메뉴 건너뛰기




Volumn 22, Issue 7, 2009, Pages 958-969

Another look at statistical learning theory and regularization

Author keywords

Function approximation; Model identification; Penalization; Predictive learning; Regularization; Ridge regression; Statistical model estimation; Structural risk minimization; SVM regression; VC theory

Indexed keywords

FUNCTION APPROXIMATION; MODEL IDENTIFICATION; PENALIZATION; PREDICTIVE LEARNING; REGULARIZATION; RIDGE REGRESSION; STATISTICAL MODEL ESTIMATION; STRUCTURAL RISK MINIMIZATION; SVM REGRESSION; VC-THEORY;

EID: 69449099786     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.04.005     Document Type: Article
Times cited : (35)

References (37)
  • 1
    • 69449084188 scopus 로고    scopus 로고
    • The maximal data piling direction for discrimination
    • submitted for publication
    • Ahn, J., & Marron, J. S. (2005). The maximal data piling direction for discrimination. Biometrica (submitted for publication)
    • (2005) Biometrica
    • Ahn, J.1    Marron, J.S.2
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of sigmoidal function
    • Barron A.R. Universal approximation bounds for superpositions of sigmoidal function. IEEE Transactions on Information Theory 39 (1993) 930-945
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 3
  • 5
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: variational problems, compression and noise removal through wavelet shrinkage
    • Chambolle A., DeVore R.A., Lee N., and Lucier B. Nonlinear wavelet image processing: variational problems, compression and noise removal through wavelet shrinkage. IEEE Transactions on Image Processing 7 (1998) 319-335
    • (1998) IEEE Transactions on Image Processing , vol.7 , pp. 319-335
    • Chambolle, A.1    DeVore, R.A.2    Lee, N.3    Lucier, B.4
  • 6
    • 0346250790 scopus 로고    scopus 로고
    • Practical Selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., and Ma Y. Practical Selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 113-126
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 8
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho D., and Johnstone I. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 3 (1994) 425-455
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 9
    • 0001990386 scopus 로고
    • Degree of nonlinear approximation
    • Chui C.K., Schumaker L.L., and Wards D.J. (Eds), Academic Press, New York
    • DeVore R.A. Degree of nonlinear approximation. In: Chui C.K., Schumaker L.L., and Wards D.J. (Eds). Approximation Theory Vol. VI (1991), Academic Press, New York 175-201
    • (1991) Approximation Theory , vol.VI , pp. 175-201
    • DeVore, R.A.1
  • 10
    • 84875523609 scopus 로고
    • Fast wavelet techniques for near-optimal image processing
    • IEEE Press
    • DeVore R.A., and Lucier B.J. Fast wavelet techniques for near-optimal image processing. Proc. IEEE military communications conf. (1992), IEEE Press 1129-1135
    • (1992) Proc. IEEE military communications conf. , pp. 1129-1135
    • DeVore, R.A.1    Lucier, B.J.2
  • 13
    • 0002109783 scopus 로고
    • An overview of computational learning and function approximation
    • From statistics to neural networks. Theory and pattern recognition applications. Cherkassky, et al. (Ed), Springer-Verlag
    • Friedman J.H. An overview of computational learning and function approximation. In: Cherkassky, et al. (Ed). From statistics to neural networks. Theory and pattern recognition applications. NATO ASI series F (1994), Springer-Verlag 1-61
    • (1994) NATO ASI series F , pp. 1-61
    • Friedman, J.H.1
  • 14
    • 0000065292 scopus 로고
    • Regularization theory, radial basis functions and networks
    • From statistics to neural networks: Theory and pattern recognition applications. Cherkassky V., et al. (Ed), Springer-Verlag
    • Girosi F. Regularization theory, radial basis functions and networks. In: Cherkassky V., et al. (Ed). From statistics to neural networks: Theory and pattern recognition applications. NATO ASI series F (1994), Springer-Verlag 166-187
    • (1994) NATO ASI series F , pp. 166-187
    • Girosi, F.1
  • 18
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl A.E., and Kennard R. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 (1970) 55-67
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 19
    • 0000796112 scopus 로고
    • A Simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones L.K. A Simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 20 (1992) 608-613
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 21
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • Micchelli C. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation 2 (1986) 11-22
    • (1986) Constructive Approximation , vol.2 , pp. 11-22
    • Micchelli, C.1
  • 22
    • 1542337814 scopus 로고    scopus 로고
    • Ph.D. Thesis. Technical University of Berlin
    • Mika, S. (2002). Kernel fisher discriminants, Ph.D. Thesis. Technical University of Berlin
    • (2002) Kernel fisher discriminants
    • Mika, S.1
  • 23
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio T., and Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 247 (1990) 978-982
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 24
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • Poggio T., and Smale S. The mathematics of learning: Dealing with data. Notices of the AMS 50 5 (2003) 537-544
    • (2003) Notices of the AMS , vol.50 , Issue.5 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 28
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A., Schölkopf B., and Mueller K.-R. The connection between regularization operators and support vector kernels. Neural Networks 11 (1998) 637-649
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Mueller, K.-R.3
  • 29
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J., and Vanderwalle J. Least squares support vector machine classifiers. Neural Processing Letters 9 3 (1998) 293-300
    • (1998) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vanderwalle, J.2
  • 31
    • 0000043665 scopus 로고
    • On solving ill-posed problem and method of regularization
    • Tikhonov N. On solving ill-posed problem and method of regularization. Doklady Akademii Nauk USSR 153 (1963) 501-504
    • (1963) Doklady Akademii Nauk USSR , vol.153 , pp. 501-504
    • Tikhonov, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.