메뉴 건너뛰기




Volumn 4, Issue January, 2014, Pages 3266-3274

Learning distributed representations for structured output prediction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; FORECASTING; INFORMATION RETRIEVAL SYSTEMS; INFORMATION SCIENCE; TENSORS;

EID: 84937874740     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (37)

References (27)
  • 8
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Conference on Empirical Methods in Natural Language Processing, 2002.
    • (2002) Conference on Empirical Methods in Natural Language Processing
    • Collins, M.1
  • 12
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Machine Learning, 2001.
    • (2001) Machine Learning
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 21
    • 0025516779 scopus 로고
    • Tensor product variable binding and the representation of symbolic structures in connectionist systems
    • P. Smolensky. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial intelligence, 46(1), 1990.
    • (1990) Artificial Intelligence , vol.46 , Issue.1
    • Smolensky, P.1
  • 27
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38(1), 1996.
    • (1996) SIAM Review , vol.38 , Issue.1
    • Vandenberghe, L.1    Boyd, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.