메뉴 건너뛰기




Volumn 2016-November, Issue , 2016, Pages 4461-4468

Deep learning a grasp function for grasping under gripper pose uncertainty

Author keywords

[No Author keywords available]

Indexed keywords

GRIPPERS; NEURAL NETWORKS;

EID: 85006507964     PISSN: 21530858     EISSN: 21530866     Source Type: Conference Proceeding    
DOI: 10.1109/IROS.2016.7759657     Document Type: Conference Paper
Times cited : (261)

References (32)
  • 2
    • 84986327453 scopus 로고    scopus 로고
    • Pairwise decomposition of image sequences for active multi-view recognition
    • E. Johns, S. Leutenegger and A. Davison, Pairwise Decomposition of Image Sequences for Active Multi-View Recognition, in Proc. CVPR 2016
    • (2016) Proc. CVPR
    • Johns, E.1    Leutenegger, S.2    Davison, A.3
  • 3
    • 12444343137 scopus 로고    scopus 로고
    • Graspit!: A versatile simulator for robotic grasping
    • A. Miller and P. K. Allen, Graspit!: A Versatile Simulator for Robotic Grasping, in IEEE Robotics and Automation Magazine, Vol. 11, No. 4, 2004
    • (2004) IEEE Robotics and Automation Magazine , vol.11 , Issue.4
    • Miller, A.1    Allen, P.K.2
  • 4
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio and G. Hinton, Deep Learning, in Nature, Vol. 521, No. 7553, 2015
    • (2015) Nature , vol.521 , Issue.7553
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 5
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, Iiya Sutskever and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, in Proc. NIPS 2012
    • (2012) Proc. NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 6
    • 84938222284 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • I. Lenz, H. Lee and A. Saxena, Deep Learning for Detecting Robotic Grasps, in Trans. IJRR, 2014
    • (2014) Trans. IJRR
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 7
    • 85006374590 scopus 로고    scopus 로고
    • Efficient grasping from RGBD images: Learning using a new rectangle
    • Y. Jiang, S. Moseson and A. Saxena, Efficient Grasping from RGBD Images: Learning using a new Rectangle, in Proc. ICRA 2011
    • (2011) Proc. ICRA
    • Jiang, Y.1    Moseson, S.2    Saxena, A.3
  • 8
    • 84938282388 scopus 로고    scopus 로고
    • Real-time grasp detection using convolutional neural networks
    • J. Redmon and A. Angelova, Real-Time Grasp Detection Using Convolutional Neural Networks, in Proc. ICRA 2015
    • (2015) Proc. ICRA
    • Redmon, J.1    Angelova, A.2
  • 9
    • 84958167103 scopus 로고    scopus 로고
    • Generating multi-fingered robotic grasps via deep learning
    • J. Varley, J. Weisz, J. Weiss and P. Allen, Generating Multi-Fingered Robotic Grasps via Deep Learning, in Proc. IROS 2015
    • (2015) Proc. IROS
    • Varley, J.1    Weisz, J.2    Weiss, J.3    Allen, P.4
  • 12
    • 84977599666 scopus 로고    scopus 로고
    • Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours
    • L. Pinto and A. Gupta, Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot Hours, in Proc. ICRA, 2016
    • (2016) Proc. ICRA
    • Pinto, L.1    Gupta, A.2
  • 14
    • 84938280741 scopus 로고    scopus 로고
    • Functional power grasps transferred through warping and replanning
    • T. Stouraitis, U. Hillenbrand and M. A. Roa, Functional power grasps transferred through warping and replanning, in Proc. ICRA 2015
    • (2015) Proc. ICRA
    • Stouraitis, T.1    Hillenbrand, U.2    Roa, M.A.3
  • 15
    • 84864421787 scopus 로고    scopus 로고
    • Pose error robust grasping from contact wrench space metrics
    • J. Weisz and P. K. Allen, Pose error robust grasping from contact wrench space metrics, in Proc. ICRA 2012
    • (2012) Proc. ICRA
    • Weisz, J.1    Allen, P.K.2
  • 17
    • 85006414350 scopus 로고    scopus 로고
    • One shot learning and generation of dexterous grasps for novel objects
    • M. Kopicki, R. Detry and J. L. Wyatt, One shot learning and generation of dexterous grasps for novel objects, in Trans. IJRR, 2015
    • (2015) Trans. IJRR
    • Kopicki, M.1    Detry, R.2    Wyatt, J.L.3
  • 18
    • 84938271066 scopus 로고    scopus 로고
    • Simulation tootls for model-based robotics: Comparison of bullet, havok, MuJoCo, ODE and PhysX
    • T. Erez, Y. Tassa and E. Todorov, Simulation Tootls for Model-Based Robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX, in Proc. ICRA 2015
    • (2015) Proc. ICRA
    • Erez, T.1    Tassa, Y.2    Todorov, E.3
  • 19
    • 84929191681 scopus 로고    scopus 로고
    • A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM
    • A. Handa, T. Whelan, J. McDonald and A. J. Davison, A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM, in Proc. ICRA 2014
    • (2014) Proc. ICRA
    • Handa, A.1    Whelan, T.2    McDonald, J.3    Davison, A.J.4
  • 21
    • 85006331200 scopus 로고    scopus 로고
    • http://tensorflow.org
  • 22
    • 84979224293 scopus 로고    scopus 로고
    • Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection
    • Sergey Levine, Peter Pastor, Alex Krizhevsky and Deirdre Quillen, Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, in Proc. ISER 2016
    • (2016) Proc. ISER
    • Levine, S.1    Pastor, P.2    Krizhevsky, A.3    Quillen, D.4
  • 24
    • 84973888858 scopus 로고    scopus 로고
    • DeepDriving: Learning affordance for direct perception in autonomous driving
    • C. Chen, A. Seff, A. Kornhauser and J. Xiao, DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving, in Proc. ICCV 2015
    • (2015) Proc. ICCV
    • Chen, C.1    Seff, A.2    Kornhauser, A.3    Xiao, J.4
  • 26
    • 85006444879 scopus 로고    scopus 로고
    • http://dartsim.github.io
  • 27
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, in Proc. CVPR 2016
    • (2016) Proc. CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 28
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, in Proc. CVPR 2015
    • (2015) Proc. CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 29
    • 85006498102 scopus 로고    scopus 로고
    • Generative methods for long-term place recognition in dynamic scenes
    • E. Johns and G.-Z. Yang, Generative Methods for Long-Term Place Recognition in Dynamic Scenes, in Trans. IJRR 2014
    • (2014) Trans. IJRR
    • Johns, E.1    Yang, G.-Z.2
  • 30
    • 84977546676 scopus 로고    scopus 로고
    • Learning to manipulate unknown objects in clutter by reinforcement
    • E. Boularias, J. A. Bagnell and A. Stentz, Learning to Manipulate Unknown Objects in Clutter by Reinforcement, in Proc. AAAI 2015
    • (2015) Proc. AAAI
    • Boularias, E.1    Bagnell, J.A.2    Stentz, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.