메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Erratum: Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy (Scientific Reports (2016) 6(38789) DOI: 10.1038/srep38789);Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy

Author keywords

[No Author keywords available]

Indexed keywords

CARRIER PROTEIN; GLUCOSE; HIPK2 PROTEIN, MOUSE; MECP2 PROTEIN, MOUSE; MESSENGER RNA; METHYL CPG BINDING PROTEIN 2; MICRORNA; MIRN25 MICRORNA, MOUSE; NOX4 PROTEIN, MOUSE; PROTEIN; PROTEIN SERINE THREONINE KINASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE 4; SIAH1A PROTEIN, MOUSE; SMALL INTERFERING RNA; TRANSFORMING GROWTH FACTOR BETA;

EID: 85006059507     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep40832     Document Type: Erratum
Times cited : (44)

References (63)
  • 1
    • 17744374798 scopus 로고    scopus 로고
    • Epidemic of end-stage renal disease in people with diabetes in the United States population: Do we know the cause
    • Jones, C. A. et al. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int 67, 1684-1691, doi: 10. 1111/j. 1523-1755. 2005. 00265. x (2005).
    • (2005) Kidney Int , vol.67 , pp. 1684-1691
    • Jones, C.A.1
  • 2
    • 0141468244 scopus 로고    scopus 로고
    • Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention
    • Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108, 2154-2169 (2003).
    • (2003) Circulation , vol.108 , pp. 2154-2169
    • Sarnak, M.J.1
  • 5
    • 79751477368 scopus 로고    scopus 로고
    • A glimpse of various pathogenetic mechanisms of diabetic nephropathy
    • Kanwar, Y. S., Sun, L., Xie, P., Liu, F. Y., Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annual review of pathology 6, 395-423, doi: 10. 1146/annurev. pathol. 4. 110807. 092150 (2011).
    • (2011) Annual Review of Pathology , vol.6 , pp. 395-423
    • Kanwar, Y.S.1    Sun, L.2    Xie, P.3    Liu, F.Y.4    Chen, S.5
  • 8
    • 77949875682 scopus 로고    scopus 로고
    • MicroRNA control of signal transduction
    • Inui, M., Martello, G., Piccolo, S. MicroRNA control of signal transduction. Nature reviews 11, 252-263 (2010).
    • (2010) Nature Reviews , vol.11 , pp. 252-263
    • Inui, M.1    Martello, G.2    Piccolo, S.3
  • 9
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 10
    • 67650259138 scopus 로고    scopus 로고
    • MicroRNA: A new frontier in kidney and blood pressure research
    • Liang, M. et al. MicroRNA: a new frontier in kidney and blood pressure research. American Journal of Physiology-Renal Physiology 297, F553-F558, doi: 10. 1152/ajprenal. 00045. 2009 (2009).
    • (2009) American Journal of Physiology-Renal Physiology , vol.297 , pp. F553-F558
    • Liang, M.1
  • 11
    • 84958951171 scopus 로고    scopus 로고
    • Targeting non-coding RNA for the therapy of renal disease
    • Denby, L., Baker, A. H. Targeting non-coding RNA for the therapy of renal disease. Current Opinion in Pharmacology 27, 70-77, doi: http://dx. doi. org/10. 1016/j. coph. 2016. 02. 001 (2016).
    • (2016) Current Opinion in Pharmacology , vol.27 , pp. 70-77
    • Denby, L.1    Baker, A.H.2
  • 12
    • 84945444690 scopus 로고    scopus 로고
    • MicroRNAs in diabetic nephropathy: Functions, biomarkers, and therapeutic targets
    • Kato, M., Natarajan, R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Annals of the New York Academy of Sciences 1353, 72-88, doi: 10. 1111/nyas. 12758 (2015).
    • (2015) Annals of the New York Academy of Sciences , vol.1353 , pp. 72-88
    • Kato, M.1    Natarajan, R.2
  • 13
    • 84924908396 scopus 로고    scopus 로고
    • MicroRNAs in kidney physiology and disease
    • Trionfini, P., Benigni, A., Remuzzi, G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol 11, 23-33, doi: 10. 1038/nrneph. 2014. 202 (2015).
    • (2015) Nat Rev Nephrol , vol.11 , pp. 23-33
    • Trionfini, P.1    Benigni, A.2    Remuzzi, G.3
  • 15
    • 84906939393 scopus 로고    scopus 로고
    • Diabetic nephropathy-emerging epigenetic mechanisms
    • Kato, M., Natarajan, R. Diabetic nephropathy-emerging epigenetic mechanisms. Nat Rev Nephrol 10, 517-530, doi: 10. 1038/nrneph. 2014. 116 (2014).
    • (2014) Nat Rev Nephrol , vol.10 , pp. 517-530
    • Kato, M.1    Natarajan, R.2
  • 16
    • 84984607311 scopus 로고    scopus 로고
    • MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis
    • Gomez, I. G., Nakagawa, N., Duffield, J. S. MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. American Journal of Physiology-Renal Physiology 310, F931-F944, doi: 10. 1152/ajprenal. 00523. 2015 (2016).
    • (2016) American Journal of Physiology-Renal Physiology , vol.310 , pp. F931-F944
    • Gomez, I.G.1    Nakagawa, N.2    Duffield, J.S.3
  • 17
    • 84960956976 scopus 로고    scopus 로고
    • MicroRNAs in Diabetic Nephropathy: From Biomarkers to Therapy
    • Simpson, K., Wonnacott, A., Fraser, D. J., Bowen, T. MicroRNAs in Diabetic Nephropathy: From Biomarkers to Therapy. Current Diabetes Reports 16, 1-7, doi: 10. 1007/s11892-016-0724-8 (2016).
    • (2016) Current Diabetes Reports , vol.16 , pp. 1-7
    • Simpson, K.1    Wonnacott, A.2    Fraser, D.J.3    Bowen, T.4
  • 18
    • 84878912696 scopus 로고    scopus 로고
    • TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy
    • Kato, M. et al. TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci Signal 6, ra43, doi: 10. 1126/scisignal. 2003389 (2013).
    • (2013) Sci Signal , vol.6 , pp. 43
    • Kato, M.1
  • 19
    • 77955611511 scopus 로고    scopus 로고
    • MiR-192 mediates TGF-beta/Smad3-driven renal fibrosis
    • ASN. 2010020134 [pii]10. 1681/ASN. 2010020134
    • Chung, A. C., Huang, X. R., Meng, X., Lan, H. Y. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 21, 1317-1325, doi: ASN. 2010020134 [pii]10. 1681/ASN. 2010020134 (2010).
    • (2010) J Am Soc Nephrol , vol.21 , pp. 1317-1325
    • Chung, A.C.1    Huang, X.R.2    Meng, X.3    Lan, H.Y.4
  • 20
    • 67650085171 scopus 로고    scopus 로고
    • TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN
    • Kato, M. et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11, 881-889, doi: 10. 1038/ncb1897 (2009).
    • (2009) Nat Cell Biol , vol.11 , pp. 881-889
    • Kato, M.1
  • 21
    • 84943634487 scopus 로고    scopus 로고
    • Transcription Factor Hepatocyte Nuclear Factor-1? (HNF-1? ) Regulates MicroRNA-200 Expression through a Long Noncoding RNA
    • Hajarnis, S. S. et al. Transcription Factor Hepatocyte Nuclear Factor-1? (HNF-1? ) Regulates MicroRNA-200 Expression through a Long Noncoding RNA. Journal of Biological Chemistry 290, 24793-24805, doi: 10. 1074/jbc. M115. 670646 (2015).
    • (2015) Journal of Biological Chemistry , vol.290 , pp. 24793-24805
    • Hajarnis, S.S.1
  • 22
    • 84989809705 scopus 로고    scopus 로고
    • An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy
    • Kato, M. et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nature communications 7, 12864, doi: 10. 1038/ncomms12864 http://www. nature. com/articles/ncomms12864#supplementary-information (2016).
    • (2016) Nature Communications , vol.7 , pp. 12864
    • Kato, M.1
  • 23
    • 0026747761 scopus 로고
    • Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA
    • Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905-914 (1992).
    • (1992) Cell , vol.69 , pp. 905-914
    • Lewis, J.D.1
  • 24
    • 0027495467 scopus 로고
    • Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2
    • Nan, X., Meehan, R. R., Bird, A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21, 4886-4892 (1993).
    • (1993) Nucleic Acids Res , vol.21 , pp. 4886-4892
    • Nan, X.1    Meehan, R.R.2    Bird, A.3
  • 25
    • 0032574977 scopus 로고    scopus 로고
    • Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex
    • Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386-389, doi: 10. 1038/30764 (1998).
    • (1998) Nature , vol.393 , pp. 386-389
    • Nan, X.1
  • 26
  • 27
    • 84895740923 scopus 로고    scopus 로고
    • MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex
    • Cheng, T. L. et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell 28, 547-560, doi: 10. 1016/j. devcel. 2014. 01. 032 (2014).
    • (2014) Dev Cell , vol.28 , pp. 547-560
    • Cheng, T.L.1
  • 28
    • 84895761370 scopus 로고    scopus 로고
    • MeCP2 caught moonlighting as a suppressor of MicroRNA processing
    • Woo, J. S., Kim, V. N. MeCP2 caught moonlighting as a suppressor of MicroRNA processing. Dev Cell 28, 477-478, doi: 10. 1016/j. devcel. 2014. 02. 015 (2014).
    • (2014) Dev Cell , vol.28 , pp. 477-478
    • Woo, J.S.1    Kim, V.N.2
  • 29
    • 9144224451 scopus 로고    scopus 로고
    • Processing of primary microRNAs by the Microprocessor complex
    • Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235, doi: 10. 1038/nature03049 (2004).
    • (2004) Nature , vol.432 , pp. 231-235
    • Denli, A.M.1    Tops, B.B.2    Plasterk, R.H.3    Ketting, R.F.4    Hannon, G.J.5
  • 30
    • 9144225636 scopus 로고    scopus 로고
    • The Microprocessor complex mediates the genesis of microRNAs
    • Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240, doi: 10. 1038/nature03120 (2004).
    • (2004) Nature , vol.432 , pp. 235-240
    • Gregory, R.I.1
  • 31
    • 10644234841 scopus 로고    scopus 로고
    • The Drosha-DGCR8 complex in primary microRNA processing
    • Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes & development 18, 3016-3027, doi: 10. 1101/gad. 1262504 (2004).
    • (2004) Genes & Development , vol.18 , pp. 3016-3027
    • Han, J.1
  • 32
    • 0141843656 scopus 로고    scopus 로고
    • The nuclear RNase III Drosha initiates microRNA processing
    • Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419, doi: 10. 1038/nature01957 (2003).
    • (2003) Nature , vol.425 , pp. 415-419
    • Lee, Y.1
  • 33
    • 73849097618 scopus 로고    scopus 로고
    • Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis
    • Bracaglia, G. et al. Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO reports 10, 1327-1333, doi: 10. 1038/embor. 2009. 217 (2009).
    • (2009) EMBO Reports , vol.10 , pp. 1327-1333
    • Bracaglia, G.1
  • 34
    • 84859589441 scopus 로고    scopus 로고
    • A systems approach identifies HIPK2 as a key regulator of kidney fibrosis
    • Jin, Y. et al. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nature medicine 18, 580-588, doi: 10. 1038/nm. 2685 (2012).
    • (2012) Nature Medicine , vol.18 , pp. 580-588
    • Jin, Y.1
  • 35
    • 84918834795 scopus 로고    scopus 로고
    • Repression of let-7 by transforming growth factor-beta1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions
    • Park, J. T. et al. Repression of let-7 by transforming growth factor-beta1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions. American journal of physiology. Renal physiology 307, F1390-1403, doi: 10. 1152/ajprenal. 00458. 2014 (2014).
    • (2014) American Journal of Physiology. Renal Physiology , vol.307 , pp. F1390-1403
    • Park, J.T.1
  • 36
    • 67349089523 scopus 로고    scopus 로고
    • MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice
    • S0014-5793(09)00385-8[pii]10.1016/j.febslet.2009.05.021
    • Zhang, Z. et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 583, 2009-2014, doi: S0014-5793(09)00385-8 [pii]10. 1016/j. febslet. 2009. 05. 021 (2009).
    • (2009) FEBS Lett , vol.583 , pp. 2009-2014
    • Zhang, Z.1
  • 37
    • 78149352664 scopus 로고    scopus 로고
    • Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy
    • 000322105[pii]10.1159/000322105
    • Fu, Y. et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am J Nephrol 32, 581-589, doi: 000322105 [pii] 10. 1159/000322105 (2010).
    • (2010) Am J Nephrol , vol.32 , pp. 581-589
    • Fu, Y.1
  • 38
    • 84863115180 scopus 로고    scopus 로고
    • Suppression of microRNA-29 Expression by TGF-beta1 Promotes Collagen Expression and Renal Fibrosis
    • ASN. 2011010055 [pii]10.1681/ASN.2011010055
    • Wang, B. et al. Suppression of microRNA-29 Expression by TGF-beta1 Promotes Collagen Expression and Renal Fibrosis. J Am Soc Nephrol 23, 252-265, doi: ASN. 2011010055 [pii] 10. 1681/ASN. 2011010055 (2012).
    • (2012) J Am Soc Nephrol , vol.23 , pp. 252-265
    • Wang, B.1
  • 39
    • 84897577501 scopus 로고    scopus 로고
    • MicroRNA-29b inhibits diabetic nephropathy in db/db mice
    • Chen, H. Y. et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther 22, 842-853, doi: 10. 1038/mt. 2013. 235 (2014).
    • (2014) Mol Ther , vol.22 , pp. 842-853
    • Chen, H.Y.1
  • 40
    • 77649270362 scopus 로고    scopus 로고
    • High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells
    • Du, B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 584, 811-816, doi: 10. 1016/j. febslet. 2009. 12. 053 (2010).
    • (2010) FEBS Lett , vol.584 , pp. 811-816
    • Du, B.1
  • 41
    • 84655163918 scopus 로고    scopus 로고
    • MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy
    • Zhang, Z. et al. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Letters 586, 20-26, doi: http://dx. doi. org/10. 1016/j. febslet. 2011. 07. 042 (2012).
    • (2012) FEBS Letters , vol.586 , pp. 20-26
    • Zhang, Z.1
  • 42
    • 84875711412 scopus 로고    scopus 로고
    • Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFbetaR1
    • Brennan, E. P. et al. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFbetaR1. J Am Soc Nephrol 24, 627-637, doi: 10. 1681/ASN. 2012060550 (2013).
    • (2013) J Am Soc Nephrol , vol.24 , pp. 627-637
    • Brennan, E.P.1
  • 43
    • 84895900338 scopus 로고    scopus 로고
    • Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b
    • Wang, B. et al. Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney international 85, 352-361, doi: 10. 1038/ki. 2013. 372 (2014).
    • (2014) Kidney International , vol.85 , pp. 352-361
    • Wang, B.1
  • 44
    • 84908093833 scopus 로고    scopus 로고
    • Transforming growth factor beta1 (TGF-beta1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells
    • Castro, N. E., Kato, M., Park, J. T., Natarajan, R. Transforming growth factor beta1 (TGF-beta1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. J Biol Chem 289, 29001-29013, doi: 10. 1074/jbc. M114. 600783 (2014).
    • (2014) J Biol Chem , vol.289 , pp. 29001-29013
    • Castro, N.E.1    Kato, M.2    Park, J.T.3    Natarajan, R.4
  • 45
    • 77954941124 scopus 로고    scopus 로고
    • Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions
    • Long, J., Wang, Y., Wang, W., Chang, B. H., Danesh, F. R. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem 285, 23457-23465 (2010).
    • (2010) J Biol Chem , vol.285 , pp. 23457-23465
    • Long, J.1    Wang, Y.2    Wang, W.3    Chang, B.H.4    Danesh, F.R.5
  • 46
    • 84877046009 scopus 로고    scopus 로고
    • Nox4 and diabetic nephropathy: With a friend like this who needs enemies
    • Gorin, Y., Block, K. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free radical biology & medicine 61, 130-142, doi: 10. 1016/j. freeradbiomed. 2013. 03. 014 (2013).
    • (2013) Free Radical Biology & Medicine , vol.61 , pp. 130-142
    • Gorin, Y.1    Block, K.2
  • 47
    • 78649913769 scopus 로고    scopus 로고
    • Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: Implications in type 2 diabetic nephropathy
    • Sedeek, M. et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. American journal of physiology. Renal physiology 299, F1348-1358, doi: 10. 1152/ajprenal. 00028. 2010 (2010).
    • (2010) American Journal of Physiology. Renal Physiology , vol.299 , pp. F1348-1358
    • Sedeek, M.1
  • 48
    • 84970937384 scopus 로고    scopus 로고
    • Metabolomics Reveals a Key Role for Fumarate in Mediating the Effects of NADPH Oxidase 4 in Diabetic Kidney Disease
    • You, Y.-H., Quach, T., Saito, R., Pham, J., Sharma, K. Metabolomics Reveals a Key Role for Fumarate in Mediating the Effects of NADPH Oxidase 4 in Diabetic Kidney Disease. Journal of the American Society of Nephrology 27, 466-481, doi: 10. 1681/asn. 2015030302 (2016).
    • (2016) Journal of the American Society of Nephrology , vol.27 , pp. 466-481
    • You, Y.-H.1    Quach, T.2    Saito, R.3    Pham, J.4    Sharma, K.5
  • 49
    • 84901835198 scopus 로고    scopus 로고
    • Genetic Targeting or Pharmacologic Inhibition of NADPH Oxidase Nox4 Provides Renoprotection in Long-Term Diabetic Nephropathy
    • Jha, J. C. et al. Genetic Targeting or Pharmacologic Inhibition of NADPH Oxidase Nox4 Provides Renoprotection in Long-Term Diabetic Nephropathy. Journal of the American Society of Nephrology 25, 1237-1254, doi: 10. 1681/asn. 2013070810 (2014).
    • (2014) Journal of the American Society of Nephrology , vol.25 , pp. 1237-1254
    • Jha, J.C.1
  • 50
    • 84953353492 scopus 로고    scopus 로고
    • Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy
    • Jha, J. C. et al. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 59, 379-389, doi: 10. 1007/s00125-015-3796-0 (2016).
    • (2016) Diabetologia , vol.59 , pp. 379-389
    • Jha, J.C.1
  • 52
    • 65249146132 scopus 로고    scopus 로고
    • The miR-106b-25 Polycistron, Activated by Genomic Amplification, Functions as an Oncogene by Suppressing p21 and Bim
    • Kan, T. et al. The miR-106b-25 Polycistron, Activated by Genomic Amplification, Functions as an Oncogene by Suppressing p21 and Bim. Gastroenterology 136, 1689-1700, doi: http://dx. doi. org/10. 1053/j. gastro. 2009. 02. 002 (2009).
    • (2009) Gastroenterology , vol.136 , pp. 1689-1700
    • Kan, T.1
  • 53
    • 84899482237 scopus 로고    scopus 로고
    • Inhibition of miR-25 improves cardiac contractility in the failing heart
    • Wahlquist, C. et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508, 531-535, doi: 10. 1038/nature13073 (2014).
    • (2014) Nature , vol.508 , pp. 531-535
    • Wahlquist, C.1
  • 54
    • 54249158400 scopus 로고    scopus 로고
    • Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling
    • Petrocca, F., Vecchione, A., Croce, C. M. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer research 68, 8191-8194, doi: 10. 1158/0008-5472. CAN-08-1768 (2008).
    • (2008) Cancer Research , vol.68 , pp. 8191-8194
    • Petrocca, F.1    Vecchione, A.2    Croce, C.M.3
  • 55
    • 33847682663 scopus 로고    scopus 로고
    • MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors
    • Kato, M. et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104, 3432-3437, doi: 10. 1073/pnas. 0611192104 (2007).
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 3432-3437
    • Kato, M.1
  • 56
    • 79960418116 scopus 로고    scopus 로고
    • MicroRNA-21 Orchestrates High Glucose-induced Signals to
    • TOR Complex 1, Resulting in Renal Cell Pathology in Diabetes M110. 208066 [pii] 10. 1074/jbc. M110. 208066
    • Dey, N. et al. MicroRNA-21 Orchestrates High Glucose-induced Signals to TOR Complex 1, Resulting in Renal Cell Pathology in Diabetes. J Biol Chem 286, 25586-25603, doi: M110. 208066 [pii] 10. 1074/jbc. M110. 208066 (2011).
    • (2011) J Biol Chem , vol.286 , pp. 25586-25603
    • Dey, N.1
  • 57
    • 80052248898 scopus 로고    scopus 로고
    • A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells
    • Kato, M. et al. A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int 80, 358-368, doi: 10. 1038/ki. 2011. 43 (2011).
    • (2011) Kidney Int , vol.80 , pp. 358-368
    • Kato, M.1
  • 58
    • 84881239289 scopus 로고    scopus 로고
    • FOG2 protein down-regulation by transforming growth factor-beta1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy
    • Park, J. T. et al. FOG2 protein down-regulation by transforming growth factor-beta1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem 288, 22469-22480, doi: 10. 1074/jbc. M113. 453043 (2013).
    • (2013) J Biol Chem , vol.288 , pp. 22469-22480
    • Park, J.T.1
  • 59
    • 46449125390 scopus 로고    scopus 로고
    • Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR
    • Winter, M. et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nature cell biology 10, 812-824, doi: 10. 1038/ncb1743 (2008).
    • (2008) Nature Cell Biology , vol.10 , pp. 812-824
    • Winter, M.1
  • 60
    • 66749092056 scopus 로고    scopus 로고
    • From top to bottom: The two faces of HIPK2 for regulation of the hypoxic response
    • Calzado, M. A., De La Vega, L., Munoz, E., Schmitz, M. L. From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response. Cell cycle (Georgetown, Tex. ) 8, 1659-1664 (2009).
    • (2009) Cell Cycle (Georgetown, Tex. ) , vol.8 , pp. 1659-1664
    • Calzado, M.A.1    De La Vega, L.2    Munoz, E.3    Schmitz, M.L.4
  • 61
    • 0032830639 scopus 로고    scopus 로고
    • Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2
    • Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature genetics 23, 185-188, doi: 10. 1038/13810 (1999).
    • (1999) Nature Genetics , vol.23 , pp. 185-188
    • Amir, R.E.1
  • 62
    • 35648978121 scopus 로고    scopus 로고
    • The story of Rett syndrome: From clinic to neurobiology
    • Chahrour, M., Zoghbi, H. Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422-437, doi: 10. 1016/j. neuron. 2007. 10. 001 (2007).
    • (2007) Neuron , vol.56 , pp. 422-437
    • Chahrour, M.1    Zoghbi, H.Y.2
  • 63
    • 84922367562 scopus 로고    scopus 로고
    • MeCP2 post-translational modifications: A mechanism to control its involvement in synaptic plasticity and homeostasis
    • Bellini, E. et al. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Frontiers in cellular neuroscience 8, 236, doi: 10. 3389/fncel. 2014. 00236 (2014).
    • (2014) Frontiers in Cellular Neuroscience , vol.8 , pp. 236
    • Bellini, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.