-
1
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
K. Dembczynski, W. Cheng, and E. Hüllermeier, "Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains," in ICML, 2010.
-
(2010)
ICML
-
-
Dembczynski, K.1
Cheng, W.2
Hüllermeier, E.3
-
2
-
-
84860617298
-
Bayesian online learning for multi-label and multi-variate performance measures
-
X. Zhang, T. Graepel, and R. Herbrich, "Bayesian Online Learning for Multi-label and Multi-variate Performance Measures," in AISTATS, 2010.
-
(2010)
AISTATS
-
-
Zhang, X.1
Graepel, T.2
Herbrich, R.3
-
3
-
-
77958600377
-
Multi-label prediction via sparse infinite CCA
-
P. Rai and H. Daume, "Multi-Label Prediction via Sparse Infinite CCA," in NIPS, 2009.
-
(2009)
NIPS
-
-
Rai, P.1
Daume, H.2
-
4
-
-
77952069653
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification.," in ECML/PKDD, 2009.
-
(2009)
ECML/PKDD
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
5
-
-
33745768424
-
Kernel-based learning of hierarchical multilabel classification models
-
December
-
J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, "Kernel-based learning of hierarchical multilabel classification models," JMLR, vol. 7, pp. 1601-1626, December 2006.
-
(2006)
JMLR
, vol.7
, pp. 1601-1626
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
6
-
-
33645323768
-
Hierarchical multi-label prediction of gene function
-
April
-
Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya, "Hierarchical multi-label prediction of gene function," Bioinformatics, vol. 22, pp. 830-836, April 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 830-836
-
-
Barutcuoglu, Z.1
Schapire, R.E.2
Troyanskaya, O.G.3
-
7
-
-
77953202699
-
Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
-
M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, "TagProp: Discriminative Metric Learning in Nearest Neighbor Models for Image Auto-Annotation," in ICCV, 2009.
-
(2009)
ICCV
-
-
Guillaumin, M.1
Mensink, T.2
Verbeek, J.3
Schmid, C.4
-
8
-
-
70349336577
-
Maximum expected F-measure training of logistic regression models
-
M. Jansche, "Maximum expected F-measure training of logistic regression models," HLT, 2005.
-
(2005)
HLT
-
-
Jansche, M.1
-
9
-
-
80052877810
-
Learning structured prediction models for interactive image labeling
-
T. Mensink, J. Verbeek, and G. Csurka, "Learning structured prediction models for interactive image labeling," in CVPR, 2011.
-
(2011)
CVPR
-
-
Mensink, T.1
Verbeek, J.2
Csurka, G.3
-
10
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," JMLR, vol. 6, pp. 1453-1484, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
11
-
-
85162000125
-
Reverse multi-label learning
-
J. Petterson and T. Caetano, "Reverse multi-label learning," in NIPS, 2010.
-
(2010)
NIPS
-
-
Petterson, J.1
Caetano, T.2
-
12
-
-
80053440655
-
Multi-label classification on tree- and DAG-structured hierarchies
-
W. Bi and J. Kwok, "Multi-Label Classification on Tree- and DAG-Structured Hierarchies," in ICML, 2011.
-
(2011)
ICML
-
-
Bi, W.1
Kwok, J.2
-
14
-
-
85162374806
-
Large scale max-margin multi-label classification with prior knowledge about densely correlated labels
-
B. Hariharan, S. V. N. Vishwanathan, and M. Varma, "Large Scale Max-Margin Multi-Label Classification with Prior Knowledge about Densely Correlated Labels," in ICML, 2010.
-
(2010)
ICML
-
-
Hariharan, B.1
Vishwanathan, S.V.N.2
Varma, M.3
-
16
-
-
52949089060
-
Random k-labelsets: An ensemble method for multilabel classification
-
G. Tsoumakas and I. P. Vlahavas, "Random k-labelsets: An ensemble method for multilabel classification," in ECML, 2007.
-
(2007)
ECML
-
-
Tsoumakas, G.1
Vlahavas, I.P.2
-
18
-
-
76749161402
-
Bundle methods for regularized risk minimization
-
C. H. Teo, S. V. N. Vishwanathan, A. J. Smola, and Q. V. Le, "Bundle methods for regularized risk minimization," JMLR, vol. 11, pp. 311-365, 2010.
-
(2010)
JMLR
, vol.11
, pp. 311-365
-
-
Teo, C.H.1
Vishwanathan, S.V.N.2
Smola, A.J.3
Le, Q.V.4
-
19
-
-
57949110318
-
Submodular approximation: Sampling-based algorithms and lower bounds
-
Z. Svitkina and L. Fleischer, "Submodular approximation: Sampling-based algorithms and lower bounds," in FOCS, 2008.
-
(2008)
FOCS
-
-
Svitkina, Z.1
Fleischer, L.2
-
20
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
July
-
M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognition, vol. 40, pp. 2038-2048, July 2007.
-
(2007)
Pattern Recognition
, vol.40
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
21
-
-
4344598245
-
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
-
Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision," IEEE Trans. PAMI, 2004.
-
(2004)
IEEE Trans. PAMI
-
-
Boykov, Y.1
Kolmogorov, V.2
|