-
1
-
-
79958158122
-
Grey relational analysis based on instance based learning approach for classification of risks of occupational low back disorders
-
Akay, D. (2011). Grey relational analysis based on instance based learning approach for classification of risks of occupational low back disorders. Safety Science, 49, 1277–1282. doi:http://dx.doi.org/10.1016/j.ssci.2011.04.018
-
(2011)
Safety Science
, vol.49
, pp. 1277-1282
-
-
Akay, D.1
-
3
-
-
0027271787
-
Predicting defects in disk drive manufacturing: A case study in high dimensional classification
-
Los Alamitos, CA
-
Apte, C., Weiss, S., & Grout, G. (1993). Predicting defects in disk drive manufacturing: A case study in high dimensional classification. In IEEE Annual Computer Science Conference on Artificial Intelligence in Application (pp. 212–218). Los Alamitos, CA.
-
(1993)
IEEE Annual Computer Science Conference on Artificial Intelligence in Application
, pp. 212-218
-
-
Apte, C.1
Weiss, S.2
Grout, G.3
-
4
-
-
84881663866
-
A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization
-
Azadeh, A., Saberi, M., Kazem, A., Ebrahimipour, V., Nourmohammadzadeh, A., & Saberi, Z. (2013). A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization. Applied Soft Computing, 13, 1478–1485. doi:http://dx.doi.org/10.1016/j.asoc.2012.06.020
-
(2013)
Applied Soft Computing
, vol.13
, pp. 1478-1485
-
-
Azadeh, A.1
Saberi, M.2
Kazem, A.3
Ebrahimipour, V.4
Nourmohammadzadeh, A.5
Saberi, Z.6
-
5
-
-
84880114535
-
Decision tree induction in high dimensional, hierarchically distributed databases
-
Newport Beach, CA
-
Bar-or, A., Schuster, A., Wolff, R., & Keren, D. (2005). Decision tree induction in high dimensional, hierarchically distributed databases. In Proceedings SI-AM International Data Mining Conference (pp. 466–470). Newport Beach, CA.
-
(2005)
Proceedings SI-AM International Data Mining Conference
, pp. 466-470
-
-
Bar-Or, A.1
Schuster, A.2
Wolff, R.3
Keren, D.4
-
8
-
-
33748938764
-
Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk
-
Borin, A., Ferrão, M. F., Mello, C., Maretto, D. A., & Poppi, R. J. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta, 579, 25–32. doi:http://dx.doi.org/10.1016/j.aca.2006.07.008
-
(2006)
Analytica Chimica Acta
, vol.579
, pp. 25-32
-
-
Borin, A.1
Ferrão, M.F.2
Mello, C.3
Maretto, D.A.4
Poppi, R.J.5
-
10
-
-
14644436970
-
Statistical learning theory for location fingerprinting in wireless LANs
-
Brunato, M., & Battiti, R. (2005). Statistical learning theory for location fingerprinting in wireless LANs. Computer Networks, 47, 825–845. doi:http://dx.doi.org/10.1016/j.comnet.2004.09.004
-
(2005)
Computer Networks
, vol.47
, pp. 825-845
-
-
Brunato, M.1
Battiti, R.2
-
11
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers & Chemistry, 26, 5–14.
-
(2001)
Computers & Chemistry
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
12
-
-
0023981451
-
The ART of adaptive pattern recognition by a self-organizing neural network
-
Carpenter, G. A., & Grossberg, S. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. Computer, 21, 77–88. doi:http://dx.doi.org/10.1109/2.33
-
(1988)
Computer
, vol.21
, pp. 77-88
-
-
Carpenter, G.A.1
Grossberg, S.2
-
13
-
-
84862283893
-
Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
-
Çaydas, U., & Ekici, S. (2010). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23, 639–650. doi:http://dx.doi.org/10.1007/s10845-010-0415-2
-
(2010)
Journal of Intelligent Manufacturing
, vol.23
, pp. 639-650
-
-
Çaydas, U.1
Ekici, S.2
-
15
-
-
69449099786
-
Another look at statistical learning theory and regularization
-
Cherkassky, V., & Ma, Y. (2009). Another look at statistical learning theory and regularization. Neural Networks, 22, 958–969. doi:http://dx.doi.org/10.1016/j.neunet.2009.04.005
-
(2009)
Neural Networks
, vol.22
, pp. 958-969
-
-
Cherkassky, V.1
Ma, Y.2
-
16
-
-
0037146388
-
Support vector machines for recognizing shifts in correlated and other manufacturing processes
-
Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research, 40, 4449–4466. doi:http://dx.doi.org/10.1080/00207540210152920
-
(2002)
International Journal of Production Research
, vol.40
, pp. 4449-4466
-
-
Chinnam, R.B.1
-
17
-
-
79952774569
-
-
(p. 10). Sammut, C. & Webb, G. I. (Eds.) (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.), New York, NY: Springer
-
Cohn, D. (2011). Active learning (p. 10). Sammut, C. & Webb, G. I. (Eds.) (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:http://dx.doi.org/10.1007/978-0-387-30164-8
-
(2011)
Active Learning
-
-
Cohn, D.1
-
18
-
-
33746791172
-
Environmental statistical process control using an augmented neural network classification approach
-
Cook, D. F., Zobel, C. W., & Wolfe, M. L. (2006). Environmental statistical process control using an augmented neural network classification approach. European Journal of Operational Research, 174, 1631–1642. doi:http://dx.doi.org/10.1016/j.ejor.2005.04.035
-
(2006)
European Journal of Operational Research
, vol.174
, pp. 1631-1642
-
-
Cook, D.F.1
Zobel, C.W.2
Wolfe, M.L.3
-
19
-
-
84861651944
-
Synergies between operations research and data mining: The emerging use of multi-objective approaches
-
Corne, D., Dhaenens, C., & Jourdan, L. (2012). Synergies between operations research and data mining: The emerging use of multi-objective approaches. European Journal of Operational Research, 221, 469–479. doi:http://dx.doi.org/10.1016/j.ejor.2012.03.039
-
(2012)
European Journal of Operational Research
, vol.221
, pp. 469-479
-
-
Corne, D.1
Dhaenens, C.2
Jourdan, L.3
-
20
-
-
34249753618
-
Support-vector networks
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
21
-
-
84938768734
-
Smart manufacturing
-
Davis, J., Edgar, T., Graybill, R., Korambath, P., Schott, B., Swink, D., & Wetzel, J. (2015). Smart manufacturing. Annual Review of Chemical and Biomolecular Engineering, 6, 141–160. doi:http://dx.doi.org/10.1146/annurev-chembioeng-061114-123255
-
(2015)
Annual Review of Chemical and Biomolecular Engineering
, vol.6
, pp. 141-160
-
-
Davis, J.1
Edgar, T.2
Graybill, R.3
Korambath, P.4
Schott, B.5
Swink, D.6
Wetzel, J.7
-
24
-
-
77956685340
-
Classifying very-high-dimensional data with random forests of oblique decision trees
-
F. Guil-let, G. Ritschard, D. Zighed, & H. Briand (Eds.), Berlin: Springer
-
Do, T.-N., Lenca, P., Lallich, S., & Pham, N.-K. (2010). Classifying very-high-dimensional data with random forests of oblique decision trees. In F. Guil-let, G. Ritschard, D. Zighed, & H. Briand (Eds.), Advances in knowledge discovery and management (pp. 39–55). Berlin: Springer.
-
(2010)
Advances in Knowledge Discovery and Management
, pp. 39-55
-
-
Do, T.-N.1
Lenca, P.2
Lallich, S.3
Pham, N.-K.4
-
25
-
-
84873607601
-
Reinforcement learning for production ramp-up: A Q-batch learning approach
-
Boca Raton, FL: IEEE
-
Doltsinis, S., Ferreira, P., & Lohse, N. (2012). Reinforcement learning for production ramp-up: A Q-batch learning approach. In 11 th International Conference on Machine Learning and Applications (pp. 610–615). Boca Raton, FL: IEEE. doi:http://dx.doi.org/10.1109/ICMLA.2012.113
-
(2012)
11 Th International Conference on Machine Learning and Applications
, pp. 610-615
-
-
Doltsinis, S.1
Ferreira, P.2
Lohse, N.3
-
26
-
-
84860291854
-
Making instance-based learning theory usable and understandable: The instance-based learning tool
-
Dutt, V., & Gonzalez, C. (2012). Making instance-based learning theory usable and understandable: The instance-based learning tool. Computers in Human Behavior, 28, 1227–1240. doi:http://dx.doi.org/10.1016/j.chb.2012.02.006
-
(2012)
Computers in Human Behavior
, vol.28
, pp. 1227-1240
-
-
Dutt, V.1
Gonzalez, C.2
-
27
-
-
84937410606
-
Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning
-
Elangovan, M., Sakthivel, N. R., Saravanamurugan, S., Nair, B. B., & Sugumaran, V. (2015). Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. Procedia Computer Science, 50, 282–288. doi:http://dx.doi.org/10.1016/j.procs.2015.04.047
-
(2015)
Procedia Computer Science
, vol.50
, pp. 282-288
-
-
Elangovan, M.1
Sakthivel, N.R.2
Saravanamurugan, S.3
Nair, B.B.4
Sugumaran, V.5
-
28
-
-
0037002322
-
A support vector machine approach for detection of microcalcifications
-
El-naqa, I., Yang, Y., Wernick, M. N., Galatsanos, N. P., & Nishikawa, R. M. (2002). A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging, 21, 1552–1563. doi:http://dx.doi.org/10.1109/TMI.2002.806569
-
(2002)
IEEE Transactions on Medical Imaging
, vol.21
, pp. 1552-1563
-
-
El-Naqa, I.1
Yang, Y.2
Wernick, M.N.3
Galatsanos, N.P.4
Nishikawa, R.M.5
-
29
-
-
84995893993
-
-
European Commission. (2016). Factories for the future. Retrieved from http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html
-
(2016)
Factories for the Future
-
-
-
30
-
-
0037186591
-
Regularization and statistical learning theory for data analysis
-
Evgeniou, T., Poggio, T., Pontil, M., & Verri, A. (2002). Regularization and statistical learning theory for data analysis. Computational Statistics & Data Analysis, 38, 421–432. doi:http://dx.doi.org/10.1016/S0167-9473(01)00069-X
-
(2002)
Computational Statistics & Data Analysis
, vol.38
, pp. 421-432
-
-
Evgeniou, T.1
Poggio, T.2
Pontil, M.3
Verri, A.4
-
31
-
-
0034205755
-
Statistical learning theory: A primer
-
Evgeniou, T., Pontil, M., & Poggio, T. (2000). Statistical learning theory: A primer. International Journal of Computer Vision, 38, 9–13. doi:http://dx.doi.org/10.1023/A:1008110632619
-
(2000)
International Journal of Computer Vision
, vol.38
, pp. 9-13
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
32
-
-
0034249756
-
Using inductive machine learning to support decision making in machining processes
-
Filipic, B., & Junkar, M. (2000). Using inductive machine learning to support decision making in machining processes. Computers in Industry, 43, 31–41. doi:http://dx.doi.org/10.1016/S0166-3615(00)00056-7
-
(2000)
Computers in Industry
, vol.43
, pp. 31-41
-
-
Filipic, B.1
Junkar, M.2
-
33
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119–139.
-
(1995)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
34
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906–914. doi:http://dx.doi.org/10.1093/bioinformatics/16.10.906
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.4
Schummer, M.5
Haussler, D.6
-
35
-
-
80053012604
-
Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction
-
Gagliardi, F. (2011). Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction. Artificial Intelligence in Medicine, 52, 123–139. doi:http://dx.doi.org/10.1016/j.artmed.2011.04.002
-
(2011)
Artificial Intelligence in Medicine
, vol.52
, pp. 123-139
-
-
Gagliardi, F.1
-
37
-
-
84878902846
-
Validating instance-based learning mechanisms outside of ACT-R
-
Gonzalez, C., Dutt, V., & Lebiere, C. (2013). Validating instance-based learning mechanisms outside of ACT-R. Journal of Computational Science, 4, 262–268. doi:http://dx.doi.org/10.1016/j.jocs.2011.12.001
-
(2013)
Journal of Computational Science
, vol.4
, pp. 262-268
-
-
Gonzalez, C.1
Dutt, V.2
Lebiere, C.3
-
39
-
-
85032266230
-
-
New York, NY: Springer
-
Graham, J. W. (2012). Missing data (p. 322). New York, NY: Springer.
-
(2012)
Missing Data
-
-
Graham, J.W.1
-
40
-
-
85012874502
-
First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning
-
Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., & Diepold, K. (2015). First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning. Procedia Technology, 15, 474–483.
-
(2015)
Procedia Technology
, vol.15
, pp. 474-483
-
-
Günther, J.1
Pilarski, P.M.2
Helfrich, G.3
Shen, H.4
Diepold, K.5
-
41
-
-
44949248381
-
A hybrid wavelet analysis and support vector machines in forecasting development of manufacturing
-
Guo, X., Sun, L., Li, G., & Wang, S. (2008). A hybrid wavelet analysis and support vector machines in forecasting development of manufacturing. Expert Systems with Applications, 35, 415–422. doi:http://dx.doi.org/10.1016/j.eswa.2007.07.052
-
(2008)
Expert Systems with Applications
, vol.35
, pp. 415-422
-
-
Guo, X.1
Sun, L.2
Li, G.3
Wang, S.4
-
42
-
-
0036161259
-
A gene selection method for cancer classification using Support Vector Machines
-
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). A gene selection method for cancer classification using Support Vector Machines. Machine Learning, 46, 389–422. doi:http://dx.doi.org/10.1155/2012/586246
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
43
-
-
84995941283
-
Machine learning algorithms in heavy process manufacturing
-
Hansson, K., Yella, S., Dougherty, M., & Fleyeh, H. (2016). Machine learning algorithms in heavy process manufacturing. American Journal of Intelligent Systems, 6(1), 1–13. doi:http://dx.doi.org/10.5923/j.ajis.20160601.01
-
(2016)
American Journal of Intelligent Systems
, vol.6
, Issue.1
, pp. 1-13
-
-
Hansson, K.1
Yella, S.2
Dougherty, M.3
Fleyeh, H.4
-
44
-
-
33751110224
-
Data mining in manufacturing: A review
-
Harding, J. A., Shahbaz, M., & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128, 969–976. doi:http://dx.doi.org/10.1115/1.2194554
-
(2006)
Journal of Manufacturing Science and Engineering
, vol.128
, pp. 969-976
-
-
Harding, J.A.1
Shahbaz, M.2
Kusiak, A.3
-
45
-
-
0035371125
-
An instance-based approach to pattern association learning with application to the English past tense verb domain
-
Hickey, R. J., & Martin, R. G. (2001). An instance-based approach to pattern association learning with application to the English past tense verb domain. Knowledge-Based Systems, 14, 131–136. doi:http://dx.doi.org/10.1016/S0950-7051(01)00089-2
-
(2001)
Knowledge-Based Systems
, vol.14
, pp. 131-136
-
-
Hickey, R.J.1
Martin, R.G.2
-
46
-
-
0031573117
-
Long short-term memory
-
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735–1780. doi:http://dx.doi.org/10.1162/neco.1997.9.8.1735
-
(1997)
Neural Computation
, vol.9
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
48
-
-
2442665617
-
Credit rating analysis with support vector machines and neural networks: A market comparative study
-
Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37, 543–558. doi:http://dx.doi.org/10.1016/S0167-9236(03)00086-1
-
(2004)
Decision Support Systems
, vol.37
, pp. 543-558
-
-
Huang, Z.1
Chen, H.2
Hsu, C.-J.3
Chen, W.-H.4
Wu, S.5
-
49
-
-
84893405732
-
Data clustering: A review
-
Jain, A. K., Murty, M. N., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31, 264–323. doi:http://dx.doi.org/10.1145/331499.331504
-
(1999)
ACM Computing Surveys
, vol.31
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.3
-
50
-
-
84959084287
-
A comparison of machine learning methods for cutting parameters prediction in high speed turning process
-
Jurkovic, Z., Cukor, G., Brezocnik, M., & Brajkovic, T. (2016). A comparison of machine learning methods for cutting parameters prediction in high speed turning process. Journal of Intelligent Manufacturing. doi:http://dx.doi.org/10.1007/s10845-016-1206-1
-
(2016)
Journal of Intelligent Manufacturing
-
-
Jurkovic, Z.1
Cukor, G.2
Brezocnik, M.3
Brajkovic, T.4
-
51
-
-
84995878910
-
Advanced methods for missing data
-
R. I. Kabacoff (Ed.), Shelter Island, NY: Manning Publications
-
Kabacoff, R. I. (2011). Advanced methods for missing data. In R. I. Kabacoff (Ed.), R in action: Data analysis and graphics with R (pp. 352–371). Shelter Island, NY: Manning Publications.
-
(2011)
R in Action: Data Analysis and Graphics with R
, pp. 352-371
-
-
Kabacoff, R.I.1
-
52
-
-
48149111512
-
Locally linear reconstruction for instance-based learning
-
Kang, P., & Cho, S. (2008). Locally linear reconstruction for instance-based learning. Pattern Recognition, 41, 3507–3518. doi:http://dx.doi.org/10.1016/j.patcog.2008.04.009
-
(2008)
Pattern Recognition
, vol.41
, pp. 3507-3518
-
-
Kang, P.1
Cho, S.2
-
53
-
-
84955137019
-
Semi-supervised support vector regression based on self-training with label uncertainty: An application to virtual metrology in semiconductor manufacturing
-
Kang, P., Kim, D., & Cho, S. (2016). Semi-supervised support vector regression based on self-training with label uncertainty: An application to virtual metrology in semiconductor manufacturing. Expert Systems with Applications, 51, 85–106. doi:http://dx.doi.org/10.1016/j.eswa.2015.12.027
-
(2016)
Expert Systems with Applications
, vol.51
, pp. 85-106
-
-
Kang, P.1
Kim, D.2
Cho, S.3
-
54
-
-
0037822222
-
Asymptotic behaviors of support vector machines with Gaussian kernel
-
Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15, 1667–1689. doi:http://dx.doi.org/10.1162/089976603321891855
-
(2003)
Neural Computation
, vol.15
, pp. 1667-1689
-
-
Keerthi, S.S.1
Lin, C.-J.2
-
55
-
-
56349142571
-
Knowledge based proximal support vector machines
-
Khemchandani, R., & Chandra, S. (2009). Knowledge based proximal support vector machines. European Journal of Operational Research, 195, 914–923. doi:http://dx.doi.org/10.1016/j.ejor.2007.11.023
-
(2009)
European Journal of Operational Research
, vol.195
, pp. 914-923
-
-
Khemchandani, R.1
Chandra, S.2
-
56
-
-
82255179131
-
Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing
-
Kim, D., Kang, P., Cho, S., Lee, H., & Doh, S. (2012). Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing. Expert Systems with Applications, 39, 4075–4083. doi:http://dx.doi.org/10.1016/j.eswa.2011.09.088
-
(2012)
Expert Systems with Applications
, vol.39
, pp. 4075-4083
-
-
Kim, D.1
Kang, P.2
Cho, S.3
Lee, H.4
Doh, S.5
-
57
-
-
79957992809
-
A review of data mining applications for quality improvement in manufacturing industry
-
Köksal, G., Batmaz, I., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 38, 13448–13467. doi:http://dx.doi.org/10.1016/j.eswa.2011.04.063
-
(2011)
Expert Systems with Applications
, vol.38
, pp. 13448-13467
-
-
Köksal, G.1
Batmaz, I.2
Testik, M.C.3
-
58
-
-
0035837625
-
Statistical learning control of uncertain systems: Theory and algorithms
-
Koltchinskii, V., Abdallah, C. T., Ariola, M., & Dorato, P. (2001). Statistical learning control of uncertain systems: Theory and algorithms. Applied Mathematics and Computation, 120, 31–43. doi:http://dx.doi.org/10.1016/S0096-3003(99)00283-0
-
(2001)
Applied Mathematics and Computation
, vol.120
, pp. 31-43
-
-
Koltchinskii, V.1
Abdallah, C.T.2
Ariola, M.3
Dorato, P.4
-
59
-
-
36749047332
-
Supervised machine learning: A review of classification techniques
-
Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
-
(2007)
Informatica
, vol.31
, pp. 249-268
-
-
Kotsiantis, S.B.1
-
60
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
61
-
-
80255131411
-
A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes
-
Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. Expert Systems with Applications, 39, 2590–2596. doi:http://dx.doi.org/10.1016/j.eswa.2011.08.114
-
(2012)
Expert Systems with Applications
, vol.39
, pp. 2590-2596
-
-
Kwak, D.-S.1
Kim, K.-J.2
-
64
-
-
84930630277
-
-
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. doi:http://dx.doi.org/10.1038/nature14539
-
(2015)
Deep Learning. Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
65
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1, 541–555.
-
(1989)
Neural Computation
, vol.1
, pp. 541-555
-
-
Lecun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
66
-
-
58049125538
-
Recognizing yield patterns through hybrid applications of machine learning techniques
-
Lee, J., & Ha, S. (2009). Recognizing yield patterns through hybrid applications of machine learning techniques. Information Sciences, 179, 844–850. doi:http://dx.doi.org/10.1016/j.ins.2008.11.008
-
(2009)
Information Sciences
, vol.179
, pp. 844-850
-
-
Lee, J.1
Ha, S.2
-
67
-
-
84892717180
-
Recent advances and trends in predictive manufacturing systems in big data environment
-
Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1, 38–41. doi:http://dx.doi.org/10.1016/j.mfglet.2013.09.005
-
(2013)
Manufacturing Letters
, vol.1
, pp. 38-41
-
-
Lee, J.1
Lapira, E.2
Bagheri, B.3
Kao, H.4
-
68
-
-
58149203252
-
Support vector machines and its applications in chemistry
-
Li, H., Liang, Y., & Xu, Q. (2009). Support vector machines and its applications in chemistry. Chemometrics and Intelligent Laboratory Systems, 95, 188–198. doi:http://dx.doi.org/10.1016/j.chemolab.2008.10.007
-
(2009)
Chemometrics and Intelligent Laboratory Systems
, vol.95
, pp. 188-198
-
-
Li, H.1
Liang, Y.2
Xu, Q.3
-
69
-
-
53849113325
-
Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing
-
Li, T.-S., & Huang, C.-L. (2009). Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing. Expert Systems with Applications, 36, 374–385. doi:http://dx.doi.org/10.1016/j.eswa.2007.09.023
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 374-385
-
-
Li, T.-S.1
Huang, C.-L.2
-
70
-
-
84970021774
-
Comparison of machine learning methods applied to the estimation of manufacturing cost of jet engine components
-
Loyer, J.-L., Henriques, E., Fontul, M., & Wiseall, S. (2016). Comparison of machine learning methods applied to the estimation of manufacturing cost of jet engine components. International Journal of Production Economics, 178, 109–119. doi:http://dx.doi.org/10.1016/j.ijpe.2016.05.006
-
(2016)
International Journal of Production Economics
, vol.178
, pp. 109-119
-
-
Loyer, J.-L.1
Henriques, E.2
Fontul, M.3
Wiseall, S.4
-
71
-
-
0025507031
-
Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation
-
Lu, S. C.-Y. (1990). Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation. Computers in Industry, 15, 105–120. doi:http://dx.doi.org/10.1016/0166-3615(90)90088-7
-
(1990)
Computers in Industry
, vol.15
, pp. 105-120
-
-
Lu, S.C.1
-
74
-
-
84856491741
-
A complex adaptive system using statistical learning theory as an inline preprocess for clinical survival analysis
-
Margolis, D., Land, W. H., Gottlieb, R., & Qiao, X. (2011). A complex adaptive system using statistical learning theory as an inline preprocess for clinical survival analysis. Procedia Computer Science, 6, 279–284. doi:http://dx.doi.org/10.1016/j.procs.2011.08.052
-
(2011)
Procedia Computer Science
, vol.6
, pp. 279-284
-
-
Margolis, D.1
Land, W.H.2
Gottlieb, R.3
Qiao, X.4
-
75
-
-
34447292534
-
Comprehensible credit scoring models using rule extraction from support vector machines
-
Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183, 1466–1476. doi:http://dx.doi.org/10.1016/j.ejor.2006.04.051
-
(2007)
European Journal of Operational Research
, vol.183
, pp. 1466-1476
-
-
Martens, D.1
Baesens, B.2
Van Gestel, T.3
Vanthienen, J.4
-
76
-
-
0027151173
-
A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks
-
Monostori, L. (1993). A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks. CIRP Annals, 42, 485–488. doi:http://dx.doi.org/10.1016/S0007-8506(07)62491-3
-
(1993)
CIRP Annals
, vol.42
, pp. 485-488
-
-
Monostori, L.1
-
77
-
-
0141569723
-
AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing
-
Monostori, L. (2003). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Engineering Applications of Artificial Intelligence, 16, 277–291. doi:http://dx.doi.org/10.1016/S0952-1976(03)00078-2
-
(2003)
Engineering Applications of Artificial Intelligence
, vol.16
, pp. 277-291
-
-
Monostori, L.1
-
78
-
-
6944231888
-
Soft computing and hybrid AI approaches to intelligent manufacturing
-
Monostori, L., Hornyák, J., Egresits, C., & Viharos, Z. J. (1998). Soft computing and hybrid AI approaches to intelligent manufacturing. Tasks and Methods in Applied Artificial Intelligence Lecture Notes in Computer Science, 1416, 765–774. doi:http://dx.doi.org/10.1007/3-540-64574-8_463
-
(1998)
Tasks and Methods in Applied Artificial Intelligence Lecture Notes in Computer Science
, vol.1416
, pp. 765-774
-
-
Monostori, L.1
Hornyák, J.2
Egresits, C.3
Viharos, Z.J.4
-
79
-
-
0030407923
-
Machine learning approaches to manufacturing
-
Monostori, L., Márkus, A., Van Brussel, H., & Westkämper, E. (1996). Machine learning approaches to manufacturing. CIRP Annals, 45, 675–712.
-
(1996)
CIRP Annals
, vol.45
, pp. 675-712
-
-
Monostori, L.1
Márkus, A.2
Van Brussel, H.3
Westkämper, E.4
-
81
-
-
0037418779
-
Effects of domain characteristics on instance-based learning algorithms
-
Okamoto, S., & Yugami, N. (2003). Effects of domain characteristics on instance-based learning algorithms. Theoretical Computer Science, 298, 207–233. doi:http://dx.doi.org/10.1016/S0304-3975(02)00424-3
-
(2003)
Theoretical Computer Science
, vol.298
, pp. 207-233
-
-
Okamoto, S.1
Yugami, N.2
-
83
-
-
21644464020
-
Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers
-
Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture, 219, 395–412. doi:http://dx.doi.org/10.1243/095440505X32274
-
(2005)
Part B: Journal of Engineering Manufacture
, vol.219
, pp. 395-412
-
-
Pham, D.T.1
Afify, A.A.2
-
85
-
-
84968829459
-
-
C. Sammut & G. I. Webb, Eds.), New York, NY: Springer
-
Sammut, C. & Webb, G. I. (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:http://dx.doi.org/10.1007/978-0-387-30164-8
-
(2011)
Encyclopedia of Machine Learning
-
-
Sammut, C.1
Webb, G.I.2
-
87
-
-
23944439981
-
Support vector machines for quality monitoring in a plastic injection molding process
-
Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 35, 401–410. doi:http://dx.doi.org/10.1109/TSMCC.2004.843228
-
(2005)
IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews)
, vol.35
, pp. 401-410
-
-
Ribeiro, B.1
-
88
-
-
78649823076
-
Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (Support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers
-
Salahshoor, K., Kordestani, M., & Khoshro, M. S. (2010). Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy, 35, 5472–5482. doi:http://dx.doi.org/10.1016/j.energy.2010.06.001
-
(2010)
Energy
, vol.35
, pp. 5472-5482
-
-
Salahshoor, K.1
Kordestani, M.2
Khoshro, M.S.3
-
89
-
-
84968829459
-
-
(C. Sammut & G. I. Webb, Eds.), New York, NY: Springer
-
Sammut, C., & Webb, G. I. (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:http://dx.doi.org/10.1007/978-0-387-30164-8
-
(2011)
Encyclopedia of Machine Learning
-
-
Sammut, C.1
Webb, G.I.2
-
90
-
-
0001201756
-
Some studies in machine learning using the game of checkers
-
Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM Journal, 3, 210–229. doi:http://dx.doi.org/10.1147/rd.33.0210
-
(1959)
IBM Journal
, vol.3
, pp. 210-229
-
-
Samuel, A.1
-
91
-
-
84887254080
-
Support vector machines for dynamic biometric handwriting classification
-
Thessaloniki, Greece
-
Scheidat, T., Leich, M., Alexander, M., & Vielhauer, C. (2009). Support vector machines for dynamic biometric handwriting classification. In Proceedings of AIAI Workshops (pp. 118–125). Thessaloniki, Greece.
-
(2009)
Proceedings of AIAI Workshops
, pp. 118-125
-
-
Scheidat, T.1
Leich, M.2
Alexander, M.3
Vielhauer, C.4
-
92
-
-
79956104615
-
Impediments to innovation: Evidence from Malaysian manufacturing firms
-
Shiang, L. E., & Nagaraj, S. (2011). Impediments to innovation: Evidence from Malaysian manufacturing firms. Asia Pacific Business Review, 17, 209–223. doi:http://dx.doi.org/10.1080/13602381.2011.533502
-
(2011)
Asia Pacific Business Review
, vol.17
, pp. 209-223
-
-
Shiang, L.E.1
Nagaraj, S.2
-
93
-
-
0002599654
-
Why should machines learn?
-
R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Charlotte, NC: Tioga Press
-
Simon, H. A. (1983). Why should machines learn? In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine learning (pp. 25–37). Charlotte, NC: Tioga Press.
-
(1983)
Machine Learning
, pp. 25-37
-
-
Simon, H.A.1
-
95
-
-
84876144459
-
Testability and statistical learning theory
-
P. S. Bandyopadhyay & M. R. Forster (Eds.), Amsterdam: Elsevier
-
Steel, D. (2011). Testability and statistical learning theory. In P. S. Bandyopadhyay & M. R. Forster (Eds.), Handbook of the philosophy of science (Vol. 7, pp. 849–861). Amsterdam: Elsevier. doi:http://dx.doi.org/10.1016/B978-0-444-51862-0.50028-9
-
(2011)
Handbook of the Philosophy of Science
, vol.7
, pp. 849-861
-
-
Steel, D.1
-
96
-
-
77949543086
-
Reinforcement learning
-
(pp. 849–851). Sammut, C., & Webb, G. I. (Eds.) (2011), (C. Sammut & G. I. Webb, Eds.), New York, NY: Springer
-
Stone, P. (2011). Reinforcement learning (pp. 849–851). Sammut, C., & Webb, G. I. (Eds.) (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:http://dx.doi.org/10.1007/978-0-387-30164-8
-
(2011)
Encyclopedia of Machine Learning
-
-
Stone, P.1
-
97
-
-
2942642522
-
Multiclassification of tool wear with support vector machine by manufacturing loss consideration
-
Sun, J., Rahman, M., Wong, Y., & Hong, G. (2004). Multiclassification of tool wear with support vector machine by manufacturing loss consideration. International Journal of Machine Tools and Manufacture, 44, 1179–1187. doi:http://dx.doi.org/10.1016/j.ijmachtools.2004.04.003
-
(2004)
International Journal of Machine Tools and Manufacture
, vol.44
, pp. 1179-1187
-
-
Sun, J.1
Rahman, M.2
Wong, Y.3
Hong, G.4
-
98
-
-
84937407847
-
Machine learning for predictive maintenance: A multiple classifier approach
-
Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine learning for predictive maintenance: A multiple classifier approach. IEEE Transactions on Industrial Informatics, 11, 812–820. doi:http://dx.doi.org/10.1109/TII.2014.2349359
-
(2015)
IEEE Transactions on Industrial Informatics
, vol.11
, pp. 812-820
-
-
Susto, G.A.1
Schirru, A.2
Pampuri, S.3
McLoone, S.4
Beghi, A.5
-
100
-
-
0036825901
-
Modified support vector machines in financial time series forecasting
-
Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48, 847–861. doi:http://dx.doi.org/10.1016/S0925-2312(01)00676-2
-
(2002)
Neurocomputing
, vol.48
, pp. 847-861
-
-
Tay, F.E.H.1
Cao, L.J.2
-
101
-
-
84859176479
-
Identifying the UK’s manufacturing challenges as a benchmark for future growth
-
Thomas, A. J., Byard, P., & Evans, R. (2012). Identifying the UK’s manufacturing challenges as a benchmark for future growth. Journal of Manufacturing Technology Management, 23, 142–156. doi:http://dx.doi.org/10.1108/17410381211202160
-
(2012)
Journal of Manufacturing Technology Management
, vol.23
, pp. 142-156
-
-
Thomas, A.J.1
Byard, P.2
Evans, R.3
-
102
-
-
29644447717
-
A hybrid knowledge discovery model using decision tree and neural network for selecting dispatching rules of a semiconductor final testing factory
-
Wang, K.-J., Chen, J. C., & Lin, Y.-S. (2005). A hybrid knowledge discovery model using decision tree and neural network for selecting dispatching rules of a semiconductor final testing factory. Production Planning & Control, 16, 665–680. doi:http://dx.doi.org/10.1080/09537280500213757
-
(2005)
Production Planning & Control
, vol.16
, pp. 665-680
-
-
Wang, K.-J.1
Chen, J.C.2
Lin, Y.-S.3
-
104
-
-
34249661124
-
Support vector machine in machine condition monitoring and fault diagnosis
-
Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21, 2560–2574. doi:http://dx.doi.org/10.1016/j.ymssp.2006.12.007
-
(2007)
Mechanical Systems and Signal Processing
, vol.21
, pp. 2560-2574
-
-
Widodo, A.1
Yang, B.-S.2
-
105
-
-
0028735411
-
Management and control of complexity in manufacturing
-
Wiendahl, H.-P., & Scholtissek, P. (1994). Management and control of complexity in manufacturing. CIRP Annals, 43, 533–540. doi:http://dx.doi.org/10.1016/S0007-8506(07)60499-5
-
(1994)
CIRP Annals
, vol.43
, pp. 533-540
-
-
Wiendahl, H.-P.1
Scholtissek, P.2
-
107
-
-
73449084765
-
Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system
-
Wu, Q. (2010). Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system. Journal of Computational and Applied Mathematics, 233, 2481–2491. doi:http://dx.doi.org/10.1016/j.cam.2009.10.030
-
(2010)
Journal of Computational and Applied Mathematics
, vol.233
, pp. 2481-2491
-
-
Wu, Q.1
-
109
-
-
84906948333
-
An approach to monitoring quality in manufacturing using supervised machine learning on product state data
-
Wuest, T., Irgens, C., & Thoben, K.-D. (2014). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25, 1167–1180. doi:http://dx.doi.org/10.1007/s10845-013-0761-y
-
(2014)
Journal of Intelligent Manufacturing
, vol.25
, pp. 1167-1180
-
-
Wuest, T.1
Irgens, C.2
Thoben, K.-D.3
-
110
-
-
84904515413
-
Application of the stage gate model in production supporting quality management
-
Wuest, T., Liu, A., Lu, S. C.-Y., & Thoben, K.-D. (2014). Application of the stage gate model in production supporting quality management. Procedia CIRP, 17, 32–37. doi:http://dx.doi.org/10.1016/j.procir.2014.01.071
-
(2014)
Procedia CIRP
, vol.17
, pp. 32-37
-
-
Wuest, T.1
Liu, A.2
Lu, S.C.3
Thoben, K.-D.4
-
113
-
-
77950189123
-
An approach to model building for accelerated cooling process using instance-based learning
-
Zheng, Y., Li, S., & Wang, X. (2010). An approach to model building for accelerated cooling process using instance-based learning. Expert Systems with Applications, 37, 5364–5371. doi:http://dx.doi.org/10.1016/j.eswa.2010.01.020
-
(2010)
Expert Systems with Applications
, vol.37
, pp. 5364-5371
-
-
Zheng, Y.1
Li, S.2
Wang, X.3
-
114
-
-
84866850766
-
Ensemblemethods–Foundationsandalgorithms
-
Florida,FL:Chapman&Hall/CRC.ISBN:978-1-4398-3003-1
-
Zhou,Z.-H.(2012).Ensemblemethods–Foundationsandalgorithms,MachineLearning&PatternRecognitionSeries.Florida,FL:Chapman&Hall/CRC.ISBN:978-1-4398-3003-1.
-
(2012)
Machinelearning&Patternrecognitionseries
-
-
Zhou, Z.-H.1
|