메뉴 건너뛰기




Volumn 11, Issue 3, 2015, Pages 812-820

Machine learning for predictive maintenance: A multiple classifier approach

Author keywords

Classification algorithms; Data mining; Ion implantation; Machine learning (ML); Predictive maintenance (PdM); Semiconductor device manufacture

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COSTS; DATA MINING; HEALTH RISKS; ION IMPLANTATION; LEARNING SYSTEMS; MANUFACTURE; OPERATING COSTS; SEMICONDUCTOR DEVICE MANUFACTURE; SEMICONDUCTOR DEVICES;

EID: 84937407847     PISSN: 15513203     EISSN: None     Source Type: Journal    
DOI: 10.1109/TII.2014.2349359     Document Type: Article
Times cited : (623)

References (28)
  • 1
    • 84864646224 scopus 로고    scopus 로고
    • Wafer classification using support vector machines
    • Aug.
    • R. Baly and H. Hajj, "Wafer classification using support vector machines," IEEE Trans. Semicond. Manuf., vol. 25, no. 3, pp. 373-383, Aug. 2012.
    • (2012) IEEE Trans. Semicond. Manuf. , vol.25 , Issue.3 , pp. 373-383
    • Baly, R.1    Hajj, H.2
  • 2
    • 78751676560 scopus 로고    scopus 로고
    • Particle filters for remaining useful life estimation of abatement equipment used in semiconductor manufacturing
    • Oct.
    • S. Butler and J. Ringwood, "Particle filters for remaining useful life estimation of abatement equipment used in semiconductor manufacturing," in Proc. IEEE Conf. Control Fault Tolerant Syst., Oct. 2010, pp. 436-441.
    • (2010) Proc. IEEE Conf. Control Fault Tolerant Syst. , pp. 436-441
    • Butler, S.1    Ringwood, J.2
  • 5
    • 63449111489 scopus 로고    scopus 로고
    • Intelligent condition-based prediction of machinery reliability
    • A. Heng et al., "Intelligent condition-based prediction of machinery reliability," Mech. Syst. Signal Process., vol. 23, pp. 1600-1614, 2009.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 1600-1614
    • Heng, A.1
  • 6
    • 79957992809 scopus 로고    scopus 로고
    • A review of data mining applications for quality improvement in manufacturing industry
    • G. Koksal, I. Batmaz, and M. C. Testik, "A review of data mining applications for quality improvement in manufacturing industry," Expert Syst. Appl., vol. 38, no. 10, pp. 13448-13467, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.10 , pp. 13448-13467
    • Koksal, G.1    Batmaz, I.2    Testik, M.C.3
  • 7
    • 84905854254 scopus 로고    scopus 로고
    • Design and deployment of industrial sensor networks: Experiences from a semiconductor plant and the north sea
    • L. Krishnamurthyet al., "Design and deployment of industrial sensor networks: Experiences from a semiconductor plant and the north sea," in Proc. Int. Conf. Embedded Netw. Sensor Syst. (SenSys), 2005, pp. 64-75.
    • (2005) Proc. Int. Conf. Embedded Netw. Sensor Syst. (SenSys) , pp. 64-75
    • Krishnamurthy, L.1
  • 9
    • 0034726260 scopus 로고    scopus 로고
    • Noisy replication in skewed binary classification
    • S. S. Lee, "Noisy replication in skewed binary classification," Comput. Stat. Data Anal., vol. 34, no. 2, pp. 165-191, 2000.
    • (2000) Comput. Stat. Data Anal. , vol.34 , Issue.2 , pp. 165-191
    • Lee, S.S.1
  • 10
    • 84875518690 scopus 로고    scopus 로고
    • Data mining and support vector regression machine learning in semiconductor manufacturing to improve virtual metrology
    • B. Lenz and B. Barak, "Data mining and support vector regression machine learning in semiconductor manufacturing to improve virtual metrology," in Proc. 46th IEEE Hawaii Int. Conf. Syst. Sci. (HICSS), 2013, pp. 3447-3456.
    • (2013) Proc. 46th IEEE Hawaii Int. Conf. Syst. Sci. (HICSS) , pp. 3447-3456
    • Lenz, B.1    Barak, B.2
  • 11
    • 33751541707 scopus 로고    scopus 로고
    • A classification-based fault detection and isolation scheme for the ion implanter
    • S.-Y. Lin and S.-C. Horng, "A classification-based fault detection and isolation scheme for the ion implanter," IEEE Trans. Semicond. Manuf., vol. 19, no. 4, pp. 411-424, 2006.
    • (2006) IEEE Trans. Semicond. Manuf. , vol.19 , Issue.4 , pp. 411-424
    • Lin, S.-Y.1    Horng, S.-C.2
  • 13
    • 78649870129 scopus 로고    scopus 로고
    • A personal historical perspective of ion implantation equipment for semiconductor applications
    • C. M. McKenna, "A personal historical perspective of ion implantation equipment for semiconductor applications," in Proc. Conf. Ion Implant. Technol., 2000, pp. 1-19.
    • (2000) Proc. Conf. Ion Implant. Technol. , pp. 1-19
    • McKenna, C.M.1
  • 15
    • 84855921402 scopus 로고    scopus 로고
    • A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations
    • L. Mönch, J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose, "A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations," J. Sched., vol. 4, no. 6, pp. 583-599, 2011.
    • (2011) J. Sched. , vol.4 , Issue.6 , pp. 583-599
    • Mönch, L.1    Fowler, J.W.2    Dauzère-Pérès, S.3    Mason, S.J.4    Rose, O.5
  • 16
    • 84950445313 scopus 로고
    • Cross-validation of regression models
    • R. R. Picard and R. D. Cook, "Cross-validation of regression models," J. Amer. Stat. Assoc., vol. 79, pp. 575-583, 1984.
    • (1984) J. Amer. Stat. Assoc. , vol.79 , pp. 575-583
    • Picard, R.R.1    Cook, R.D.2
  • 20
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • J. Shao, "Linear model selection by cross-validation," J. Amer. Stat. Assoc., vol. 88, pp. 486-494, 1993.
    • (1993) J. Amer. Stat. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 22
    • 84877023031 scopus 로고    scopus 로고
    • A predictive maintenance system for epitaxy processes based on filtering and prediction techniques
    • G. A. Susto, A. Beghi, and C. DeLuca, "A predictive maintenance system for epitaxy processes based on filtering and prediction techniques," IEEE Trans. Semicond. Manuf., vol. 25, pp. 638-649, 2012.
    • (2012) IEEE Trans. Semicond. Manuf. , vol.25 , pp. 638-649
    • Susto, G.A.1    Beghi, A.2    Deluca, C.3
  • 23
    • 84912138502 scopus 로고    scopus 로고
    • Multistep virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach
    • to be published
    • G. A. Susto, S. Pampuri, A. Schirru, A. Beghi, and G. DeNicolao, "Multistep virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach," Comput. Oper. Res., to be published.
    • Comput. Oper. Res.
    • Susto, G.A.1    Pampuri, S.2    Schirru, A.3    Beghi, A.4    Denicolao, G.5
  • 24
    • 84891505814 scopus 로고    scopus 로고
    • A predictive maintenance system for integral type faults based on support vector machines: An application to ion implantation
    • G. A. Susto et al., "A predictive maintenance system for integral type faults based on support vector machines: An application to ion implantation," in Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE), 2013, pp. 195-200.
    • Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE) , vol.2013 , pp. 195-200
    • Susto, G.A.1
  • 25
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 26
    • 84881320809 scopus 로고    scopus 로고
    • Multiparametric virtual metrology model building by job-shop data fusion using a Markov Chain Monte Carlo method
    • Aug.
    • K. Tamaki and S. Kaneko, "Multiparametric virtual metrology model building by job-shop data fusion using a Markov Chain Monte Carlo method," IEEE Trans. Semicond. Manuf., vol. 26, no. 3, pp. 319-327, Aug. 2013.
    • (2013) IEEE Trans. Semicond. Manuf. , vol.26 , Issue.3 , pp. 319-327
    • Tamaki, K.1    Kaneko, S.2
  • 27
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 28
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognit., vol. 40, no. 7, pp. 2038-2048, 2007.
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.