-
1
-
-
84864646224
-
Wafer classification using support vector machines
-
Aug.
-
R. Baly and H. Hajj, "Wafer classification using support vector machines," IEEE Trans. Semicond. Manuf., vol. 25, no. 3, pp. 373-383, Aug. 2012.
-
(2012)
IEEE Trans. Semicond. Manuf.
, vol.25
, Issue.3
, pp. 373-383
-
-
Baly, R.1
Hajj, H.2
-
2
-
-
78751676560
-
Particle filters for remaining useful life estimation of abatement equipment used in semiconductor manufacturing
-
Oct.
-
S. Butler and J. Ringwood, "Particle filters for remaining useful life estimation of abatement equipment used in semiconductor manufacturing," in Proc. IEEE Conf. Control Fault Tolerant Syst., Oct. 2010, pp. 436-441.
-
(2010)
Proc. IEEE Conf. Control Fault Tolerant Syst.
, pp. 436-441
-
-
Butler, S.1
Ringwood, J.2
-
3
-
-
79955702502
-
Libsvm: A library for support vector machines
-
C.-C. Chang and C. J. Lin, "Libsvm: A library for support vector machines," ACM Trans. Intell. Syst. Technol. (TIST), vol. 2, no. 3, p. 27, 2011.
-
(2011)
ACM Trans. Intell. Syst. Technol. (TIST)
, vol.2
, Issue.3
, pp. 27
-
-
Chang, C.-C.1
Lin, C.J.2
-
4
-
-
0003684449
-
-
New York, NY, USA: Springer
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY, USA: Springer, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
5
-
-
63449111489
-
Intelligent condition-based prediction of machinery reliability
-
A. Heng et al., "Intelligent condition-based prediction of machinery reliability," Mech. Syst. Signal Process., vol. 23, pp. 1600-1614, 2009.
-
(2009)
Mech. Syst. Signal Process.
, vol.23
, pp. 1600-1614
-
-
Heng, A.1
-
6
-
-
79957992809
-
A review of data mining applications for quality improvement in manufacturing industry
-
G. Koksal, I. Batmaz, and M. C. Testik, "A review of data mining applications for quality improvement in manufacturing industry," Expert Syst. Appl., vol. 38, no. 10, pp. 13448-13467, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.10
, pp. 13448-13467
-
-
Koksal, G.1
Batmaz, I.2
Testik, M.C.3
-
7
-
-
84905854254
-
Design and deployment of industrial sensor networks: Experiences from a semiconductor plant and the north sea
-
L. Krishnamurthyet al., "Design and deployment of industrial sensor networks: Experiences from a semiconductor plant and the north sea," in Proc. Int. Conf. Embedded Netw. Sensor Syst. (SenSys), 2005, pp. 64-75.
-
(2005)
Proc. Int. Conf. Embedded Netw. Sensor Syst. (SenSys)
, pp. 64-75
-
-
Krishnamurthy, L.1
-
8
-
-
84885596421
-
Kernel spectral clustering for predicting maintenance of industrial machines
-
Apr.
-
R. Langone, C. Alzate, B. DeKetelaere, and J. A. K. Suykens, "Kernel spectral clustering for predicting maintenance of industrial machines," in Proc. IEEE Symp. Comput. Intell. Data Mining (CIDM), pp. 39-45, Apr. 2013.
-
(2013)
Proc. IEEE Symp. Comput. Intell. Data Mining (CIDM)
, pp. 39-45
-
-
Langone, R.1
Alzate, C.2
Deketelaere, B.3
Suykens, J.A.K.4
-
9
-
-
0034726260
-
Noisy replication in skewed binary classification
-
S. S. Lee, "Noisy replication in skewed binary classification," Comput. Stat. Data Anal., vol. 34, no. 2, pp. 165-191, 2000.
-
(2000)
Comput. Stat. Data Anal.
, vol.34
, Issue.2
, pp. 165-191
-
-
Lee, S.S.1
-
10
-
-
84875518690
-
Data mining and support vector regression machine learning in semiconductor manufacturing to improve virtual metrology
-
B. Lenz and B. Barak, "Data mining and support vector regression machine learning in semiconductor manufacturing to improve virtual metrology," in Proc. 46th IEEE Hawaii Int. Conf. Syst. Sci. (HICSS), 2013, pp. 3447-3456.
-
(2013)
Proc. 46th IEEE Hawaii Int. Conf. Syst. Sci. (HICSS)
, pp. 3447-3456
-
-
Lenz, B.1
Barak, B.2
-
11
-
-
33751541707
-
A classification-based fault detection and isolation scheme for the ion implanter
-
S.-Y. Lin and S.-C. Horng, "A classification-based fault detection and isolation scheme for the ion implanter," IEEE Trans. Semicond. Manuf., vol. 19, no. 4, pp. 411-424, 2006.
-
(2006)
IEEE Trans. Semicond. Manuf.
, vol.19
, Issue.4
, pp. 411-424
-
-
Lin, S.-Y.1
Horng, S.-C.2
-
12
-
-
84893629194
-
Online predictive maintenance approach for semiconductor equipment
-
M. Luo, Z. Xu, H. L. Chan, andM. Alavi, "Online predictive maintenance approach for semiconductor equipment," in Proc. 39th IEEE Annu. Conf. Ind. Electron. Soc. (IECON), 2013, pp. 3662-3667.
-
(2013)
Proc. 39th IEEE Annu. Conf. Ind. Electron. Soc. (IECON)
, pp. 3662-3667
-
-
Luo, M.1
Xu, Z.2
Chan, H.L.3
Alavi, M.4
-
13
-
-
78649870129
-
A personal historical perspective of ion implantation equipment for semiconductor applications
-
C. M. McKenna, "A personal historical perspective of ion implantation equipment for semiconductor applications," in Proc. Conf. Ion Implant. Technol., 2000, pp. 1-19.
-
(2000)
Proc. Conf. Ion Implant. Technol.
, pp. 1-19
-
-
McKenna, C.M.1
-
15
-
-
84855921402
-
A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations
-
L. Mönch, J. W. Fowler, S. Dauzère-Pérès, S. J. Mason, and O. Rose, "A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations," J. Sched., vol. 4, no. 6, pp. 583-599, 2011.
-
(2011)
J. Sched.
, vol.4
, Issue.6
, pp. 583-599
-
-
Mönch, L.1
Fowler, J.W.2
Dauzère-Pérès, S.3
Mason, S.J.4
Rose, O.5
-
16
-
-
84950445313
-
Cross-validation of regression models
-
R. R. Picard and R. D. Cook, "Cross-validation of regression models," J. Amer. Stat. Assoc., vol. 79, pp. 575-583, 1984.
-
(1984)
J. Amer. Stat. Assoc.
, vol.79
, pp. 575-583
-
-
Picard, R.R.1
Cook, R.D.2
-
18
-
-
84874234366
-
Learning from time series: Supervised aggregative feature extraction
-
A. Schirru, G. A. Susto, S. Pampuri, and S. McLoone, "Learning from time series: Supervised aggregative feature extraction," in Proc. 51st IEEE Conf. Decision Control, 2012, pp. 5254-5259.
-
(2012)
Proc. 51st IEEE Conf. Decision Control
, pp. 5254-5259
-
-
Schirru, A.1
Susto, G.A.2
Pampuri, S.3
McLoone, S.4
-
20
-
-
21144474350
-
Linear model selection by cross-validation
-
J. Shao, "Linear model selection by cross-validation," J. Amer. Stat. Assoc., vol. 88, pp. 486-494, 1993.
-
(1993)
J. Amer. Stat. Assoc.
, vol.88
, pp. 486-494
-
-
Shao, J.1
-
21
-
-
33646730899
-
Intelligent prognostics system design and implementation
-
Y.-C. Su, F.-T. Cheng, M.-H. Hung, and H.-C. Huang, "Intelligent prognostics system design and implementation," IEEE Trans. Semicond. Manuf., vol. 19, pp. 195-207, 2006.
-
(2006)
IEEE Trans. Semicond. Manuf.
, vol.19
, pp. 195-207
-
-
Su, Y.-C.1
Cheng, F.-T.2
Hung, M.-H.3
Huang, H.-C.4
-
22
-
-
84877023031
-
A predictive maintenance system for epitaxy processes based on filtering and prediction techniques
-
G. A. Susto, A. Beghi, and C. DeLuca, "A predictive maintenance system for epitaxy processes based on filtering and prediction techniques," IEEE Trans. Semicond. Manuf., vol. 25, pp. 638-649, 2012.
-
(2012)
IEEE Trans. Semicond. Manuf.
, vol.25
, pp. 638-649
-
-
Susto, G.A.1
Beghi, A.2
Deluca, C.3
-
23
-
-
84912138502
-
Multistep virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach
-
to be published
-
G. A. Susto, S. Pampuri, A. Schirru, A. Beghi, and G. DeNicolao, "Multistep virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach," Comput. Oper. Res., to be published.
-
Comput. Oper. Res.
-
-
Susto, G.A.1
Pampuri, S.2
Schirru, A.3
Beghi, A.4
Denicolao, G.5
-
24
-
-
84891505814
-
A predictive maintenance system for integral type faults based on support vector machines: An application to ion implantation
-
G. A. Susto et al., "A predictive maintenance system for integral type faults based on support vector machines: An application to ion implantation," in Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE), 2013, pp. 195-200.
-
Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE)
, vol.2013
, pp. 195-200
-
-
Susto, G.A.1
-
25
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
26
-
-
84881320809
-
Multiparametric virtual metrology model building by job-shop data fusion using a Markov Chain Monte Carlo method
-
Aug.
-
K. Tamaki and S. Kaneko, "Multiparametric virtual metrology model building by job-shop data fusion using a Markov Chain Monte Carlo method," IEEE Trans. Semicond. Manuf., vol. 26, no. 3, pp. 319-327, Aug. 2013.
-
(2013)
IEEE Trans. Semicond. Manuf.
, vol.26
, Issue.3
, pp. 319-327
-
-
Tamaki, K.1
Kaneko, S.2
-
27
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
28
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognit., vol. 40, no. 7, pp. 2038-2048, 2007.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
|