메뉴 건너뛰기




Volumn 4, Issue 1, 2016, Pages 23-45

Machine learning in manufacturing: Advantages, challenges, and applications

Author keywords

Intelligent manufacturing systems; Machine learning; Manufacturing; Smart manufacturing

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; MANUFACTURE;

EID: 84995968996     PISSN: None     EISSN: 21693277     Source Type: Journal    
DOI: 10.1080/21693277.2016.1192517     Document Type: Article
Times cited : (1067)

References (114)
  • 1
    • 79958158122 scopus 로고    scopus 로고
    • Grey relational analysis based on instance based learning approach for classification of risks of occupational low back disorders
    • Akay, D. (2011). Grey relational analysis based on instance based learning approach for classification of risks of occupational low back disorders. Safety Science, 49, 1277–1282. doi:http://dx.doi.org/10.1016/j.ssci.2011.04.018
    • (2011) Safety Science , vol.49 , pp. 1277-1282
    • Akay, D.1
  • 4
    • 84881663866 scopus 로고    scopus 로고
    • A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization
    • Azadeh, A., Saberi, M., Kazem, A., Ebrahimipour, V., Nourmohammadzadeh, A., & Saberi, Z. (2013). A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization. Applied Soft Computing, 13, 1478–1485. doi:http://dx.doi.org/10.1016/j.asoc.2012.06.020
    • (2013) Applied Soft Computing , vol.13 , pp. 1478-1485
    • Azadeh, A.1    Saberi, M.2    Kazem, A.3    Ebrahimipour, V.4    Nourmohammadzadeh, A.5    Saberi, Z.6
  • 8
    • 33748938764 scopus 로고    scopus 로고
    • Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk
    • Borin, A., Ferrão, M. F., Mello, C., Maretto, D. A., & Poppi, R. J. (2006). Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk. Analytica Chimica Acta, 579, 25–32. doi:http://dx.doi.org/10.1016/j.aca.2006.07.008
    • (2006) Analytica Chimica Acta , vol.579 , pp. 25-32
    • Borin, A.1    Ferrão, M.F.2    Mello, C.3    Maretto, D.A.4    Poppi, R.J.5
  • 10
    • 14644436970 scopus 로고    scopus 로고
    • Statistical learning theory for location fingerprinting in wireless LANs
    • Brunato, M., & Battiti, R. (2005). Statistical learning theory for location fingerprinting in wireless LANs. Computer Networks, 47, 825–845. doi:http://dx.doi.org/10.1016/j.comnet.2004.09.004
    • (2005) Computer Networks , vol.47 , pp. 825-845
    • Brunato, M.1    Battiti, R.2
  • 11
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers & Chemistry, 26, 5–14.
    • (2001) Computers & Chemistry , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 12
    • 0023981451 scopus 로고
    • The ART of adaptive pattern recognition by a self-organizing neural network
    • Carpenter, G. A., & Grossberg, S. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. Computer, 21, 77–88. doi:http://dx.doi.org/10.1109/2.33
    • (1988) Computer , vol.21 , pp. 77-88
    • Carpenter, G.A.1    Grossberg, S.2
  • 13
    • 84862283893 scopus 로고    scopus 로고
    • Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
    • Çaydas, U., & Ekici, S. (2010). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23, 639–650. doi:http://dx.doi.org/10.1007/s10845-010-0415-2
    • (2010) Journal of Intelligent Manufacturing , vol.23 , pp. 639-650
    • Çaydas, U.1    Ekici, S.2
  • 14
  • 15
    • 69449099786 scopus 로고    scopus 로고
    • Another look at statistical learning theory and regularization
    • Cherkassky, V., & Ma, Y. (2009). Another look at statistical learning theory and regularization. Neural Networks, 22, 958–969. doi:http://dx.doi.org/10.1016/j.neunet.2009.04.005
    • (2009) Neural Networks , vol.22 , pp. 958-969
    • Cherkassky, V.1    Ma, Y.2
  • 16
    • 0037146388 scopus 로고    scopus 로고
    • Support vector machines for recognizing shifts in correlated and other manufacturing processes
    • Chinnam, R. B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research, 40, 4449–4466. doi:http://dx.doi.org/10.1080/00207540210152920
    • (2002) International Journal of Production Research , vol.40 , pp. 4449-4466
    • Chinnam, R.B.1
  • 17
    • 79952774569 scopus 로고    scopus 로고
    • (p. 10). Sammut, C. & Webb, G. I. (Eds.) (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.), New York, NY: Springer
    • Cohn, D. (2011). Active learning (p. 10). Sammut, C. & Webb, G. I. (Eds.) (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:http://dx.doi.org/10.1007/978-0-387-30164-8
    • (2011) Active Learning
    • Cohn, D.1
  • 18
    • 33746791172 scopus 로고    scopus 로고
    • Environmental statistical process control using an augmented neural network classification approach
    • Cook, D. F., Zobel, C. W., & Wolfe, M. L. (2006). Environmental statistical process control using an augmented neural network classification approach. European Journal of Operational Research, 174, 1631–1642. doi:http://dx.doi.org/10.1016/j.ejor.2005.04.035
    • (2006) European Journal of Operational Research , vol.174 , pp. 1631-1642
    • Cook, D.F.1    Zobel, C.W.2    Wolfe, M.L.3
  • 19
    • 84861651944 scopus 로고    scopus 로고
    • Synergies between operations research and data mining: The emerging use of multi-objective approaches
    • Corne, D., Dhaenens, C., & Jourdan, L. (2012). Synergies between operations research and data mining: The emerging use of multi-objective approaches. European Journal of Operational Research, 221, 469–479. doi:http://dx.doi.org/10.1016/j.ejor.2012.03.039
    • (2012) European Journal of Operational Research , vol.221 , pp. 469-479
    • Corne, D.1    Dhaenens, C.2    Jourdan, L.3
  • 20
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 24
    • 77956685340 scopus 로고    scopus 로고
    • Classifying very-high-dimensional data with random forests of oblique decision trees
    • F. Guil-let, G. Ritschard, D. Zighed, & H. Briand (Eds.), Berlin: Springer
    • Do, T.-N., Lenca, P., Lallich, S., & Pham, N.-K. (2010). Classifying very-high-dimensional data with random forests of oblique decision trees. In F. Guil-let, G. Ritschard, D. Zighed, & H. Briand (Eds.), Advances in knowledge discovery and management (pp. 39–55). Berlin: Springer.
    • (2010) Advances in Knowledge Discovery and Management , pp. 39-55
    • Do, T.-N.1    Lenca, P.2    Lallich, S.3    Pham, N.-K.4
  • 25
    • 84873607601 scopus 로고    scopus 로고
    • Reinforcement learning for production ramp-up: A Q-batch learning approach
    • Boca Raton, FL: IEEE
    • Doltsinis, S., Ferreira, P., & Lohse, N. (2012). Reinforcement learning for production ramp-up: A Q-batch learning approach. In 11 th International Conference on Machine Learning and Applications (pp. 610–615). Boca Raton, FL: IEEE. doi:http://dx.doi.org/10.1109/ICMLA.2012.113
    • (2012) 11 Th International Conference on Machine Learning and Applications , pp. 610-615
    • Doltsinis, S.1    Ferreira, P.2    Lohse, N.3
  • 26
    • 84860291854 scopus 로고    scopus 로고
    • Making instance-based learning theory usable and understandable: The instance-based learning tool
    • Dutt, V., & Gonzalez, C. (2012). Making instance-based learning theory usable and understandable: The instance-based learning tool. Computers in Human Behavior, 28, 1227–1240. doi:http://dx.doi.org/10.1016/j.chb.2012.02.006
    • (2012) Computers in Human Behavior , vol.28 , pp. 1227-1240
    • Dutt, V.1    Gonzalez, C.2
  • 27
    • 84937410606 scopus 로고    scopus 로고
    • Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning
    • Elangovan, M., Sakthivel, N. R., Saravanamurugan, S., Nair, B. B., & Sugumaran, V. (2015). Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. Procedia Computer Science, 50, 282–288. doi:http://dx.doi.org/10.1016/j.procs.2015.04.047
    • (2015) Procedia Computer Science , vol.50 , pp. 282-288
    • Elangovan, M.1    Sakthivel, N.R.2    Saravanamurugan, S.3    Nair, B.B.4    Sugumaran, V.5
  • 29
    • 84995893993 scopus 로고    scopus 로고
    • European Commission. (2016). Factories for the future. Retrieved from http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html
    • (2016) Factories for the Future
  • 30
    • 0037186591 scopus 로고    scopus 로고
    • Regularization and statistical learning theory for data analysis
    • Evgeniou, T., Poggio, T., Pontil, M., & Verri, A. (2002). Regularization and statistical learning theory for data analysis. Computational Statistics & Data Analysis, 38, 421–432. doi:http://dx.doi.org/10.1016/S0167-9473(01)00069-X
    • (2002) Computational Statistics & Data Analysis , vol.38 , pp. 421-432
    • Evgeniou, T.1    Poggio, T.2    Pontil, M.3    Verri, A.4
  • 32
    • 0034249756 scopus 로고    scopus 로고
    • Using inductive machine learning to support decision making in machining processes
    • Filipic, B., & Junkar, M. (2000). Using inductive machine learning to support decision making in machining processes. Computers in Industry, 43, 31–41. doi:http://dx.doi.org/10.1016/S0166-3615(00)00056-7
    • (2000) Computers in Industry , vol.43 , pp. 31-41
    • Filipic, B.1    Junkar, M.2
  • 33
    • 0031211090 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119–139.
    • (1995) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 34
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906–914. doi:http://dx.doi.org/10.1093/bioinformatics/16.10.906
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.4    Schummer, M.5    Haussler, D.6
  • 35
    • 80053012604 scopus 로고    scopus 로고
    • Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction
    • Gagliardi, F. (2011). Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction. Artificial Intelligence in Medicine, 52, 123–139. doi:http://dx.doi.org/10.1016/j.artmed.2011.04.002
    • (2011) Artificial Intelligence in Medicine , vol.52 , pp. 123-139
    • Gagliardi, F.1
  • 37
    • 84878902846 scopus 로고    scopus 로고
    • Validating instance-based learning mechanisms outside of ACT-R
    • Gonzalez, C., Dutt, V., & Lebiere, C. (2013). Validating instance-based learning mechanisms outside of ACT-R. Journal of Computational Science, 4, 262–268. doi:http://dx.doi.org/10.1016/j.jocs.2011.12.001
    • (2013) Journal of Computational Science , vol.4 , pp. 262-268
    • Gonzalez, C.1    Dutt, V.2    Lebiere, C.3
  • 39
    • 85032266230 scopus 로고    scopus 로고
    • New York, NY: Springer
    • Graham, J. W. (2012). Missing data (p. 322). New York, NY: Springer.
    • (2012) Missing Data
    • Graham, J.W.1
  • 40
    • 85012874502 scopus 로고    scopus 로고
    • First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning
    • Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., & Diepold, K. (2015). First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning. Procedia Technology, 15, 474–483.
    • (2015) Procedia Technology , vol.15 , pp. 474-483
    • Günther, J.1    Pilarski, P.M.2    Helfrich, G.3    Shen, H.4    Diepold, K.5
  • 41
    • 44949248381 scopus 로고    scopus 로고
    • A hybrid wavelet analysis and support vector machines in forecasting development of manufacturing
    • Guo, X., Sun, L., Li, G., & Wang, S. (2008). A hybrid wavelet analysis and support vector machines in forecasting development of manufacturing. Expert Systems with Applications, 35, 415–422. doi:http://dx.doi.org/10.1016/j.eswa.2007.07.052
    • (2008) Expert Systems with Applications , vol.35 , pp. 415-422
    • Guo, X.1    Sun, L.2    Li, G.3    Wang, S.4
  • 42
    • 0036161259 scopus 로고    scopus 로고
    • A gene selection method for cancer classification using Support Vector Machines
    • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). A gene selection method for cancer classification using Support Vector Machines. Machine Learning, 46, 389–422. doi:http://dx.doi.org/10.1155/2012/586246
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 43
    • 84995941283 scopus 로고    scopus 로고
    • Machine learning algorithms in heavy process manufacturing
    • Hansson, K., Yella, S., Dougherty, M., & Fleyeh, H. (2016). Machine learning algorithms in heavy process manufacturing. American Journal of Intelligent Systems, 6(1), 1–13. doi:http://dx.doi.org/10.5923/j.ajis.20160601.01
    • (2016) American Journal of Intelligent Systems , vol.6 , Issue.1 , pp. 1-13
    • Hansson, K.1    Yella, S.2    Dougherty, M.3    Fleyeh, H.4
  • 45
    • 0035371125 scopus 로고    scopus 로고
    • An instance-based approach to pattern association learning with application to the English past tense verb domain
    • Hickey, R. J., & Martin, R. G. (2001). An instance-based approach to pattern association learning with application to the English past tense verb domain. Knowledge-Based Systems, 14, 131–136. doi:http://dx.doi.org/10.1016/S0950-7051(01)00089-2
    • (2001) Knowledge-Based Systems , vol.14 , pp. 131-136
    • Hickey, R.J.1    Martin, R.G.2
  • 46
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735–1780. doi:http://dx.doi.org/10.1162/neco.1997.9.8.1735
    • (1997) Neural Computation , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 48
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37, 543–558. doi:http://dx.doi.org/10.1016/S0167-9236(03)00086-1
    • (2004) Decision Support Systems , vol.37 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.-J.3    Chen, W.-H.4    Wu, S.5
  • 49
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • Jain, A. K., Murty, M. N., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys, 31, 264–323. doi:http://dx.doi.org/10.1145/331499.331504
    • (1999) ACM Computing Surveys , vol.31 , pp. 264-323
    • Jain, A.K.1    Murty, M.N.2    Flynn, P.3
  • 50
    • 84959084287 scopus 로고    scopus 로고
    • A comparison of machine learning methods for cutting parameters prediction in high speed turning process
    • Jurkovic, Z., Cukor, G., Brezocnik, M., & Brajkovic, T. (2016). A comparison of machine learning methods for cutting parameters prediction in high speed turning process. Journal of Intelligent Manufacturing. doi:http://dx.doi.org/10.1007/s10845-016-1206-1
    • (2016) Journal of Intelligent Manufacturing
    • Jurkovic, Z.1    Cukor, G.2    Brezocnik, M.3    Brajkovic, T.4
  • 51
    • 84995878910 scopus 로고    scopus 로고
    • Advanced methods for missing data
    • R. I. Kabacoff (Ed.), Shelter Island, NY: Manning Publications
    • Kabacoff, R. I. (2011). Advanced methods for missing data. In R. I. Kabacoff (Ed.), R in action: Data analysis and graphics with R (pp. 352–371). Shelter Island, NY: Manning Publications.
    • (2011) R in Action: Data Analysis and Graphics with R , pp. 352-371
    • Kabacoff, R.I.1
  • 52
    • 48149111512 scopus 로고    scopus 로고
    • Locally linear reconstruction for instance-based learning
    • Kang, P., & Cho, S. (2008). Locally linear reconstruction for instance-based learning. Pattern Recognition, 41, 3507–3518. doi:http://dx.doi.org/10.1016/j.patcog.2008.04.009
    • (2008) Pattern Recognition , vol.41 , pp. 3507-3518
    • Kang, P.1    Cho, S.2
  • 53
    • 84955137019 scopus 로고    scopus 로고
    • Semi-supervised support vector regression based on self-training with label uncertainty: An application to virtual metrology in semiconductor manufacturing
    • Kang, P., Kim, D., & Cho, S. (2016). Semi-supervised support vector regression based on self-training with label uncertainty: An application to virtual metrology in semiconductor manufacturing. Expert Systems with Applications, 51, 85–106. doi:http://dx.doi.org/10.1016/j.eswa.2015.12.027
    • (2016) Expert Systems with Applications , vol.51 , pp. 85-106
    • Kang, P.1    Kim, D.2    Cho, S.3
  • 54
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15, 1667–1689. doi:http://dx.doi.org/10.1162/089976603321891855
    • (2003) Neural Computation , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 55
    • 56349142571 scopus 로고    scopus 로고
    • Knowledge based proximal support vector machines
    • Khemchandani, R., & Chandra, S. (2009). Knowledge based proximal support vector machines. European Journal of Operational Research, 195, 914–923. doi:http://dx.doi.org/10.1016/j.ejor.2007.11.023
    • (2009) European Journal of Operational Research , vol.195 , pp. 914-923
    • Khemchandani, R.1    Chandra, S.2
  • 56
    • 82255179131 scopus 로고    scopus 로고
    • Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing
    • Kim, D., Kang, P., Cho, S., Lee, H., & Doh, S. (2012). Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing. Expert Systems with Applications, 39, 4075–4083. doi:http://dx.doi.org/10.1016/j.eswa.2011.09.088
    • (2012) Expert Systems with Applications , vol.39 , pp. 4075-4083
    • Kim, D.1    Kang, P.2    Cho, S.3    Lee, H.4    Doh, S.5
  • 57
    • 79957992809 scopus 로고    scopus 로고
    • A review of data mining applications for quality improvement in manufacturing industry
    • Köksal, G., Batmaz, I., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 38, 13448–13467. doi:http://dx.doi.org/10.1016/j.eswa.2011.04.063
    • (2011) Expert Systems with Applications , vol.38 , pp. 13448-13467
    • Köksal, G.1    Batmaz, I.2    Testik, M.C.3
  • 58
    • 0035837625 scopus 로고    scopus 로고
    • Statistical learning control of uncertain systems: Theory and algorithms
    • Koltchinskii, V., Abdallah, C. T., Ariola, M., & Dorato, P. (2001). Statistical learning control of uncertain systems: Theory and algorithms. Applied Mathematics and Computation, 120, 31–43. doi:http://dx.doi.org/10.1016/S0096-3003(99)00283-0
    • (2001) Applied Mathematics and Computation , vol.120 , pp. 31-43
    • Koltchinskii, V.1    Abdallah, C.T.2    Ariola, M.3    Dorato, P.4
  • 59
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.B.1
  • 61
    • 80255131411 scopus 로고    scopus 로고
    • A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes
    • Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. Expert Systems with Applications, 39, 2590–2596. doi:http://dx.doi.org/10.1016/j.eswa.2011.08.114
    • (2012) Expert Systems with Applications , vol.39 , pp. 2590-2596
    • Kwak, D.-S.1    Kim, K.-J.2
  • 66
    • 58049125538 scopus 로고    scopus 로고
    • Recognizing yield patterns through hybrid applications of machine learning techniques
    • Lee, J., & Ha, S. (2009). Recognizing yield patterns through hybrid applications of machine learning techniques. Information Sciences, 179, 844–850. doi:http://dx.doi.org/10.1016/j.ins.2008.11.008
    • (2009) Information Sciences , vol.179 , pp. 844-850
    • Lee, J.1    Ha, S.2
  • 67
    • 84892717180 scopus 로고    scopus 로고
    • Recent advances and trends in predictive manufacturing systems in big data environment
    • Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1, 38–41. doi:http://dx.doi.org/10.1016/j.mfglet.2013.09.005
    • (2013) Manufacturing Letters , vol.1 , pp. 38-41
    • Lee, J.1    Lapira, E.2    Bagheri, B.3    Kao, H.4
  • 68
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its applications in chemistry
    • Li, H., Liang, Y., & Xu, Q. (2009). Support vector machines and its applications in chemistry. Chemometrics and Intelligent Laboratory Systems, 95, 188–198. doi:http://dx.doi.org/10.1016/j.chemolab.2008.10.007
    • (2009) Chemometrics and Intelligent Laboratory Systems , vol.95 , pp. 188-198
    • Li, H.1    Liang, Y.2    Xu, Q.3
  • 69
    • 53849113325 scopus 로고    scopus 로고
    • Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing
    • Li, T.-S., & Huang, C.-L. (2009). Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing. Expert Systems with Applications, 36, 374–385. doi:http://dx.doi.org/10.1016/j.eswa.2007.09.023
    • (2009) Expert Systems with Applications , vol.36 , pp. 374-385
    • Li, T.-S.1    Huang, C.-L.2
  • 70
    • 84970021774 scopus 로고    scopus 로고
    • Comparison of machine learning methods applied to the estimation of manufacturing cost of jet engine components
    • Loyer, J.-L., Henriques, E., Fontul, M., & Wiseall, S. (2016). Comparison of machine learning methods applied to the estimation of manufacturing cost of jet engine components. International Journal of Production Economics, 178, 109–119. doi:http://dx.doi.org/10.1016/j.ijpe.2016.05.006
    • (2016) International Journal of Production Economics , vol.178 , pp. 109-119
    • Loyer, J.-L.1    Henriques, E.2    Fontul, M.3    Wiseall, S.4
  • 71
    • 0025507031 scopus 로고
    • Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation
    • Lu, S. C.-Y. (1990). Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation. Computers in Industry, 15, 105–120. doi:http://dx.doi.org/10.1016/0166-3615(90)90088-7
    • (1990) Computers in Industry , vol.15 , pp. 105-120
    • Lu, S.C.1
  • 72
  • 74
    • 84856491741 scopus 로고    scopus 로고
    • A complex adaptive system using statistical learning theory as an inline preprocess for clinical survival analysis
    • Margolis, D., Land, W. H., Gottlieb, R., & Qiao, X. (2011). A complex adaptive system using statistical learning theory as an inline preprocess for clinical survival analysis. Procedia Computer Science, 6, 279–284. doi:http://dx.doi.org/10.1016/j.procs.2011.08.052
    • (2011) Procedia Computer Science , vol.6 , pp. 279-284
    • Margolis, D.1    Land, W.H.2    Gottlieb, R.3    Qiao, X.4
  • 75
    • 34447292534 scopus 로고    scopus 로고
    • Comprehensible credit scoring models using rule extraction from support vector machines
    • Martens, D., Baesens, B., Van Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183, 1466–1476. doi:http://dx.doi.org/10.1016/j.ejor.2006.04.051
    • (2007) European Journal of Operational Research , vol.183 , pp. 1466-1476
    • Martens, D.1    Baesens, B.2    Van Gestel, T.3    Vanthienen, J.4
  • 76
    • 0027151173 scopus 로고
    • A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks
    • Monostori, L. (1993). A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks. CIRP Annals, 42, 485–488. doi:http://dx.doi.org/10.1016/S0007-8506(07)62491-3
    • (1993) CIRP Annals , vol.42 , pp. 485-488
    • Monostori, L.1
  • 77
    • 0141569723 scopus 로고    scopus 로고
    • AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing
    • Monostori, L. (2003). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Engineering Applications of Artificial Intelligence, 16, 277–291. doi:http://dx.doi.org/10.1016/S0952-1976(03)00078-2
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , pp. 277-291
    • Monostori, L.1
  • 81
    • 0037418779 scopus 로고    scopus 로고
    • Effects of domain characteristics on instance-based learning algorithms
    • Okamoto, S., & Yugami, N. (2003). Effects of domain characteristics on instance-based learning algorithms. Theoretical Computer Science, 298, 207–233. doi:http://dx.doi.org/10.1016/S0304-3975(02)00424-3
    • (2003) Theoretical Computer Science , vol.298 , pp. 207-233
    • Okamoto, S.1    Yugami, N.2
  • 83
    • 21644464020 scopus 로고    scopus 로고
    • Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers
    • Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture, 219, 395–412. doi:http://dx.doi.org/10.1243/095440505X32274
    • (2005) Part B: Journal of Engineering Manufacture , vol.219 , pp. 395-412
    • Pham, D.T.1    Afify, A.A.2
  • 85
    • 84968829459 scopus 로고    scopus 로고
    • C. Sammut & G. I. Webb, Eds.), New York, NY: Springer
    • Sammut, C. & Webb, G. I. (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:http://dx.doi.org/10.1007/978-0-387-30164-8
    • (2011) Encyclopedia of Machine Learning
    • Sammut, C.1    Webb, G.I.2
  • 87
  • 88
    • 78649823076 scopus 로고    scopus 로고
    • Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (Support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers
    • Salahshoor, K., Kordestani, M., & Khoshro, M. S. (2010). Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy, 35, 5472–5482. doi:http://dx.doi.org/10.1016/j.energy.2010.06.001
    • (2010) Energy , vol.35 , pp. 5472-5482
    • Salahshoor, K.1    Kordestani, M.2    Khoshro, M.S.3
  • 89
    • 84968829459 scopus 로고    scopus 로고
    • (C. Sammut & G. I. Webb, Eds.), New York, NY: Springer
    • Sammut, C., & Webb, G. I. (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:http://dx.doi.org/10.1007/978-0-387-30164-8
    • (2011) Encyclopedia of Machine Learning
    • Sammut, C.1    Webb, G.I.2
  • 90
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM Journal, 3, 210–229. doi:http://dx.doi.org/10.1147/rd.33.0210
    • (1959) IBM Journal , vol.3 , pp. 210-229
    • Samuel, A.1
  • 91
    • 84887254080 scopus 로고    scopus 로고
    • Support vector machines for dynamic biometric handwriting classification
    • Thessaloniki, Greece
    • Scheidat, T., Leich, M., Alexander, M., & Vielhauer, C. (2009). Support vector machines for dynamic biometric handwriting classification. In Proceedings of AIAI Workshops (pp. 118–125). Thessaloniki, Greece.
    • (2009) Proceedings of AIAI Workshops , pp. 118-125
    • Scheidat, T.1    Leich, M.2    Alexander, M.3    Vielhauer, C.4
  • 92
    • 79956104615 scopus 로고    scopus 로고
    • Impediments to innovation: Evidence from Malaysian manufacturing firms
    • Shiang, L. E., & Nagaraj, S. (2011). Impediments to innovation: Evidence from Malaysian manufacturing firms. Asia Pacific Business Review, 17, 209–223. doi:http://dx.doi.org/10.1080/13602381.2011.533502
    • (2011) Asia Pacific Business Review , vol.17 , pp. 209-223
    • Shiang, L.E.1    Nagaraj, S.2
  • 93
    • 0002599654 scopus 로고
    • Why should machines learn?
    • R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Charlotte, NC: Tioga Press
    • Simon, H. A. (1983). Why should machines learn? In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine learning (pp. 25–37). Charlotte, NC: Tioga Press.
    • (1983) Machine Learning , pp. 25-37
    • Simon, H.A.1
  • 95
    • 84876144459 scopus 로고    scopus 로고
    • Testability and statistical learning theory
    • P. S. Bandyopadhyay & M. R. Forster (Eds.), Amsterdam: Elsevier
    • Steel, D. (2011). Testability and statistical learning theory. In P. S. Bandyopadhyay & M. R. Forster (Eds.), Handbook of the philosophy of science (Vol. 7, pp. 849–861). Amsterdam: Elsevier. doi:http://dx.doi.org/10.1016/B978-0-444-51862-0.50028-9
    • (2011) Handbook of the Philosophy of Science , vol.7 , pp. 849-861
    • Steel, D.1
  • 96
    • 77949543086 scopus 로고    scopus 로고
    • Reinforcement learning
    • (pp. 849–851). Sammut, C., & Webb, G. I. (Eds.) (2011), (C. Sammut & G. I. Webb, Eds.), New York, NY: Springer
    • Stone, P. (2011). Reinforcement learning (pp. 849–851). Sammut, C., & Webb, G. I. (Eds.) (2011). Encyclopedia of machine learning (C. Sammut & G. I. Webb, Eds.) (p. 1058). New York, NY: Springer. doi:http://dx.doi.org/10.1007/978-0-387-30164-8
    • (2011) Encyclopedia of Machine Learning
    • Stone, P.1
  • 97
    • 2942642522 scopus 로고    scopus 로고
    • Multiclassification of tool wear with support vector machine by manufacturing loss consideration
    • Sun, J., Rahman, M., Wong, Y., & Hong, G. (2004). Multiclassification of tool wear with support vector machine by manufacturing loss consideration. International Journal of Machine Tools and Manufacture, 44, 1179–1187. doi:http://dx.doi.org/10.1016/j.ijmachtools.2004.04.003
    • (2004) International Journal of Machine Tools and Manufacture , vol.44 , pp. 1179-1187
    • Sun, J.1    Rahman, M.2    Wong, Y.3    Hong, G.4
  • 100
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48, 847–861. doi:http://dx.doi.org/10.1016/S0925-2312(01)00676-2
    • (2002) Neurocomputing , vol.48 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.J.2
  • 101
    • 84859176479 scopus 로고    scopus 로고
    • Identifying the UK’s manufacturing challenges as a benchmark for future growth
    • Thomas, A. J., Byard, P., & Evans, R. (2012). Identifying the UK’s manufacturing challenges as a benchmark for future growth. Journal of Manufacturing Technology Management, 23, 142–156. doi:http://dx.doi.org/10.1108/17410381211202160
    • (2012) Journal of Manufacturing Technology Management , vol.23 , pp. 142-156
    • Thomas, A.J.1    Byard, P.2    Evans, R.3
  • 102
    • 29644447717 scopus 로고    scopus 로고
    • A hybrid knowledge discovery model using decision tree and neural network for selecting dispatching rules of a semiconductor final testing factory
    • Wang, K.-J., Chen, J. C., & Lin, Y.-S. (2005). A hybrid knowledge discovery model using decision tree and neural network for selecting dispatching rules of a semiconductor final testing factory. Production Planning & Control, 16, 665–680. doi:http://dx.doi.org/10.1080/09537280500213757
    • (2005) Production Planning & Control , vol.16 , pp. 665-680
    • Wang, K.-J.1    Chen, J.C.2    Lin, Y.-S.3
  • 104
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21, 2560–2574. doi:http://dx.doi.org/10.1016/j.ymssp.2006.12.007
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2
  • 105
    • 0028735411 scopus 로고
    • Management and control of complexity in manufacturing
    • Wiendahl, H.-P., & Scholtissek, P. (1994). Management and control of complexity in manufacturing. CIRP Annals, 43, 533–540. doi:http://dx.doi.org/10.1016/S0007-8506(07)60499-5
    • (1994) CIRP Annals , vol.43 , pp. 533-540
    • Wiendahl, H.-P.1    Scholtissek, P.2
  • 107
    • 73449084765 scopus 로고    scopus 로고
    • Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system
    • Wu, Q. (2010). Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system. Journal of Computational and Applied Mathematics, 233, 2481–2491. doi:http://dx.doi.org/10.1016/j.cam.2009.10.030
    • (2010) Journal of Computational and Applied Mathematics , vol.233 , pp. 2481-2491
    • Wu, Q.1
  • 109
    • 84906948333 scopus 로고    scopus 로고
    • An approach to monitoring quality in manufacturing using supervised machine learning on product state data
    • Wuest, T., Irgens, C., & Thoben, K.-D. (2014). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25, 1167–1180. doi:http://dx.doi.org/10.1007/s10845-013-0761-y
    • (2014) Journal of Intelligent Manufacturing , vol.25 , pp. 1167-1180
    • Wuest, T.1    Irgens, C.2    Thoben, K.-D.3
  • 110
    • 84904515413 scopus 로고    scopus 로고
    • Application of the stage gate model in production supporting quality management
    • Wuest, T., Liu, A., Lu, S. C.-Y., & Thoben, K.-D. (2014). Application of the stage gate model in production supporting quality management. Procedia CIRP, 17, 32–37. doi:http://dx.doi.org/10.1016/j.procir.2014.01.071
    • (2014) Procedia CIRP , vol.17 , pp. 32-37
    • Wuest, T.1    Liu, A.2    Lu, S.C.3    Thoben, K.-D.4
  • 113
    • 77950189123 scopus 로고    scopus 로고
    • An approach to model building for accelerated cooling process using instance-based learning
    • Zheng, Y., Li, S., & Wang, X. (2010). An approach to model building for accelerated cooling process using instance-based learning. Expert Systems with Applications, 37, 5364–5371. doi:http://dx.doi.org/10.1016/j.eswa.2010.01.020
    • (2010) Expert Systems with Applications , vol.37 , pp. 5364-5371
    • Zheng, Y.1    Li, S.2    Wang, X.3
  • 114
    • 84866850766 scopus 로고    scopus 로고
    • Ensemblemethods–Foundationsandalgorithms
    • Florida,FL:Chapman&Hall/CRC.ISBN:978-1-4398-3003-1
    • Zhou,Z.-H.(2012).Ensemblemethods–Foundationsandalgorithms,MachineLearning&PatternRecognitionSeries.Florida,FL:Chapman&Hall/CRC.ISBN:978-1-4398-3003-1.
    • (2012) Machinelearning&Patternrecognitionseries
    • Zhou, Z.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.