메뉴 건너뛰기




Volumn 298, Issue 1, 2003, Pages 207-233

Effects of domain characteristics on instance-based learning algorithms

Author keywords

Average case analysis; Expected accuracy; Instance based learning; k Nearest neighbor classifier; Optimal value of k

Indexed keywords

ARTIFICIAL INTELLIGENCE; PATTERN RECOGNITION; PROBABILITY;

EID: 0037418779     PISSN: 03043975     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-3975(02)00424-3     Document Type: Article
Times cited : (16)

References (33)
  • 1
  • 2
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D., Kibler D., Albert M. Instance-based learning algorithms. Mach. Learning. 6:1991;37-66.
    • (1991) Mach. Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.3
  • 3
    • 85012855770 scopus 로고
    • Analyses of instance-based learning algorithms
    • AAAI Press, Menlo Park, CA
    • M. Albert, D. Aha, Analyses of instance-based learning algorithms, in: Proc. 9th National Conf. on Artificial Intelligence, AAAI Press, Menlo Park, CA, 1991, pp. 553-558.
    • (1991) Proc. 9th National Conf. on Artificial Intelligence , pp. 553-558
    • Albert, M.1    Aha, D.2
  • 4
    • 0017957910 scopus 로고
    • A note on distance-weighted k -nearest neighbor rules
    • Bailey T., Jain A. A note on distance-weighted. k -nearest neighbor rules IEEE Trans. Systems Man Cybernet. 8(4):1978;311-313.
    • (1978) IEEE Trans. Systems Man Cybernet. , vol.8 , Issue.4 , pp. 311-313
    • Bailey, T.1    Jain, A.2
  • 5
    • 84915212583 scopus 로고
    • Estimation by the nearest neighbor rule
    • Cover T. Estimation by the nearest neighbor rule. IEEE Trans. Inform. Theory. 14(1):1968;50-55.
    • (1968) IEEE Trans. Inform. Theory , vol.14 , Issue.1 , pp. 50-55
    • Cover, T.1
  • 6
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T., Hart P. Nearest neighbor pattern classification. IEEE Trans. Inform. Theory. 13(1):1967;21-27.
    • (1967) IEEE Trans. Inform. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 10
    • 0016939390 scopus 로고
    • The distance-weighted k -nearest-neighbor rule
    • Dudani S. The distance-weighted. k -nearest-neighbor rule IEEE Trans. Systems Man Cybernet. 6(4):1976;325-327.
    • (1976) IEEE Trans. Systems Man Cybernet. , vol.6 , Issue.4 , pp. 325-327
    • Dudani, S.1
  • 12
    • 0012588287 scopus 로고
    • On learning perceptrons with binary weights
    • Golea M., Marchand M. On learning perceptrons with binary weights. Neural Comput. 5:1993;767-782.
    • (1993) Neural Comput. , vol.5 , pp. 767-782
    • Golea, M.1    Marchand, M.2
  • 13
    • 85157994034 scopus 로고
    • Probably approximately correct learning
    • AAAI Press. Menlo Park, CA
    • D. Haussler, Probably approximately correct learning, in: Proc. 8th National Conf. on Artificial Intelligence, AAAI Press. Menlo Park, CA, 1990, pp. 1101-1108.
    • (1990) Proc. 8th National Conf. on Artificial Intelligence , pp. 1101-1108
    • Haussler, D.1
  • 14
    • 84935296694 scopus 로고
    • Average-case analysis of learning k -CNF concept
    • Morgan Kaufmann, San Francisco, CA
    • D. Hirschberg, M. Pazzani, Average-case analysis of learning k -CNF concept, in: Proc. 9th Internat. Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1992, pp. 206-211.
    • (1992) Proc. 9th Internat. Conf. on Machine Learning , pp. 206-211
    • Hirschberg, D.1    Pazzani, M.2
  • 15
    • 85065198637 scopus 로고
    • Induction of one-level decision trees
    • Morgan Kaufmann, San Francisco, CA
    • W. Iba, P. Langley, Induction of one-level decision trees, in: Proc. 9th Internat. Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1992, pp. 233-240.
    • (1992) Proc. 9th Internat. Conf. on Machine Learning , pp. 233-240
    • Iba, W.1    Langley, P.2
  • 16
    • 0002929640 scopus 로고
    • Average-case analysis of a nearest neighbor algorithm
    • Morgan Kaufmann, San Francisco, CA
    • P. Langley, W. Iba, Average-case analysis of a nearest neighbor algorithm, in: Proc. 13th Internat. Joint Conf. on Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, 1993, pp. 889-894.
    • (1993) Proc. 13th Internat. Joint Conf. on Artificial Intelligence , pp. 889-894
    • Langley, P.1    Iba, W.2
  • 18
    • 0003204023 scopus 로고    scopus 로고
    • Tractable average-case analysis of naive bayesian classifiers
    • Morgan Kaufmann, San Francisco, CA
    • P. Langley, S. Sage, Tractable average-case analysis of naive bayesian classifiers, in: Proc. 16th Internat. Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1999, pp. 220-228.
    • (1999) Proc. 16th Internat. Conf. on Machine Learning , pp. 220-228
    • Langley, P.1    Sage, S.2
  • 19
    • 85140468046 scopus 로고
    • ID2- of -3: Constructive induction of m -of- n concepts for discriminators in decision trees
    • Morgan Kaufmann, Los Altos, CA
    • P. Murphy, M. Pazzani, ID2- of -3: constructive induction of m -of- n concepts for discriminators in decision trees, in: Proc. 8th Internat. Workshop on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1991, pp. 183-187.
    • (1991) Proc. 8th Internat. Workshop on Machine Learning , pp. 183-187
    • Murphy, P.1    Pazzani, M.2
  • 20
    • 84902244367 scopus 로고
    • An average-case analysis of k -nearest neighbor classifier
    • Proc. 1st Internat. Conf. on Case-Based Reasoning, Springer, Berlin
    • S. Okamoto, K. Satoh, An average-case analysis of k -nearest neighbor classifier, in: Proc. 1st Internat. Conf. on Case-Based Reasoning, Lecture Notes in Artificial Intelligence, Vol. 1010, Springer, Berlin, 1995, pp. 253-264.
    • (1995) Lecture Notes in Artificial Intelligence , vol.1010 , pp. 253-264
    • Okamoto, S.1    Satoh, K.2
  • 21
    • 0001637081 scopus 로고    scopus 로고
    • Theoretical analysis of the nearest neighbor classifier in noisy domains
    • Morgan Kaufmann, San Francisco, CA
    • S. Okamoto, N. Yugami, Theoretical analysis of the nearest neighbor classifier in noisy domains, in: Proc. 13th Internat. Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1996, pp. 355-363.
    • (1996) Proc. 13th Internat. Conf. on Machine Learning , pp. 355-363
    • Okamoto, S.1    Yugami, N.2
  • 22
    • 84880653602 scopus 로고    scopus 로고
    • An average-case analysis of the k -nearest neighbor classifier for noisy domains
    • Morgan Kaufmann, San Francisco, CA
    • S. Okamoto, N. Yugami, An average-case analysis of the k -nearest neighbor classifier for noisy domains, in: Proc. 15th Internat. Joint Conf. on Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, 1997, pp. 238-243.
    • (1997) Proc. 15th Internat. Joint Conf. on Artificial Intelligence , pp. 238-243
    • Okamoto, S.1    Yugami, N.2
  • 23
    • 0012488098 scopus 로고    scopus 로고
    • Generalized average-case analyses of the nearest neighbor algorithm
    • Morgan Kaufmann, San Francisco, CA
    • S. Okamoto, N. Yugami, Generalized average-case analyses of the nearest neighbor algorithm, in: Proc. 17th Internat. Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, 2000, pp. 695-702.
    • (2000) Proc. 17th Internat. Conf. on Machine Learning , pp. 695-702
    • Okamoto, S.1    Yugami, N.2
  • 24
    • 0012488330 scopus 로고
    • A framework for average case analysis of conjunctive learning algorithms
    • Pazzani M., Sarrett W. A framework for average case analysis of conjunctive learning algorithms. Mach. Learning. 9:1992;349-372.
    • (1992) Mach. Learning , vol.9 , pp. 349-372
    • Pazzani, M.1    Sarrett, W.2
  • 25
    • 0024092215 scopus 로고
    • Computational limitations on learning from examples
    • Pitt L., Valiant L. Computational limitations on learning from examples. J. Assoc. Comput. Mach. 35(4):1988;965-984.
    • (1988) J. Assoc. Comput. Mach. , vol.35 , Issue.4 , pp. 965-984
    • Pitt, L.1    Valiant, L.2
  • 26
  • 27
    • 84957084048 scopus 로고    scopus 로고
    • A complete and tight average-case analysis of learning monomials
    • Proc. 16th Internat. Symp. on Theoretical Aspects of Computer Science, Springer, Berlin
    • R. Reischuk, T. Zeugmann, A complete and tight average-case analysis of learning monomials, in: Proc. 16th Internat. Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Vol. 1563, Springer, Berlin, 1999, pp. 414-423.
    • (1999) Lecture Notes in Computer Science , vol.1563 , pp. 414-423
    • Reischuk, R.1    Zeugmann, T.2
  • 31
  • 33
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical comparison of feature weighting methods for a class of lazy learning algorithms
    • Wettschereck D., Aha D., Mohri T. A review and empirical comparison of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11:1997;273-314.
    • (1997) Artif. Intell. Rev. , vol.11 , pp. 273-314
    • Wettschereck, D.1    Aha, D.2    Mohri, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.