-
1
-
-
84859490749
-
Protein N-terminal acetyltransferases: when the start matters
-
1 Starheim, K.K., et al. Protein N-terminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37 (2012), 152–161.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 152-161
-
-
Starheim, K.K.1
-
2
-
-
66249126298
-
Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans
-
2 Arnesen, T., et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 8157–8162.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 8157-8162
-
-
Arnesen, T.1
-
3
-
-
72949111831
-
Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster
-
3 Goetze, S., et al. Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS Biol., 7, 2009, e1000236.
-
(2009)
PLoS Biol.
, vol.7
, pp. e1000236
-
-
Goetze, S.1
-
4
-
-
84859515208
-
Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features
-
M111.015131
-
4 Bienvenut, W.V., et al. Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol. Cell Proteomics, 11, 2012 M111.015131.
-
(2012)
Mol. Cell Proteomics
, vol.11
-
-
Bienvenut, W.V.1
-
5
-
-
0024461828
-
Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast
-
5 Mullen, J.R., et al. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 8 (1989), 2067–2075.
-
(1989)
EMBO J.
, vol.8
, pp. 2067-2075
-
-
Mullen, J.R.1
-
6
-
-
0141755383
-
An N-alpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A
-
6 Song, O.K., et al. An N-alpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J. Biol. Chem. 278 (2003), 38109–38112.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 38109-38112
-
-
Song, O.K.1
-
7
-
-
80052829164
-
The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4
-
7 Hole, K., et al. The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PloS ONE, 6, 2011, e24713.
-
(2011)
PloS ONE
, vol.6
, pp. e24713
-
-
Hole, K.1
-
8
-
-
0033231015
-
Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae
-
8 Polevoda, B., et al. Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J. 18 (1999), 6155–6168.
-
(1999)
EMBO J.
, vol.18
, pp. 6155-6168
-
-
Polevoda, B.1
-
9
-
-
84864512849
-
N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB
-
9 Van Damme, P., et al. N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 12449–12454.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 12449-12454
-
-
Van Damme, P.1
-
10
-
-
0026744480
-
2 terminus is necessary for virus particle assembly
-
2 terminus is necessary for virus particle assembly. J. Biol. Chem. 267 (1992), 20277–20281.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 20277-20281
-
-
Tercero, J.C.1
Wickner, R.B.2
-
11
-
-
0035827594
-
NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p
-
11 Polevoda, B., Sherman, F., NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J. Biol. Chem. 276 (2001), 20154–20159.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 20154-20159
-
-
Polevoda, B.1
Sherman, F.2
-
12
-
-
71449101084
-
Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity
-
12 Evjenth, R., et al. Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. J. Biol. Chem. 284 (2009), 31122–31129.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 31122-31129
-
-
Evjenth, R.1
-
13
-
-
67650085001
-
Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization
-
13 Starheim, K.K., et al. Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol. Cell Biol. 29 (2009), 3569–3581.
-
(2009)
Mol. Cell Biol.
, vol.29
, pp. 3569-3581
-
-
Starheim, K.K.1
-
14
-
-
79955761504
-
Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase
-
M110.004580
-
14 Van Damme, P., et al. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase. Mol. Cell Proteomics, 10, 2011 M110.004580.
-
(2011)
Mol. Cell Proteomics
, vol.10
-
-
Van Damme, P.1
-
15
-
-
79960946480
-
NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation
-
15 Van Damme, P., et al. NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet., 7, 2011, e1002169.
-
(2011)
PLoS Genet.
, vol.7
, pp. e1002169
-
-
Van Damme, P.1
-
16
-
-
84973442673
-
Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling
-
16 Dinh, T.V., et al. Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling. Proteomics 15 (2015), 2426–2435.
-
(2015)
Proteomics
, vol.15
, pp. 2426-2435
-
-
Dinh, T.V.1
-
17
-
-
84924531069
-
An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity
-
17 Aksnes, H., et al. An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity. Cell Rep. 10 (2015), 1362–1374.
-
(2015)
Cell Rep.
, vol.10
, pp. 1362-1374
-
-
Aksnes, H.1
-
18
-
-
84925251881
-
Molecular, cellular, and physiological significance of N-terminal acetylation
-
18 Aksnes, H., et al. Molecular, cellular, and physiological significance of N-terminal acetylation. Int. Rev. Cell Mol. Biol. 316 (2015), 267–305.
-
(2015)
Int. Rev. Cell Mol. Biol.
, vol.316
, pp. 267-305
-
-
Aksnes, H.1
-
19
-
-
84958074128
-
Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms
-
19 Rathore, O.S., et al. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms. Sci. Rep., 6, 2016, 21304.
-
(2016)
Sci. Rep.
, vol.6
, pp. 21304
-
-
Rathore, O.S.1
-
20
-
-
0141640821
-
The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides
-
20 Gautschi, M., et al. The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell Biol. 23 (2003), 7403–7414.
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 7403-7414
-
-
Gautschi, M.1
-
21
-
-
84883743838
-
Molecular basis for N-terminal acetylation by the heterodimeric NatA complex
-
21 Liszczak, G., et al. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nat. Struct. Mol. Biol. 20 (2013), 1098–1105.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 1098-1105
-
-
Liszczak, G.1
-
22
-
-
38649122076
-
Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes
-
22 Polevoda, B., et al. Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes. J. Cell Biochem. 103 (2008), 492–508.
-
(2008)
J. Cell Biochem.
, vol.103
, pp. 492-508
-
-
Polevoda, B.1
-
23
-
-
15944413192
-
Identification and characterization of the human ARD1–NATH protein acetyltransferase complex
-
23 Arnesen, T., et al. Identification and characterization of the human ARD1–NATH protein acetyltransferase complex. Biochem. J. 386 (2005), 433–443.
-
(2005)
Biochem. J.
, vol.386
, pp. 433-443
-
-
Arnesen, T.1
-
24
-
-
0344663967
-
Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila
-
24 Williams, B.C., et al. Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila. Curr. Biol. 13 (2003), 2025–2036.
-
(2003)
Curr. Biol.
, vol.13
, pp. 2025-2036
-
-
Williams, B.C.1
-
25
-
-
77950667600
-
The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation
-
25 Arnesen, T., et al. The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol. Cell Biol. 30 (2010), 1898–1909.
-
(2010)
Mol. Cell Biol.
, vol.30
, pp. 1898-1909
-
-
Arnesen, T.1
-
26
-
-
34249009554
-
The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner
-
26 Hou, F., et al. The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. J. Cell Biol. 177 (2007), 587–597.
-
(2007)
J. Cell Biol.
, vol.177
, pp. 587-597
-
-
Hou, F.1
-
27
-
-
0043234609
-
Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin
-
27 Polevoda, B., et al. Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J. Biol. Chem. 278 (2003), 30686–30697.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 30686-30697
-
-
Polevoda, B.1
-
28
-
-
54049149934
-
Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression
-
28 Starheim, K.K., et al. Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem. J. 415 (2008), 325–331.
-
(2008)
Biochem. J.
, vol.415
, pp. 325-331
-
-
Starheim, K.K.1
-
29
-
-
84930190696
-
The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD
-
29 Magin, R.S., et al. The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD. Structure 23 (2015), 332–341.
-
(2015)
Structure
, vol.23
, pp. 332-341
-
-
Magin, R.S.1
-
30
-
-
77951872216
-
Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome
-
30 Helbig, A.O., et al. Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol. Cell Proteomics 9 (2010), 928–939.
-
(2010)
Mol. Cell Proteomics
, vol.9
, pp. 928-939
-
-
Helbig, A.O.1
-
31
-
-
79961232419
-
Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation
-
31 Helsens, K., et al. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. J. Proteome Res. 10 (2011), 3578–3589.
-
(2011)
J. Proteome Res.
, vol.10
, pp. 3578-3589
-
-
Helsens, K.1
-
32
-
-
0019888725
-
NH2-terminal processing of Dictyostelium discoideum actin in vitro
-
32 Redman, K., Rubenstein, P.A., NH2-terminal processing of Dictyostelium discoideum actin in vitro. J. Biol. Chem. 256 (1981), 13226–13229.
-
(1981)
J. Biol. Chem.
, vol.256
, pp. 13226-13229
-
-
Redman, K.1
Rubenstein, P.A.2
-
33
-
-
84879771440
-
Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors
-
33 Foyn, H., et al. Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors. ACS Chem. Biol. 8 (2013), 1121–1127.
-
(2013)
ACS Chem. Biol.
, vol.8
, pp. 1121-1127
-
-
Foyn, H.1
-
34
-
-
0032473425
-
The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions
-
34 Das, A.K., et al. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J. 17 (1998), 1192–1199.
-
(1998)
EMBO J.
, vol.17
, pp. 1192-1199
-
-
Das, A.K.1
-
35
-
-
52949119208
-
Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18
-
35 Vetting, M.W., et al. Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18. Protein Sci. 17 (2008), 1781–1790.
-
(2008)
Protein Sci.
, vol.17
, pp. 1781-1790
-
-
Vetting, M.W.1
-
36
-
-
84883342432
-
Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
-
36 Liszczak, G., Marmorstein, R., Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 14652–14657.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 14652-14657
-
-
Liszczak, G.1
Marmorstein, R.2
-
37
-
-
80054694313
-
Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation
-
37 Liszczak, G., et al. Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. J. Biol. Chem. 286 (2011), 37002–37010.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 37002-37010
-
-
Liszczak, G.1
-
38
-
-
84979085641
-
Crystal structure of the Golgi-associated human Nα-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation
-
38 Stove, S.I., et al. Crystal structure of the Golgi-associated human Nα-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation. Structure 24 (2016), 1044–1056.
-
(2016)
Structure
, vol.24
, pp. 1044-1056
-
-
Stove, S.I.1
-
39
-
-
84964690528
-
The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues
-
39 Magin, R.S., et al. The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues. J. Biol. Chem. 291 (2016), 5270–5277.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 5270-5277
-
-
Magin, R.S.1
-
40
-
-
84901777856
-
Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex
-
40 Li, Y., et al. Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex. Genes Dev. 28 (2014), 1217–1227.
-
(2014)
Genes Dev.
, vol.28
, pp. 1217-1227
-
-
Li, Y.1
-
41
-
-
84928016447
-
Arrest defective 1 regulates the oxidative stress response in human cells and mice by acetylating methionine sulfoxide reductase A
-
41 Shin, S.H., et al. Arrest defective 1 regulates the oxidative stress response in human cells and mice by acetylating methionine sulfoxide reductase A. Cell Death Dis., 5, 2014, e1490.
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1490
-
-
Shin, S.H.1
-
42
-
-
84923355497
-
NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2
-
42 Yoon, H., et al. NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2. Nat. Commun., 5, 2014, 5176.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5176
-
-
Yoon, H.1
-
43
-
-
84871866927
-
Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo
-
43 Foyn, H., et al. Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo. Mol. Cell Proteomics 12 (2013), 42–54.
-
(2013)
Mol. Cell Proteomics
, vol.12
, pp. 42-54
-
-
Foyn, H.1
-
44
-
-
77149120798
-
N-terminal acetylation of cellular proteins creates specific degradation signals
-
44 Hwang, C.S., et al. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327 (2010), 973–977.
-
(2010)
Science
, vol.327
, pp. 973-977
-
-
Hwang, C.S.1
-
45
-
-
84878195272
-
Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway
-
45 Shemorry, A., et al. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell. 50 (2013), 540–551.
-
(2013)
Mol. Cell.
, vol.50
, pp. 540-551
-
-
Shemorry, A.1
-
46
-
-
78149281017
-
The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27
-
46 Zhang, Z., et al. The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. EMBO J. 29 (2010), 3733–3744.
-
(2010)
EMBO J.
, vol.29
, pp. 3733-3744
-
-
Zhang, Z.1
-
47
-
-
84892802083
-
The N-terminal methionine of cellular proteins as a degradation signal
-
47 Kim, H.K., et al. The N-terminal methionine of cellular proteins as a degradation signal. Cell 156 (2014), 158–169.
-
(2014)
Cell
, vol.156
, pp. 158-169
-
-
Kim, H.K.1
-
48
-
-
84924769665
-
Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway
-
48 Park, S.E., et al. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347 (2015), 1249–1252.
-
(2015)
Science
, vol.347
, pp. 1249-1252
-
-
Park, S.E.1
-
49
-
-
84937516503
-
(Hyper)tension release by N-terminal acetylation
-
49 Aksnes, H., et al. (Hyper)tension release by N-terminal acetylation. Trends Biochem. Sci. 40 (2015), 422–424.
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 422-424
-
-
Aksnes, H.1
-
50
-
-
84875478507
-
N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates
-
50 Zattas, D., et al. N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates. Mol. Biol. Cell. 24 (2013), 890–900.
-
(2013)
Mol. Biol. Cell.
, vol.24
, pp. 890-900
-
-
Zattas, D.1
-
51
-
-
84926486495
-
Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects
-
51 Myklebust, L.M., et al. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects. Hum. Mol. Genet. 24 (2015), 1956–1976.
-
(2015)
Hum. Mol. Genet.
, vol.24
, pp. 1956-1976
-
-
Myklebust, L.M.1
-
52
-
-
80555131132
-
N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex
-
52 Scott, D.C., et al. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334 (2011), 674–678.
-
(2011)
Science
, vol.334
, pp. 674-678
-
-
Scott, D.C.1
-
53
-
-
84872154184
-
Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes
-
53 Monda, J.K., et al. Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21 (2013), 42–53.
-
(2013)
Structure
, vol.21
, pp. 42-53
-
-
Monda, J.K.1
-
54
-
-
84883742201
-
The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle
-
54 Arnaudo, N., et al. The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle. Nat. Struct. Mol. Biol. 20 (2013), 1119–1121.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 1119-1121
-
-
Arnaudo, N.1
-
55
-
-
84883744311
-
Nalpha-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain
-
55 Yang, D., et al. Nalpha-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain. Nat. Struct. Mol. Biol. 20 (2013), 1116–1118.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 1116-1118
-
-
Yang, D.1
-
56
-
-
84943361459
-
Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis
-
56 Srinivasan, S., et al. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18 (2015), 449–462.
-
(2015)
Angiogenesis
, vol.18
, pp. 449-462
-
-
Srinivasan, S.1
-
57
-
-
2342546616
-
Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p
-
57 Behnia, R., et al. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol. 6 (2004), 405–413.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 405-413
-
-
Behnia, R.1
-
58
-
-
2342497804
-
Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p
-
58 Setty, S.R., et al. Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat. Cell Biol. 6 (2004), 414–419.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 414-419
-
-
Setty, S.R.1
-
59
-
-
32944479331
-
Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB
-
59 Caesar, R., et al. Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. Eukaryot. Cell 5 (2006), 368–378.
-
(2006)
Eukaryot. Cell
, vol.5
, pp. 368-378
-
-
Caesar, R.1
-
60
-
-
84876175152
-
N-terminal acetylation by NatC is not a general determinant for substrate subcellular localization in Saccharomyces cerevisiae
-
60 Aksnes, H., et al. N-terminal acetylation by NatC is not a general determinant for substrate subcellular localization in Saccharomyces cerevisiae. PloS ONE, 8, 2013, e61012.
-
(2013)
PloS ONE
, vol.8
, pp. e61012
-
-
Aksnes, H.1
-
61
-
-
84893667535
-
N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound alpha-synuclein and increases its affinity for physiological membranes
-
61 Dikiy, I., Eliezer, D., N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound alpha-synuclein and increases its affinity for physiological membranes. J. Biol. Chem. 289 (2014), 3652–3665.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 3652-3665
-
-
Dikiy, I.1
Eliezer, D.2
-
62
-
-
84930227389
-
Copper binding to the N-terminally acetylated, naturally occurring form of alpha-synuclein induces local helical folding
-
62 Miotto, M.C., et al. Copper binding to the N-terminally acetylated, naturally occurring form of alpha-synuclein induces local helical folding. J. Am. Chem. Soc. 137 (2015), 6444–6447.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 6444-6447
-
-
Miotto, M.C.1
-
63
-
-
79958027934
-
N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum
-
63 Forte, G.M., et al. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol., 9, 2011, e1001073.
-
(2011)
PLoS Biol.
, vol.9
, pp. e1001073
-
-
Forte, G.M.1
-
64
-
-
84904458790
-
Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding
-
64 Holmes, W.M., et al. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat. Commun., 5, 2014, 4383.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4383
-
-
Holmes, W.M.1
-
65
-
-
37849012236
-
HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity
-
65 Raychaudhuri, S., et al. HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity. Hum. Mol. Genet. 17 (2008), 240–255.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 240-255
-
-
Raychaudhuri, S.1
-
66
-
-
84879597523
-
The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates
-
66 Scaglione, K.M., et al. The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates. J. Biol. Chem. 288 (2013), 18784–18788.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 18784-18788
-
-
Scaglione, K.M.1
-
67
-
-
84879008640
-
Ube2 W conjugates ubiquitin to alpha-amino groups of protein N-termini
-
67 Tatham, M.H., et al. Ube2 W conjugates ubiquitin to alpha-amino groups of protein N-termini. Biochem. J. 453 (2013), 137–145.
-
(2013)
Biochem. J.
, vol.453
, pp. 137-145
-
-
Tatham, M.H.1
-
68
-
-
84884694093
-
N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing
-
68 Schiza, V., et al. N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet., 9, 2013, e1003805.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003805
-
-
Schiza, V.1
-
69
-
-
84930532645
-
N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases
-
69 Van Damme, P., et al. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases. Proteomics 15 (2015), 2436–2446.
-
(2015)
Proteomics
, vol.15
, pp. 2436-2446
-
-
Van Damme, P.1
-
70
-
-
84930724289
-
Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis
-
70 Linster, E., et al. Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat. Commun., 6, 2015, 7640.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7640
-
-
Linster, E.1
-
71
-
-
84930693371
-
Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis
-
71 Xu, F., et al. Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis. Plant Cell. 27 (2015), 1547–1562.
-
(2015)
Plant Cell.
, vol.27
, pp. 1547-1562
-
-
Xu, F.1
-
72
-
-
84943453597
-
Emerging functions for N-terminal protein acetylation in plants
-
72 Gibbs, D.J., Emerging functions for N-terminal protein acetylation in plants. Trends Plant Sci. 20 (2015), 599–601.
-
(2015)
Trends Plant Sci.
, vol.20
, pp. 599-601
-
-
Gibbs, D.J.1
-
73
-
-
84893529230
-
Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects
-
73 Ferrandez-Ayela, A., et al. Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects. PloS ONE, 8, 2013, e80697.
-
(2013)
PloS ONE
, vol.8
, pp. e80697
-
-
Ferrandez-Ayela, A.1
-
74
-
-
0041920603
-
Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis
-
74 Pesaresi, P., et al. Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. Plant Cell. 15 (2003), 1817–1832.
-
(2003)
Plant Cell.
, vol.15
, pp. 1817-1832
-
-
Pesaresi, P.1
-
75
-
-
84908326581
-
daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan
-
75 Chen, D., et al. daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan. PLoS Genet., 10, 2014, e1004699.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004699
-
-
Chen, D.1
-
76
-
-
84908325353
-
The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation
-
76 Warnhoff, K., et al. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation. PLoS Genet., 10, 2014, e1004703.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004703
-
-
Warnhoff, K.1
-
77
-
-
84921695082
-
N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging
-
77 van Deventer, S., et al. N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. J. Cell Sci. 128 (2015), 109–117.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 109-117
-
-
van Deventer, S.1
-
78
-
-
77958608444
-
Drosophila variable nurse cells encodes arrest defective 1 (ARD1), the catalytic subunit of the major N-terminal acetyltransferase complex
-
78 Wang, Y., et al. Drosophila variable nurse cells encodes arrest defective 1 (ARD1), the catalytic subunit of the major N-terminal acetyltransferase complex. Dev. Dyn. 239 (2010), 2813–2827.
-
(2010)
Dev. Dyn.
, vol.239
, pp. 2813-2827
-
-
Wang, Y.1
-
79
-
-
84942417431
-
The N-terminal acetyltransferase Naa10 is essential for zebrafish development
-
79 Ree, R.M., et al. The N-terminal acetyltransferase Naa10 is essential for zebrafish development. Biosci. Rep., 35, 2015, e00249.
-
(2015)
Biosci. Rep.
, vol.35
, pp. e00249
-
-
Ree, R.M.1
-
80
-
-
33645734898
-
Embryonic growth-associated protein is one subunit of a novel N-terminal acetyltransferase complex essential for embryonic vascular development
-
80 Wenzlau, J.M., et al. Embryonic growth-associated protein is one subunit of a novel N-terminal acetyltransferase complex essential for embryonic vascular development. Circ. Res. 98 (2006), 846–855.
-
(2006)
Circ. Res.
, vol.98
, pp. 846-855
-
-
Wenzlau, J.M.1
-
81
-
-
84904481340
-
A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant
-
81 Van Damme, P., et al. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant. Mol. Cell Proteomics 13 (2014), 2031–2041.
-
(2014)
Mol. Cell Proteomics
, vol.13
, pp. 2031-2041
-
-
Van Damme, P.1
-
82
-
-
80051550297
-
Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency
-
82 Rope, A.F., et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am. J. Hum. Genet. 89 (2011), 28–43.
-
(2011)
Am. J. Hum. Genet.
, vol.89
, pp. 28-43
-
-
Rope, A.F.1
-
83
-
-
84946780985
-
NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment
-
83 Casey, J.P., et al. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Sci. Rep., 5, 2015, 16022.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16022
-
-
Casey, J.P.1
-
84
-
-
84928048614
-
De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females
-
84 Popp, B., et al. De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females. Eur. J. Hum. Genet. 23 (2015), 602–609.
-
(2015)
Eur. J. Hum. Genet.
, vol.23
, pp. 602-609
-
-
Popp, B.1
-
85
-
-
84868543309
-
Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study
-
85 Rauch, A., et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380 (2012), 1674–1682.
-
(2012)
Lancet
, vol.380
, pp. 1674-1682
-
-
Rauch, A.1
-
86
-
-
84978035610
-
Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency
-
86 Saunier, C., et al. Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency. Hum. Mutat. 37 (2016), 755–764.
-
(2016)
Hum. Mutat.
, vol.37
, pp. 755-764
-
-
Saunier, C.1
-
87
-
-
84904976220
-
N-alpha-acetylation of alpha-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation
-
87 Bartels, T., et al. N-alpha-acetylation of alpha-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PloS ONE, 9, 2014, e103727.
-
(2014)
PloS ONE
, vol.9
, pp. e103727
-
-
Bartels, T.1
-
88
-
-
84876065430
-
Exploring the accessible conformations of N-terminal acetylated alpha-synuclein
-
88 Moriarty, G.M., et al. Exploring the accessible conformations of N-terminal acetylated alpha-synuclein. FEBS Lett. 587 (2013), 1128–1138.
-
(2013)
FEBS Lett.
, vol.587
, pp. 1128-1138
-
-
Moriarty, G.M.1
-
89
-
-
84872613178
-
Protein N-terminal acetyltransferases in cancer
-
89 Kalvik, T.V., Arnesen, T., Protein N-terminal acetyltransferases in cancer. Oncogene 32 (2013), 269–276.
-
(2013)
Oncogene
, vol.32
, pp. 269-276
-
-
Kalvik, T.V.1
Arnesen, T.2
-
90
-
-
84863180026
-
Inactivation of androgen-induced regulator ARD1 inhibits androgen receptor acetylation and prostate tumorigenesis
-
90 Wang, Z., et al. Inactivation of androgen-induced regulator ARD1 inhibits androgen receptor acetylation and prostate tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 3053–3058.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 3053-3058
-
-
Wang, Z.1
-
91
-
-
84925272134
-
Inhibition of STAT5a by Naa10p contributes to decreased breast cancer metastasis
-
91 Zeng, Y., et al. Inhibition of STAT5a by Naa10p contributes to decreased breast cancer metastasis. Carcinogenesis 35 (2014), 2244–2253.
-
(2014)
Carcinogenesis
, vol.35
, pp. 2244-2253
-
-
Zeng, Y.1
-
92
-
-
84962269555
-
microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10
-
92 Yang, H., et al. microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget 7 (2016), 2709–2720.
-
(2016)
Oncotarget
, vol.7
, pp. 2709-2720
-
-
Yang, H.1
-
93
-
-
84939539191
-
Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells
-
93 Mughal, A.A., et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol. Cancer, 14, 2015, 160.
-
(2015)
Mol. Cancer
, vol.14
, pp. 160
-
-
Mughal, A.A.1
-
94
-
-
84957439440
-
Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway
-
94 Pavlou, D., Kirmizis, A., Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis 21 (2016), 298–311.
-
(2016)
Apoptosis
, vol.21
, pp. 298-311
-
-
Pavlou, D.1
Kirmizis, A.2
|