메뉴 건너뛰기




Volumn , Issue , 2010, Pages 423-430

Large scale max-margin multi-label classification with priors

Author keywords

[No Author keywords available]

Indexed keywords

DATA POINTS; LABEL SPACE; MULTI-LABEL CLASSIFICATIONS; OPTIMISATIONS; ORDERS OF MAGNITUDE; PREDICTION ACCURACY; PREDICTION FUNCTION; PROBLEM COMPLEXITY; TRAINING SETS;

EID: 77956531458     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (148)

References (22)
  • 3
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X. and Brown, C. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 4
    • 84880887867 scopus 로고    scopus 로고
    • Exploiting known taxonomies in learning overlapping concepts
    • Cai, L. and Hofmann, T. Exploiting known taxonomies in learning overlapping concepts. In IJCAI, pp. 714-719, 2007.
    • (2007) IJCAI , pp. 714-719
    • Cai, L.1    Hofmann, T.2
  • 5
    • 29644434908 scopus 로고    scopus 로고
    • Incremental algorithms for hierarchical classification
    • Cesa-Bianchi, N., Gentile, C. and Zaniboni, L. Incremental algorithms for hierarchical classification. JMLR, 7:31-54, 2006.
    • (2006) JMLR , vol.7 , pp. 31-54
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 7
    • 0142228873 scopus 로고    scopus 로고
    • A family of additive online algorithms for category ranking
    • Crammer, K. and Singer, Y. A family of additive online algorithms for category ranking. JMLR, 3:1025- 1058, 2003.
    • (2003) JMLR , vol.3 , pp. 1025-1058
    • Crammer, K.1    Singer, Y.2
  • 8
    • 2542631648 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Elisseeff, A. and Weston, J. A kernel method for multi-labelled classification. In NIPS, pp. 681-687, 2001.
    • (2001) NIPS , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 9
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R. and Lin, C.-J. Liblinear: A library for large linear classification. JMLR, 9:1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 11
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • Hsu, D., Kakade, S., Langford, J. and Zhang, T. Multi-label prediction via compressed sensing. In NIPS, 2009.
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 12
    • 70350627315 scopus 로고    scopus 로고
    • Multi-label multiple kernel learning
    • Ji, S., Sun, L., Jin, R., and Ye, J. Multi-label multiple kernel learning. In NIPS, pp. 777-784, 2008.
    • (2008) NIPS , pp. 777-784
    • Ji, S.1    Sun, L.2    Jin, R.3    Ye, J.4
  • 13
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • Lampert, C. H., Nickisch, H. and Harmeling, S. Learning to detect unseen object classes by between- class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 14
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Lewis, D., Yang, Y., Rose, T. and Li, F. RCV1: A new benchmark collection for text categorization research. JMLR, 5:361-397, 2004.
    • (2004) JMLR , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 15
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by EM
    • McCallum, A. Multi-label text classification with a mixture model trained by EM. In AAAI 99 Workshop on Text Learning, 1999.
    • (1999) AAAI 99 Workshop on Text Learning
    • McCallum, A.1
  • 16
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin, R. and Khautau, A. In defense of one-vs-all classification. JMLR, 5:101-141, 2004.
    • (2004) JMLR , vol.5 , pp. 101-141
    • Rifkin, R.1    Khautau, A.2
  • 17
    • 33745768424 scopus 로고    scopus 로고
    • Kernel-based learning of hierarchical multilabel classification models
    • Rousu, J., Saunders, C., Szedmak, S. and Shawe- Taylor, J. Kernel-based learning of hierarchical multilabel classification models. JMLR, 7:1601-1626, 2006.
    • (2006) JMLR , vol.7 , pp. 1601-1626
    • Rousu, J.1    Saunders, C.2    Szedmak, S.3    Shawe-Taylor, J.4
  • 18
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • Schapire, R. E. and Singer, Y. Boostexter: A boosting- based system for text categorization. ML, 39(2/3): 135-168, 2000.
    • (2000) ML , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 19
    • 34547172608 scopus 로고    scopus 로고
    • The challenge problem for automated detection of 101 semantic concepts in multimedia
    • Snoek, C., Worring, M., van Gemert, J., Geusebroek, J.-M. and Smeulders, A. The challenge problem for automated detection of 101 semantic concepts in multimedia. In ACM Multimedia, pp. 421-430, 2006.
    • (2006) ACM Multimedia , pp. 421-430
    • Snoek, C.1    Worring, M.2    Van Gemert, J.3    Geusebroek, J.-M.4    Smeulders, A.5
  • 21
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis, I., Joachims, T., Hofmann, T. and Al- tun, Y. Large margin methods for structured and interdependent output variables. JMLR, 6:1453-1484, 2005.
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Al- Tun, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.