
  • 25
    • 0036737353 scopus 로고    scopus 로고
    • A cmos feedforward neural-network chip with on-chip parallel learning for oscillation cancellation
    • J. Liu, M. Brooke, and K. Hirotsu, "A CMOS feedforward neural-network chip with on-chip parallel learning for oscillation cancellation," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1178-1186, 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.5 , pp. 1178-1186
    • Liu, J.1    Brooke, M.2    Hirotsu, K.3
  • 26
    • 84921399214 scopus 로고    scopus 로고
    • Neural networks for face recognition
    • "Neural networks for face recognition" [Online]. Available: http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html
  • 27
    • 0004255908 scopus 로고    scopus 로고
    • 1st ed. New York: WCB/McGraw-Hill
    • T. Mitchell, Machine Learning, 1st ed. New York: WCB/McGraw-Hill, 1997.
    • (1997) Machine Learning
    • Mitchell, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.