메뉴 건너뛰기




Volumn 41, Issue 9, 2016, Pages 746-760

First Things First: Vital Protein Marks by N-Terminal Acetyltransferases

Author keywords

N terminal acetylation; N terminal acetyltransferase (NAT); N acetyltransferase (Naa); protein folding; protein interactions; protein stability.

Indexed keywords

PEPTIDE ALPHA N ACETYLTRANSFERASE; PROTEASOME; ACYLTRANSFERASE;

EID: 84995422358     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.07.005     Document Type: Review
Times cited : (201)

References (94)
  • 1
    • 84859490749 scopus 로고    scopus 로고
    • Protein N-terminal acetyltransferases: when the start matters
    • 1 Starheim, K.K., et al. Protein N-terminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37 (2012), 152–161.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 152-161
    • Starheim, K.K.1
  • 2
    • 66249126298 scopus 로고    scopus 로고
    • Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans
    • 2 Arnesen, T., et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 8157–8162.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 8157-8162
    • Arnesen, T.1
  • 3
    • 72949111831 scopus 로고    scopus 로고
    • Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster
    • 3 Goetze, S., et al. Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS Biol., 7, 2009, e1000236.
    • (2009) PLoS Biol. , vol.7 , pp. e1000236
    • Goetze, S.1
  • 4
    • 84859515208 scopus 로고    scopus 로고
    • Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features
    • M111.015131
    • 4 Bienvenut, W.V., et al. Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol. Cell Proteomics, 11, 2012 M111.015131.
    • (2012) Mol. Cell Proteomics , vol.11
    • Bienvenut, W.V.1
  • 5
    • 0024461828 scopus 로고
    • Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast
    • 5 Mullen, J.R., et al. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 8 (1989), 2067–2075.
    • (1989) EMBO J. , vol.8 , pp. 2067-2075
    • Mullen, J.R.1
  • 6
    • 0141755383 scopus 로고    scopus 로고
    • An N-alpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A
    • 6 Song, O.K., et al. An N-alpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J. Biol. Chem. 278 (2003), 38109–38112.
    • (2003) J. Biol. Chem. , vol.278 , pp. 38109-38112
    • Song, O.K.1
  • 7
    • 80052829164 scopus 로고    scopus 로고
    • The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4
    • 7 Hole, K., et al. The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PloS ONE, 6, 2011, e24713.
    • (2011) PloS ONE , vol.6 , pp. e24713
    • Hole, K.1
  • 8
    • 0033231015 scopus 로고    scopus 로고
    • Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae
    • 8 Polevoda, B., et al. Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J. 18 (1999), 6155–6168.
    • (1999) EMBO J. , vol.18 , pp. 6155-6168
    • Polevoda, B.1
  • 9
    • 84864512849 scopus 로고    scopus 로고
    • N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB
    • 9 Van Damme, P., et al. N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 12449–12454.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 12449-12454
    • Van Damme, P.1
  • 10
    • 0026744480 scopus 로고
    • 2 terminus is necessary for virus particle assembly
    • 2 terminus is necessary for virus particle assembly. J. Biol. Chem. 267 (1992), 20277–20281.
    • (1992) J. Biol. Chem. , vol.267 , pp. 20277-20281
    • Tercero, J.C.1    Wickner, R.B.2
  • 11
    • 0035827594 scopus 로고    scopus 로고
    • NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p
    • 11 Polevoda, B., Sherman, F., NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J. Biol. Chem. 276 (2001), 20154–20159.
    • (2001) J. Biol. Chem. , vol.276 , pp. 20154-20159
    • Polevoda, B.1    Sherman, F.2
  • 12
    • 71449101084 scopus 로고    scopus 로고
    • Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity
    • 12 Evjenth, R., et al. Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. J. Biol. Chem. 284 (2009), 31122–31129.
    • (2009) J. Biol. Chem. , vol.284 , pp. 31122-31129
    • Evjenth, R.1
  • 13
    • 67650085001 scopus 로고    scopus 로고
    • Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization
    • 13 Starheim, K.K., et al. Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol. Cell Biol. 29 (2009), 3569–3581.
    • (2009) Mol. Cell Biol. , vol.29 , pp. 3569-3581
    • Starheim, K.K.1
  • 14
    • 79955761504 scopus 로고    scopus 로고
    • Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase
    • M110.004580
    • 14 Van Damme, P., et al. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase. Mol. Cell Proteomics, 10, 2011 M110.004580.
    • (2011) Mol. Cell Proteomics , vol.10
    • Van Damme, P.1
  • 15
    • 79960946480 scopus 로고    scopus 로고
    • NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation
    • 15 Van Damme, P., et al. NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet., 7, 2011, e1002169.
    • (2011) PLoS Genet. , vol.7 , pp. e1002169
    • Van Damme, P.1
  • 16
    • 84973442673 scopus 로고    scopus 로고
    • Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling
    • 16 Dinh, T.V., et al. Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling. Proteomics 15 (2015), 2426–2435.
    • (2015) Proteomics , vol.15 , pp. 2426-2435
    • Dinh, T.V.1
  • 17
    • 84924531069 scopus 로고    scopus 로고
    • An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity
    • 17 Aksnes, H., et al. An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity. Cell Rep. 10 (2015), 1362–1374.
    • (2015) Cell Rep. , vol.10 , pp. 1362-1374
    • Aksnes, H.1
  • 18
    • 84925251881 scopus 로고    scopus 로고
    • Molecular, cellular, and physiological significance of N-terminal acetylation
    • 18 Aksnes, H., et al. Molecular, cellular, and physiological significance of N-terminal acetylation. Int. Rev. Cell Mol. Biol. 316 (2015), 267–305.
    • (2015) Int. Rev. Cell Mol. Biol. , vol.316 , pp. 267-305
    • Aksnes, H.1
  • 19
    • 84958074128 scopus 로고    scopus 로고
    • Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms
    • 19 Rathore, O.S., et al. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms. Sci. Rep., 6, 2016, 21304.
    • (2016) Sci. Rep. , vol.6 , pp. 21304
    • Rathore, O.S.1
  • 20
    • 0141640821 scopus 로고    scopus 로고
    • The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides
    • 20 Gautschi, M., et al. The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell Biol. 23 (2003), 7403–7414.
    • (2003) Mol. Cell Biol. , vol.23 , pp. 7403-7414
    • Gautschi, M.1
  • 21
    • 84883743838 scopus 로고    scopus 로고
    • Molecular basis for N-terminal acetylation by the heterodimeric NatA complex
    • 21 Liszczak, G., et al. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nat. Struct. Mol. Biol. 20 (2013), 1098–1105.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1098-1105
    • Liszczak, G.1
  • 22
    • 38649122076 scopus 로고    scopus 로고
    • Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes
    • 22 Polevoda, B., et al. Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes. J. Cell Biochem. 103 (2008), 492–508.
    • (2008) J. Cell Biochem. , vol.103 , pp. 492-508
    • Polevoda, B.1
  • 23
    • 15944413192 scopus 로고    scopus 로고
    • Identification and characterization of the human ARD1–NATH protein acetyltransferase complex
    • 23 Arnesen, T., et al. Identification and characterization of the human ARD1–NATH protein acetyltransferase complex. Biochem. J. 386 (2005), 433–443.
    • (2005) Biochem. J. , vol.386 , pp. 433-443
    • Arnesen, T.1
  • 24
    • 0344663967 scopus 로고    scopus 로고
    • Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila
    • 24 Williams, B.C., et al. Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila. Curr. Biol. 13 (2003), 2025–2036.
    • (2003) Curr. Biol. , vol.13 , pp. 2025-2036
    • Williams, B.C.1
  • 25
    • 77950667600 scopus 로고    scopus 로고
    • The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation
    • 25 Arnesen, T., et al. The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol. Cell Biol. 30 (2010), 1898–1909.
    • (2010) Mol. Cell Biol. , vol.30 , pp. 1898-1909
    • Arnesen, T.1
  • 26
    • 34249009554 scopus 로고    scopus 로고
    • The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner
    • 26 Hou, F., et al. The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. J. Cell Biol. 177 (2007), 587–597.
    • (2007) J. Cell Biol. , vol.177 , pp. 587-597
    • Hou, F.1
  • 27
    • 0043234609 scopus 로고    scopus 로고
    • Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin
    • 27 Polevoda, B., et al. Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J. Biol. Chem. 278 (2003), 30686–30697.
    • (2003) J. Biol. Chem. , vol.278 , pp. 30686-30697
    • Polevoda, B.1
  • 28
    • 54049149934 scopus 로고    scopus 로고
    • Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression
    • 28 Starheim, K.K., et al. Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem. J. 415 (2008), 325–331.
    • (2008) Biochem. J. , vol.415 , pp. 325-331
    • Starheim, K.K.1
  • 29
    • 84930190696 scopus 로고    scopus 로고
    • The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD
    • 29 Magin, R.S., et al. The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD. Structure 23 (2015), 332–341.
    • (2015) Structure , vol.23 , pp. 332-341
    • Magin, R.S.1
  • 30
    • 77951872216 scopus 로고    scopus 로고
    • Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome
    • 30 Helbig, A.O., et al. Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol. Cell Proteomics 9 (2010), 928–939.
    • (2010) Mol. Cell Proteomics , vol.9 , pp. 928-939
    • Helbig, A.O.1
  • 31
    • 79961232419 scopus 로고    scopus 로고
    • Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation
    • 31 Helsens, K., et al. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. J. Proteome Res. 10 (2011), 3578–3589.
    • (2011) J. Proteome Res. , vol.10 , pp. 3578-3589
    • Helsens, K.1
  • 32
    • 0019888725 scopus 로고
    • NH2-terminal processing of Dictyostelium discoideum actin in vitro
    • 32 Redman, K., Rubenstein, P.A., NH2-terminal processing of Dictyostelium discoideum actin in vitro. J. Biol. Chem. 256 (1981), 13226–13229.
    • (1981) J. Biol. Chem. , vol.256 , pp. 13226-13229
    • Redman, K.1    Rubenstein, P.A.2
  • 33
    • 84879771440 scopus 로고    scopus 로고
    • Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors
    • 33 Foyn, H., et al. Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors. ACS Chem. Biol. 8 (2013), 1121–1127.
    • (2013) ACS Chem. Biol. , vol.8 , pp. 1121-1127
    • Foyn, H.1
  • 34
    • 0032473425 scopus 로고    scopus 로고
    • The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions
    • 34 Das, A.K., et al. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J. 17 (1998), 1192–1199.
    • (1998) EMBO J. , vol.17 , pp. 1192-1199
    • Das, A.K.1
  • 35
    • 52949119208 scopus 로고    scopus 로고
    • Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18
    • 35 Vetting, M.W., et al. Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18. Protein Sci. 17 (2008), 1781–1790.
    • (2008) Protein Sci. , vol.17 , pp. 1781-1790
    • Vetting, M.W.1
  • 36
    • 84883342432 scopus 로고    scopus 로고
    • Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
    • 36 Liszczak, G., Marmorstein, R., Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 14652–14657.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 14652-14657
    • Liszczak, G.1    Marmorstein, R.2
  • 37
    • 80054694313 scopus 로고    scopus 로고
    • Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation
    • 37 Liszczak, G., et al. Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. J. Biol. Chem. 286 (2011), 37002–37010.
    • (2011) J. Biol. Chem. , vol.286 , pp. 37002-37010
    • Liszczak, G.1
  • 38
    • 84979085641 scopus 로고    scopus 로고
    • Crystal structure of the Golgi-associated human Nα-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation
    • 38 Stove, S.I., et al. Crystal structure of the Golgi-associated human Nα-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation. Structure 24 (2016), 1044–1056.
    • (2016) Structure , vol.24 , pp. 1044-1056
    • Stove, S.I.1
  • 39
    • 84964690528 scopus 로고    scopus 로고
    • The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues
    • 39 Magin, R.S., et al. The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues. J. Biol. Chem. 291 (2016), 5270–5277.
    • (2016) J. Biol. Chem. , vol.291 , pp. 5270-5277
    • Magin, R.S.1
  • 40
    • 84901777856 scopus 로고    scopus 로고
    • Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex
    • 40 Li, Y., et al. Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex. Genes Dev. 28 (2014), 1217–1227.
    • (2014) Genes Dev. , vol.28 , pp. 1217-1227
    • Li, Y.1
  • 41
    • 84928016447 scopus 로고    scopus 로고
    • Arrest defective 1 regulates the oxidative stress response in human cells and mice by acetylating methionine sulfoxide reductase A
    • 41 Shin, S.H., et al. Arrest defective 1 regulates the oxidative stress response in human cells and mice by acetylating methionine sulfoxide reductase A. Cell Death Dis., 5, 2014, e1490.
    • (2014) Cell Death Dis. , vol.5 , pp. e1490
    • Shin, S.H.1
  • 42
    • 84923355497 scopus 로고    scopus 로고
    • NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2
    • 42 Yoon, H., et al. NAA10 controls osteoblast differentiation and bone formation as a feedback regulator of Runx2. Nat. Commun., 5, 2014, 5176.
    • (2014) Nat. Commun. , vol.5 , pp. 5176
    • Yoon, H.1
  • 43
    • 84871866927 scopus 로고    scopus 로고
    • Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo
    • 43 Foyn, H., et al. Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo. Mol. Cell Proteomics 12 (2013), 42–54.
    • (2013) Mol. Cell Proteomics , vol.12 , pp. 42-54
    • Foyn, H.1
  • 44
    • 77149120798 scopus 로고    scopus 로고
    • N-terminal acetylation of cellular proteins creates specific degradation signals
    • 44 Hwang, C.S., et al. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327 (2010), 973–977.
    • (2010) Science , vol.327 , pp. 973-977
    • Hwang, C.S.1
  • 45
    • 84878195272 scopus 로고    scopus 로고
    • Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway
    • 45 Shemorry, A., et al. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell. 50 (2013), 540–551.
    • (2013) Mol. Cell. , vol.50 , pp. 540-551
    • Shemorry, A.1
  • 46
    • 78149281017 scopus 로고    scopus 로고
    • The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27
    • 46 Zhang, Z., et al. The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. EMBO J. 29 (2010), 3733–3744.
    • (2010) EMBO J. , vol.29 , pp. 3733-3744
    • Zhang, Z.1
  • 47
    • 84892802083 scopus 로고    scopus 로고
    • The N-terminal methionine of cellular proteins as a degradation signal
    • 47 Kim, H.K., et al. The N-terminal methionine of cellular proteins as a degradation signal. Cell 156 (2014), 158–169.
    • (2014) Cell , vol.156 , pp. 158-169
    • Kim, H.K.1
  • 48
    • 84924769665 scopus 로고    scopus 로고
    • Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway
    • 48 Park, S.E., et al. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347 (2015), 1249–1252.
    • (2015) Science , vol.347 , pp. 1249-1252
    • Park, S.E.1
  • 49
    • 84937516503 scopus 로고    scopus 로고
    • (Hyper)tension release by N-terminal acetylation
    • 49 Aksnes, H., et al. (Hyper)tension release by N-terminal acetylation. Trends Biochem. Sci. 40 (2015), 422–424.
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 422-424
    • Aksnes, H.1
  • 50
    • 84875478507 scopus 로고    scopus 로고
    • N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates
    • 50 Zattas, D., et al. N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates. Mol. Biol. Cell. 24 (2013), 890–900.
    • (2013) Mol. Biol. Cell. , vol.24 , pp. 890-900
    • Zattas, D.1
  • 51
    • 84926486495 scopus 로고    scopus 로고
    • Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects
    • 51 Myklebust, L.M., et al. Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects. Hum. Mol. Genet. 24 (2015), 1956–1976.
    • (2015) Hum. Mol. Genet. , vol.24 , pp. 1956-1976
    • Myklebust, L.M.1
  • 52
    • 80555131132 scopus 로고    scopus 로고
    • N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex
    • 52 Scott, D.C., et al. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334 (2011), 674–678.
    • (2011) Science , vol.334 , pp. 674-678
    • Scott, D.C.1
  • 53
    • 84872154184 scopus 로고    scopus 로고
    • Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes
    • 53 Monda, J.K., et al. Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21 (2013), 42–53.
    • (2013) Structure , vol.21 , pp. 42-53
    • Monda, J.K.1
  • 54
    • 84883742201 scopus 로고    scopus 로고
    • The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle
    • 54 Arnaudo, N., et al. The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle. Nat. Struct. Mol. Biol. 20 (2013), 1119–1121.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1119-1121
    • Arnaudo, N.1
  • 55
    • 84883744311 scopus 로고    scopus 로고
    • Nalpha-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain
    • 55 Yang, D., et al. Nalpha-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain. Nat. Struct. Mol. Biol. 20 (2013), 1116–1118.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1116-1118
    • Yang, D.1
  • 56
    • 84943361459 scopus 로고    scopus 로고
    • Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis
    • 56 Srinivasan, S., et al. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18 (2015), 449–462.
    • (2015) Angiogenesis , vol.18 , pp. 449-462
    • Srinivasan, S.1
  • 57
    • 2342546616 scopus 로고    scopus 로고
    • Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p
    • 57 Behnia, R., et al. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol. 6 (2004), 405–413.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 405-413
    • Behnia, R.1
  • 58
    • 2342497804 scopus 로고    scopus 로고
    • Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p
    • 58 Setty, S.R., et al. Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat. Cell Biol. 6 (2004), 414–419.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 414-419
    • Setty, S.R.1
  • 59
    • 32944479331 scopus 로고    scopus 로고
    • Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB
    • 59 Caesar, R., et al. Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. Eukaryot. Cell 5 (2006), 368–378.
    • (2006) Eukaryot. Cell , vol.5 , pp. 368-378
    • Caesar, R.1
  • 60
    • 84876175152 scopus 로고    scopus 로고
    • N-terminal acetylation by NatC is not a general determinant for substrate subcellular localization in Saccharomyces cerevisiae
    • 60 Aksnes, H., et al. N-terminal acetylation by NatC is not a general determinant for substrate subcellular localization in Saccharomyces cerevisiae. PloS ONE, 8, 2013, e61012.
    • (2013) PloS ONE , vol.8 , pp. e61012
    • Aksnes, H.1
  • 61
    • 84893667535 scopus 로고    scopus 로고
    • N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound alpha-synuclein and increases its affinity for physiological membranes
    • 61 Dikiy, I., Eliezer, D., N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound alpha-synuclein and increases its affinity for physiological membranes. J. Biol. Chem. 289 (2014), 3652–3665.
    • (2014) J. Biol. Chem. , vol.289 , pp. 3652-3665
    • Dikiy, I.1    Eliezer, D.2
  • 62
    • 84930227389 scopus 로고    scopus 로고
    • Copper binding to the N-terminally acetylated, naturally occurring form of alpha-synuclein induces local helical folding
    • 62 Miotto, M.C., et al. Copper binding to the N-terminally acetylated, naturally occurring form of alpha-synuclein induces local helical folding. J. Am. Chem. Soc. 137 (2015), 6444–6447.
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 6444-6447
    • Miotto, M.C.1
  • 63
    • 79958027934 scopus 로고    scopus 로고
    • N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum
    • 63 Forte, G.M., et al. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol., 9, 2011, e1001073.
    • (2011) PLoS Biol. , vol.9 , pp. e1001073
    • Forte, G.M.1
  • 64
    • 84904458790 scopus 로고    scopus 로고
    • Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding
    • 64 Holmes, W.M., et al. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding. Nat. Commun., 5, 2014, 4383.
    • (2014) Nat. Commun. , vol.5 , pp. 4383
    • Holmes, W.M.1
  • 65
    • 37849012236 scopus 로고    scopus 로고
    • HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity
    • 65 Raychaudhuri, S., et al. HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity. Hum. Mol. Genet. 17 (2008), 240–255.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 240-255
    • Raychaudhuri, S.1
  • 66
    • 84879597523 scopus 로고    scopus 로고
    • The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates
    • 66 Scaglione, K.M., et al. The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates. J. Biol. Chem. 288 (2013), 18784–18788.
    • (2013) J. Biol. Chem. , vol.288 , pp. 18784-18788
    • Scaglione, K.M.1
  • 67
    • 84879008640 scopus 로고    scopus 로고
    • Ube2 W conjugates ubiquitin to alpha-amino groups of protein N-termini
    • 67 Tatham, M.H., et al. Ube2 W conjugates ubiquitin to alpha-amino groups of protein N-termini. Biochem. J. 453 (2013), 137–145.
    • (2013) Biochem. J. , vol.453 , pp. 137-145
    • Tatham, M.H.1
  • 68
    • 84884694093 scopus 로고    scopus 로고
    • N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing
    • 68 Schiza, V., et al. N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet., 9, 2013, e1003805.
    • (2013) PLoS Genet. , vol.9 , pp. e1003805
    • Schiza, V.1
  • 69
    • 84930532645 scopus 로고    scopus 로고
    • N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases
    • 69 Van Damme, P., et al. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases. Proteomics 15 (2015), 2436–2446.
    • (2015) Proteomics , vol.15 , pp. 2436-2446
    • Van Damme, P.1
  • 70
    • 84930724289 scopus 로고    scopus 로고
    • Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis
    • 70 Linster, E., et al. Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat. Commun., 6, 2015, 7640.
    • (2015) Nat. Commun. , vol.6 , pp. 7640
    • Linster, E.1
  • 71
    • 84930693371 scopus 로고    scopus 로고
    • Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis
    • 71 Xu, F., et al. Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis. Plant Cell. 27 (2015), 1547–1562.
    • (2015) Plant Cell. , vol.27 , pp. 1547-1562
    • Xu, F.1
  • 72
    • 84943453597 scopus 로고    scopus 로고
    • Emerging functions for N-terminal protein acetylation in plants
    • 72 Gibbs, D.J., Emerging functions for N-terminal protein acetylation in plants. Trends Plant Sci. 20 (2015), 599–601.
    • (2015) Trends Plant Sci. , vol.20 , pp. 599-601
    • Gibbs, D.J.1
  • 73
    • 84893529230 scopus 로고    scopus 로고
    • Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects
    • 73 Ferrandez-Ayela, A., et al. Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex component causes pleiotropic developmental defects. PloS ONE, 8, 2013, e80697.
    • (2013) PloS ONE , vol.8 , pp. e80697
    • Ferrandez-Ayela, A.1
  • 74
    • 0041920603 scopus 로고    scopus 로고
    • Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis
    • 74 Pesaresi, P., et al. Cytoplasmic N-terminal protein acetylation is required for efficient photosynthesis in Arabidopsis. Plant Cell. 15 (2003), 1817–1832.
    • (2003) Plant Cell. , vol.15 , pp. 1817-1832
    • Pesaresi, P.1
  • 75
    • 84908326581 scopus 로고    scopus 로고
    • daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan
    • 75 Chen, D., et al. daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan. PLoS Genet., 10, 2014, e1004699.
    • (2014) PLoS Genet. , vol.10 , pp. e1004699
    • Chen, D.1
  • 76
    • 84908325353 scopus 로고    scopus 로고
    • The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation
    • 76 Warnhoff, K., et al. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation. PLoS Genet., 10, 2014, e1004703.
    • (2014) PLoS Genet. , vol.10 , pp. e1004703
    • Warnhoff, K.1
  • 77
    • 84921695082 scopus 로고    scopus 로고
    • N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging
    • 77 van Deventer, S., et al. N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. J. Cell Sci. 128 (2015), 109–117.
    • (2015) J. Cell Sci. , vol.128 , pp. 109-117
    • van Deventer, S.1
  • 78
    • 77958608444 scopus 로고    scopus 로고
    • Drosophila variable nurse cells encodes arrest defective 1 (ARD1), the catalytic subunit of the major N-terminal acetyltransferase complex
    • 78 Wang, Y., et al. Drosophila variable nurse cells encodes arrest defective 1 (ARD1), the catalytic subunit of the major N-terminal acetyltransferase complex. Dev. Dyn. 239 (2010), 2813–2827.
    • (2010) Dev. Dyn. , vol.239 , pp. 2813-2827
    • Wang, Y.1
  • 79
    • 84942417431 scopus 로고    scopus 로고
    • The N-terminal acetyltransferase Naa10 is essential for zebrafish development
    • 79 Ree, R.M., et al. The N-terminal acetyltransferase Naa10 is essential for zebrafish development. Biosci. Rep., 35, 2015, e00249.
    • (2015) Biosci. Rep. , vol.35 , pp. e00249
    • Ree, R.M.1
  • 80
    • 33645734898 scopus 로고    scopus 로고
    • Embryonic growth-associated protein is one subunit of a novel N-terminal acetyltransferase complex essential for embryonic vascular development
    • 80 Wenzlau, J.M., et al. Embryonic growth-associated protein is one subunit of a novel N-terminal acetyltransferase complex essential for embryonic vascular development. Circ. Res. 98 (2006), 846–855.
    • (2006) Circ. Res. , vol.98 , pp. 846-855
    • Wenzlau, J.M.1
  • 81
    • 84904481340 scopus 로고    scopus 로고
    • A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant
    • 81 Van Damme, P., et al. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant. Mol. Cell Proteomics 13 (2014), 2031–2041.
    • (2014) Mol. Cell Proteomics , vol.13 , pp. 2031-2041
    • Van Damme, P.1
  • 82
    • 80051550297 scopus 로고    scopus 로고
    • Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency
    • 82 Rope, A.F., et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am. J. Hum. Genet. 89 (2011), 28–43.
    • (2011) Am. J. Hum. Genet. , vol.89 , pp. 28-43
    • Rope, A.F.1
  • 83
    • 84946780985 scopus 로고    scopus 로고
    • NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment
    • 83 Casey, J.P., et al. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Sci. Rep., 5, 2015, 16022.
    • (2015) Sci. Rep. , vol.5 , pp. 16022
    • Casey, J.P.1
  • 84
    • 84928048614 scopus 로고    scopus 로고
    • De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females
    • 84 Popp, B., et al. De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females. Eur. J. Hum. Genet. 23 (2015), 602–609.
    • (2015) Eur. J. Hum. Genet. , vol.23 , pp. 602-609
    • Popp, B.1
  • 85
    • 84868543309 scopus 로고    scopus 로고
    • Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study
    • 85 Rauch, A., et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380 (2012), 1674–1682.
    • (2012) Lancet , vol.380 , pp. 1674-1682
    • Rauch, A.1
  • 86
    • 84978035610 scopus 로고    scopus 로고
    • Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency
    • 86 Saunier, C., et al. Expanding the phenotype associated with NAA10-related N-terminal acetylation deficiency. Hum. Mutat. 37 (2016), 755–764.
    • (2016) Hum. Mutat. , vol.37 , pp. 755-764
    • Saunier, C.1
  • 87
    • 84904976220 scopus 로고    scopus 로고
    • N-alpha-acetylation of alpha-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation
    • 87 Bartels, T., et al. N-alpha-acetylation of alpha-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PloS ONE, 9, 2014, e103727.
    • (2014) PloS ONE , vol.9 , pp. e103727
    • Bartels, T.1
  • 88
    • 84876065430 scopus 로고    scopus 로고
    • Exploring the accessible conformations of N-terminal acetylated alpha-synuclein
    • 88 Moriarty, G.M., et al. Exploring the accessible conformations of N-terminal acetylated alpha-synuclein. FEBS Lett. 587 (2013), 1128–1138.
    • (2013) FEBS Lett. , vol.587 , pp. 1128-1138
    • Moriarty, G.M.1
  • 89
    • 84872613178 scopus 로고    scopus 로고
    • Protein N-terminal acetyltransferases in cancer
    • 89 Kalvik, T.V., Arnesen, T., Protein N-terminal acetyltransferases in cancer. Oncogene 32 (2013), 269–276.
    • (2013) Oncogene , vol.32 , pp. 269-276
    • Kalvik, T.V.1    Arnesen, T.2
  • 90
    • 84863180026 scopus 로고    scopus 로고
    • Inactivation of androgen-induced regulator ARD1 inhibits androgen receptor acetylation and prostate tumorigenesis
    • 90 Wang, Z., et al. Inactivation of androgen-induced regulator ARD1 inhibits androgen receptor acetylation and prostate tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 3053–3058.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3053-3058
    • Wang, Z.1
  • 91
    • 84925272134 scopus 로고    scopus 로고
    • Inhibition of STAT5a by Naa10p contributes to decreased breast cancer metastasis
    • 91 Zeng, Y., et al. Inhibition of STAT5a by Naa10p contributes to decreased breast cancer metastasis. Carcinogenesis 35 (2014), 2244–2253.
    • (2014) Carcinogenesis , vol.35 , pp. 2244-2253
    • Zeng, Y.1
  • 92
    • 84962269555 scopus 로고    scopus 로고
    • microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10
    • 92 Yang, H., et al. microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget 7 (2016), 2709–2720.
    • (2016) Oncotarget , vol.7 , pp. 2709-2720
    • Yang, H.1
  • 93
    • 84939539191 scopus 로고    scopus 로고
    • Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells
    • 93 Mughal, A.A., et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol. Cancer, 14, 2015, 160.
    • (2015) Mol. Cancer , vol.14 , pp. 160
    • Mughal, A.A.1
  • 94
    • 84957439440 scopus 로고    scopus 로고
    • Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway
    • 94 Pavlou, D., Kirmizis, A., Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis 21 (2016), 298–311.
    • (2016) Apoptosis , vol.21 , pp. 298-311
    • Pavlou, D.1    Kirmizis, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.