메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Submodular multi-label learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMBINATORIAL OPTIMIZATION; LEARNING SYSTEMS;

EID: 85162354773     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (58)

References (21)
  • 1
    • 77956522919 scopus 로고    scopus 로고
    • Bayes optimal multilabel classification via probabilistic classifier chains
    • K. Dembczynski, W. Cheng, and E. Hüllermeier, "Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains," in ICML, 2010.
    • (2010) ICML
    • Dembczynski, K.1    Cheng, W.2    Hüllermeier, E.3
  • 2
    • 84860617298 scopus 로고    scopus 로고
    • Bayesian online learning for multi-label and multi-variate performance measures
    • X. Zhang, T. Graepel, and R. Herbrich, "Bayesian Online Learning for Multi-label and Multi-variate Performance Measures," in AISTATS, 2010.
    • (2010) AISTATS
    • Zhang, X.1    Graepel, T.2    Herbrich, R.3
  • 3
    • 77958600377 scopus 로고    scopus 로고
    • Multi-label prediction via sparse infinite CCA
    • P. Rai and H. Daume, "Multi-Label Prediction via Sparse Infinite CCA," in NIPS, 2009.
    • (2009) NIPS
    • Rai, P.1    Daume, H.2
  • 5
    • 33745768424 scopus 로고    scopus 로고
    • Kernel-based learning of hierarchical multilabel classification models
    • December
    • J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, "Kernel-based learning of hierarchical multilabel classification models," JMLR, vol. 7, pp. 1601-1626, December 2006.
    • (2006) JMLR , vol.7 , pp. 1601-1626
    • Rousu, J.1    Saunders, C.2    Szedmak, S.3    Shawe-Taylor, J.4
  • 6
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • April
    • Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya, "Hierarchical multi-label prediction of gene function," Bioinformatics, vol. 22, pp. 830-836, April 2006.
    • (2006) Bioinformatics , vol.22 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 7
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, "TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Auto-Annotation," in ICCV, 2009.
    • (2009) ICCV
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 8
    • 70349336577 scopus 로고    scopus 로고
    • Maximum expected F-measure training of logistic regression models
    • M. Jansche, "Maximum expected F-measure training of logistic regression models," HLT, 2005.
    • (2005) HLT
    • Jansche, M.1
  • 9
    • 80052877810 scopus 로고    scopus 로고
    • Learning structured prediction models for interactive image labeling
    • T. Mensink, J. Verbeek, and G. Csurka, "Learning structured prediction models for interactive image labeling," in CVPR, 2011.
    • (2011) CVPR
    • Mensink, T.1    Verbeek, J.2    Csurka, G.3
  • 10
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," JMLR, vol. 6, pp. 1453-1484, 2005.
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 11
    • 85162000125 scopus 로고    scopus 로고
    • Reverse multi-label learning
    • J. Petterson and T. Caetano, "Reverse multi-label learning," in NIPS, 2010.
    • (2010) NIPS
    • Petterson, J.1    Caetano, T.2
  • 12
    • 80053440655 scopus 로고    scopus 로고
    • Multi-label classification on tree- and DAG-structured hierarchies
    • W. Bi and J. Kwok, "Multi-Label Classification on Tree- and DAG-Structured Hierarchies," in ICML, 2011.
    • (2011) ICML
    • Bi, W.1    Kwok, J.2
  • 14
    • 85162374806 scopus 로고    scopus 로고
    • Large scale max-margin multi-label classification with prior knowledge about densely correlated labels
    • B. Hariharan, S. V. N. Vishwanathan, and M. Varma, "Large Scale Max-Margin Multi-Label Classification with Prior Knowledge about Densely Correlated Labels," in ICML, 2010.
    • (2010) ICML
    • Hariharan, B.1    Vishwanathan, S.V.N.2    Varma, M.3
  • 16
    • 52949089060 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • G. Tsoumakas and I. P. Vlahavas, "Random k-labelsets: An ensemble method for multilabel classification," in ECML, 2007.
    • (2007) ECML
    • Tsoumakas, G.1    Vlahavas, I.P.2
  • 17
    • 80053436350 scopus 로고    scopus 로고
    • Bayesian CCA via Group Sparsity
    • S. Virtanen, A. Klami, and S. Kaski, "Bayesian CCA via Group Sparsity," in ICML, 2011.
    • (2011) ICML
    • Virtanen, S.1    Klami, A.2    Kaski, S.3
  • 18
    • 76749161402 scopus 로고    scopus 로고
    • Bundle methods for regularized risk minimization
    • C. H. Teo, S. V. N. Vishwanathan, A. J. Smola, and Q. V. Le, "Bundle methods for regularized risk minimization," JMLR, vol. 11, pp. 311-365, 2010.
    • (2010) JMLR , vol.11 , pp. 311-365
    • Teo, C.H.1    Vishwanathan, S.V.N.2    Smola, A.J.3    Le, Q.V.4
  • 19
    • 57949110318 scopus 로고    scopus 로고
    • Submodular approximation: Sampling-based algorithms and lower bounds
    • Z. Svitkina and L. Fleischer, "Submodular approximation: Sampling-based algorithms and lower bounds," in FOCS, 2008.
    • (2008) FOCS
    • Svitkina, Z.1    Fleischer, L.2
  • 20
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • July
    • M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognition, vol. 40, pp. 2038-2048, July 2007.
    • (2007) Pattern Recognition , vol.40 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 21
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision," IEEE Trans. PAMI, 2004.
    • (2004) IEEE Trans. PAMI
    • Boykov, Y.1    Kolmogorov, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.