-
1
-
-
0015949361
-
N-terminal acetylation of histone-like nascent peptides on rat-liver polyribosomes in vitro
-
Pestana, A., Pitot, H. C., N-terminal acetylation of histone-like nascent peptides on rat-liver polyribosomes in vitro. Nature 1974, 247, 200–202.
-
(1974)
Nature
, vol.247
, pp. 200-202
-
-
Pestana, A.1
Pitot, H.C.2
-
2
-
-
0016691755
-
Acetylation of nascent polypeptide-chains on rat-liver polyribosomes in vivo and in vitro
-
Pestana, A., Pitot, H. C., Acetylation of nascent polypeptide-chains on rat-liver polyribosomes in vivo and in vitro. Biochemistry 1975, 14, 1404–1412.
-
(1975)
Biochemistry
, vol.14
, pp. 1404-1412
-
-
Pestana, A.1
Pitot, H.C.2
-
3
-
-
0016160639
-
N-terminal acetylation of the nascent chains of alpha-crystallin
-
Strous, G. J., Berns, A. J., Bloemendal, H., N-terminal acetylation of the nascent chains of alpha-crystallin. Biochem. Biophys. Res. Commun. 1974, 58, 876–884.
-
(1974)
Biochem. Biophys. Res. Commun.
, vol.58
, pp. 876-884
-
-
Strous, G.J.1
Berns, A.J.2
Bloemendal, H.3
-
4
-
-
0015845499
-
Synthesis of lens protein in vitro. N-terminal acetylation of alpha-crystallin
-
Strous, G. J., van Westreenen, H., Bloemendal, H., Synthesis of lens protein in vitro. N-terminal acetylation of alpha-crystallin. Eur. J. Biochem. 1973, 38, 79–85.
-
(1973)
Eur. J. Biochem.
, vol.38
, pp. 79-85
-
-
Strous, G.J.1
van Westreenen, H.2
Bloemendal, H.3
-
5
-
-
66249126298
-
Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans
-
Arnesen, T., Van Damme, P., Polevoda, B., Helsens, K. et al., Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8157–8162.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 8157-8162
-
-
Arnesen, T.1
Van Damme, P.2
Polevoda, B.3
Helsens, K.4
-
6
-
-
0017293834
-
Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nalpha-acetylated
-
Brown, J. L., Roberts, W. K., Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nalpha-acetylated. J. Biol. Chem. 1976, 251, 1009–1014.
-
(1976)
J. Biol. Chem.
, vol.251
, pp. 1009-1014
-
-
Brown, J.L.1
Roberts, W.K.2
-
7
-
-
79960946480
-
NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation
-
Van Damme, P., Hole, K., Pimenta-Marques, A., Helsens, K. et al., NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 2011, 7, e1002169.
-
(2011)
PLoS Genet.
, vol.7
-
-
Van Damme, P.1
Hole, K.2
Pimenta-Marques, A.3
Helsens, K.4
-
8
-
-
0037462954
-
N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins
-
Polevoda, B., Sherman, F., N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 2003, 325, 595–622.
-
(2003)
J. Mol. Biol.
, vol.325
, pp. 595-622
-
-
Polevoda, B.1
Sherman, F.2
-
9
-
-
84864512849
-
N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB
-
Van Damme, P., Lasa, M., Polevoda, B., Gazquez, C. et al., N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc. Nat. Acad. Sci. USA 2012, 109, 12449–12454.
-
(2012)
Proc. Nat. Acad. Sci. USA
, vol.109
, pp. 12449-12454
-
-
Van Damme, P.1
Lasa, M.2
Polevoda, B.3
Gazquez, C.4
-
10
-
-
77954194681
-
Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases
-
Xiao, Q., Zhang, F., Nacev, B. A., Liu, J. O., Pei, D., Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry 2010, 49, 5588–5599.
-
(2010)
Biochemistry
, vol.49
, pp. 5588-5599
-
-
Xiao, Q.1
Zhang, F.2
Nacev, B.A.3
Liu, J.O.4
Pei, D.5
-
11
-
-
0023754392
-
Cotranslational processing and protein turnover in eukaryotic cells
-
Arfin, S. M., Bradshaw, R. A., Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 1988, 27, 7979–7984.
-
(1988)
Biochemistry
, vol.27
, pp. 7979-7984
-
-
Arfin, S.M.1
Bradshaw, R.A.2
-
12
-
-
0025200973
-
The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation
-
Moerschell, R. P., Hosokawa, Y., Tsunasawa, S., Sherman, F., The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J. Biol. Chem. 1990, 265, 19638–19643.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 19638-19643
-
-
Moerschell, R.P.1
Hosokawa, Y.2
Tsunasawa, S.3
Sherman, F.4
-
13
-
-
0021876647
-
Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase
-
Tsunasawa, S., Stewart, J. W., Sherman, F., Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase. J. Biol. Chem. 1985, 260, 5382–5391.
-
(1985)
J. Biol. Chem.
, vol.260
, pp. 5382-5391
-
-
Tsunasawa, S.1
Stewart, J.W.2
Sherman, F.3
-
14
-
-
84871906833
-
N-terminal protein processing: a comparative proteogenomic analysis
-
Bonissone, S., Gupta, N., Romine, M., Bradshaw, R. A., Pevzner, P. A., N-terminal protein processing: a comparative proteogenomic analysis. Mol. Cell Proteomics 2013, 12, 14–28.
-
(2013)
Mol. Cell Proteomics
, vol.12
, pp. 14-28
-
-
Bonissone, S.1
Gupta, N.2
Romine, M.3
Bradshaw, R.A.4
Pevzner, P.A.5
-
15
-
-
66849109240
-
The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins
-
Kramer, G., Boehringer, D., Ban, N., Bukau, B., The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 2009, 16, 589–597.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 589-597
-
-
Kramer, G.1
Boehringer, D.2
Ban, N.3
Bukau, B.4
-
16
-
-
3042807051
-
Protein N-terminal methionine excision
-
Giglione, C., Boularot, A., Meinnel, T., Protein N-terminal methionine excision. Cell. Mol. Life Sci. 2004, 61, 1455–1474.
-
(2004)
Cell. Mol. Life Sci.
, vol.61
, pp. 1455-1474
-
-
Giglione, C.1
Boularot, A.2
Meinnel, T.3
-
17
-
-
15944413192
-
Identification and characterization of the human ARD1-NATH protein acetyltransferase complex
-
Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M. et al., Identification and characterization of the human ARD1-NATH protein acetyltransferase complex. Biochem. J. 2005, 386, 433–443.
-
(2005)
Biochem. J.
, vol.386
, pp. 433-443
-
-
Arnesen, T.1
Anderson, D.2
Baldersheim, C.3
Lanotte, M.4
-
18
-
-
80052829164
-
The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4
-
Hole, K., Van Damme, P., Dalva, M., Aksnes, H. et al., The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS One 2011, 6.
-
(2011)
PLoS One
, vol.6
-
-
Hole, K.1
Van Damme, P.2
Dalva, M.3
Aksnes, H.4
-
19
-
-
54049149934
-
Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression
-
Starheim, K. K., Arnesen, T., Gromyko, D., Ryningen, A. et al., Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem. J. 2008, 415, 325–331.
-
(2008)
Biochem. J.
, vol.415
, pp. 325-331
-
-
Starheim, K.K.1
Arnesen, T.2
Gromyko, D.3
Ryningen, A.4
-
20
-
-
67650085001
-
Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization
-
Starheim, K. K., Gromyko, D., Evjenth, R., Ryningen, A. et al., Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol. Cell Biol. 2009, 29, 3569–3581.
-
(2009)
Mol. Cell Biol.
, vol.29
, pp. 3569-3581
-
-
Starheim, K.K.1
Gromyko, D.2
Evjenth, R.3
Ryningen, A.4
-
21
-
-
84859515208
-
Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features
-
015131
-
Bienvenut, W. V., Sumpton, D., Martinez, A., Lilla, S. et al., Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol. Cell Proteomics 2012, 11, M111 015131.
-
(2012)
Mol. Cell Proteomics
, vol.11
, pp. M111
-
-
Bienvenut, W.V.1
Sumpton, D.2
Martinez, A.3
Lilla, S.4
-
22
-
-
84924531069
-
An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains golgi integrity
-
Aksnes, H., Van Damme, P., Goris, M., Starheim, Kristian K. et al., An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains golgi integrity. Cell reports 2015, 10, 1362–1374.
-
(2015)
Cell reports
, vol.10
, pp. 1362-1374
-
-
Aksnes, H.1
Van Damme, P.2
Goris, M.3
Starheim4
Kristian, K.5
-
23
-
-
0141640821
-
The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides
-
Gautschi, M., Just, S., Mun, A., Ross, S. et al., The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 2003, 23, 7403–7414.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7403-7414
-
-
Gautschi, M.1
Just, S.2
Mun, A.3
Ross, S.4
-
24
-
-
0024461828
-
Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast
-
Mullen, J. R., Kayne, P. S., Moerschell, R. P., Tsunasawa, S. et al., Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 1989, 8, 2067–2075.
-
(1989)
EMBO J.
, vol.8
, pp. 2067-2075
-
-
Mullen, J.R.1
Kayne, P.S.2
Moerschell, R.P.3
Tsunasawa, S.4
-
25
-
-
0026605888
-
ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity
-
Park, E. C., Szostak, J. W., ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. EMBO J. 1992, 11, 2087–2093.
-
(1992)
EMBO J.
, vol.11
, pp. 2087-2093
-
-
Park, E.C.1
Szostak, J.W.2
-
26
-
-
0033231015
-
Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae
-
Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., Sherman, F., Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J. 1999, 18, 6155–6168.
-
(1999)
EMBO J.
, vol.18
, pp. 6155-6168
-
-
Polevoda, B.1
Norbeck, J.2
Takakura, H.3
Blomberg, A.4
Sherman, F.5
-
27
-
-
33645757829
-
Cloning and characterization of hNAT5/hSAN: an evolutionarily conserved component of the NatA protein N-alpha-acetyltransferase complex
-
Arnesen, T., Anderson, D., Torsvik, J., Halseth, H. B. et al., Cloning and characterization of hNAT5/hSAN: an evolutionarily conserved component of the NatA protein N-alpha-acetyltransferase complex. Gene 2006, 371, 291–295.
-
(2006)
Gene
, vol.371
, pp. 291-295
-
-
Arnesen, T.1
Anderson, D.2
Torsvik, J.3
Halseth, H.B.4
-
28
-
-
0344663967
-
Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila
-
Williams, B. C., Garrett-Engele, C. M., Li, Z., Williams, E. V. et al., Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila. Curr. Biol. 2003, 13, 2025–2036.
-
(2003)
Curr. Biol.
, vol.13
, pp. 2025-2036
-
-
Williams, B.C.1
Garrett-Engele, C.M.2
Li, Z.3
Williams, E.V.4
-
29
-
-
34249009554
-
The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner
-
Hou, F., Chu, C. W., Kong, X., Yokomori, K., Zou, H., The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. J. Cell Biol. 2007, 177, 587–597.
-
(2007)
J. Cell Biol.
, vol.177
, pp. 587-597
-
-
Hou, F.1
Chu, C.W.2
Kong, X.3
Yokomori, K.4
Zou, H.5
-
30
-
-
54849414607
-
Differential requirements of a mitotic acetyltransferase in somatic and germ line cells
-
Pimenta-Marques, A., Tostoes, R., Marty, T., Barbosa, V. et al., Differential requirements of a mitotic acetyltransferase in somatic and germ line cells. Dev. Biol. 2008, 323, 197–206.
-
(2008)
Dev. Biol.
, vol.323
, pp. 197-206
-
-
Pimenta-Marques, A.1
Tostoes, R.2
Marty, T.3
Barbosa, V.4
-
31
-
-
71449101084
-
Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity
-
Evjenth, R., Hole, K., Karlsen, O. A., Ziegler, M. et al., Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. J. Biol. Chem. 2009, 284, 31122–31129.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 31122-31129
-
-
Evjenth, R.1
Hole, K.2
Karlsen, O.A.3
Ziegler, M.4
-
32
-
-
79955761504
-
Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase
-
004580
-
Van Damme, P., Evjenth, R., Foyn, H., Demeyer, K. et al., Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase. Mol. Cell. Proteomics 2011, 10, M110 004580.
-
(2011)
Mol. Cell. Proteomics
, vol.10
, pp. M110
-
-
Van Damme, P.1
Evjenth, R.2
Foyn, H.3
Demeyer, K.4
-
33
-
-
0032766060
-
Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal
-
Solbiati, J., Chapman-Smith, A., Miller, J. L., Miller, C. G., Cronan, J. E., Jr., Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J. Mol. Biol. 1999, 290, 607–614.
-
(1999)
J. Mol. Biol.
, vol.290
, pp. 607-614
-
-
Solbiati, J.1
Chapman-Smith, A.2
Miller, J.L.3
Miller, C.G.4
Cronan, J.E.5
-
34
-
-
0032145257
-
Assessment of aryl hydrocarbon receptor complex interactions using pBEVY plasmids: expressionvectors with bi-directional promoters for use in Saccharomyces cerevisiae
-
Miller, C. A., 3rd, Martinat, M. A., Hyman, L. E., Assessment of aryl hydrocarbon receptor complex interactions using pBEVY plasmids: expressionvectors with bi-directional promoters for use in Saccharomyces cerevisiae. Nucleic Acids Res. 1998, 26, 3577–3583.
-
(1998)
Nucleic Acids Res.
, vol.26
, pp. 3577-3583
-
-
Miller, C.A.1
Martinat, M.A.2
Hyman, L.E.3
-
35
-
-
80053604348
-
Selecting protein N-terminal peptides by combined fractional diagonal chromatography
-
Staes, A., Impens, F., Van Damme, P., Ruttens, B. et al., Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat. Protocols 2011, 6, 1130–1141.
-
(2011)
Nat. Protocols
, vol.6
, pp. 1130-1141
-
-
Staes, A.1
Impens, F.2
Van Damme, P.3
Ruttens, B.4
-
36
-
-
84880238580
-
In-gel N-acetylation for the quantification of the degree of protein in vivo N-terminal acetylation
-
Van Damme, P., Arnesen, T., Ruttens, B., Gevaert, K., In-gel N-acetylation for the quantification of the degree of protein in vivo N-terminal acetylation. Methods Mol. Biol. 2013, 981, 115–126.
-
(2013)
Methods Mol. Biol.
, vol.981
, pp. 115-126
-
-
Van Damme, P.1
Arnesen, T.2
Ruttens, B.3
Gevaert, K.4
-
37
-
-
42049084149
-
Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC)
-
Staes, A., Van Damme, P., Helsens, K., Demol, H. et al., Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 2008, 8, 1362–1370.
-
(2008)
Proteomics
, vol.8
, pp. 1362-1370
-
-
Staes, A.1
Van Damme, P.2
Helsens, K.3
Demol, H.4
-
38
-
-
77957849836
-
A review of COFRADIC techniques targeting protein N-terminal acetylation
-
Van Damme, P., Van Damme, J., Demol, H., Staes, A. et al., A review of COFRADIC techniques targeting protein N-terminal acetylation. BMC Proc. 2009, 3(Suppl 6), S6.
-
(2009)
BMC Proc.
, vol.3
, pp. S6
-
-
Van Damme, P.1
Van Damme, J.2
Demol, H.3
Staes, A.4
-
39
-
-
84914094148
-
A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites
-
Koch, A., Gawron, D., Steyaert, S., Ndah, E. et al., A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites. Proteomics 2014, 14, 2688–2698.
-
(2014)
Proteomics
, vol.14
, pp. 2688-2698
-
-
Koch, A.1
Gawron, D.2
Steyaert, S.3
Ndah, E.4
-
40
-
-
24144480557
-
DBToolkit: processing protein databases for peptide-centric proteomics
-
Martens, L., Vandekerckhove, J., Gevaert, K., DBToolkit: processing protein databases for peptide-centric proteomics. Bioinformatics 2005, 21, 3584–3585.
-
(2005)
Bioinformatics
, vol.21
, pp. 3584-3585
-
-
Martens, L.1
Vandekerckhove, J.2
Gevaert, K.3
-
41
-
-
77949750038
-
ms_lims, a simple yet powerful open source laboratory information management system for MS-driven proteomics
-
Helsens, K., Colaert, N., Barsnes, H., Muth, T. et al., ms_lims, a simple yet powerful open source laboratory information management system for MS-driven proteomics. Proteomics 2010, 10, 1261–1264.
-
(2010)
Proteomics
, vol.10
, pp. 1261-1264
-
-
Helsens, K.1
Colaert, N.2
Barsnes, H.3
Muth, T.4
-
42
-
-
84891796097
-
ProteomeXchange provides globally coordinated proteomics data submission and dissemination
-
Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A. et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223–226.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 223-226
-
-
Vizcaino, J.A.1
Deutsch, E.W.2
Wang, R.3
Csordas, A.4
-
43
-
-
84874762979
-
The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013
-
Vizcaino, J. A., Cote, R. G., Csordas, A., Dianes, J. A. et al., The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013, 41, D1063–D1069.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. D1063-D1069
-
-
Vizcaino, J.A.1
Cote, R.G.2
Csordas, A.3
Dianes, J.A.4
-
44
-
-
71449119677
-
Application of reverse-phase HPLC to quantify oligopeptide acetylation eliminates interference from unspecific acetyl CoA hydrolysis
-
Evjenth, R., Hole, K., Ziegler, M., Lillehaug, J. R., Application of reverse-phase HPLC to quantify oligopeptide acetylation eliminates interference from unspecific acetyl CoA hydrolysis. BMC Proc. 2009, 3(Suppl 6), S5.
-
(2009)
BMC Proc.
, vol.3
, pp. S5
-
-
Evjenth, R.1
Hole, K.2
Ziegler, M.3
Lillehaug, J.R.4
-
45
-
-
84904481340
-
A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase Naa10S37P mutant
-
Van Damme, P., Stove, S. I., Glomnes, N., Gevaert, K., Arnesen, T., A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase Naa10S37P mutant. Mol. Cell Proteomics 2014, 13, 2031–2041.
-
(2014)
Mol. Cell Proteomics
, vol.13
, pp. 2031-2041
-
-
Van Damme, P.1
Stove, S.I.2
Glomnes, N.3
Gevaert, K.4
Arnesen, T.5
-
46
-
-
79955761504
-
Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N{alpha}-acetyltransferases and point to hNaa10p as the post-translational actin N{alpha}-acetyltransferase
-
004580
-
Van Damme, P., Evjenth, R., Foyn, H., Demeyer, K. et al., Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N{alpha}-acetyltransferases and point to hNaa10p as the post-translational actin N{alpha}-acetyltransferase. Mol. Cell Proteomics 2011, 10, M110 004580.
-
(2011)
Mol. Cell Proteomics
, vol.10
, pp. M110
-
-
Van Damme, P.1
Evjenth, R.2
Foyn, H.3
Demeyer, K.4
-
47
-
-
33845993905
-
The proteomics of N-terminal methionine cleavage
-
Frottin, F., Martinez, A., Peynot, P., Mitra, S. et al., The proteomics of N-terminal methionine cleavage. Mol. Cell Proteomics 2006, 5, 2336–2349.
-
(2006)
Mol. Cell Proteomics
, vol.5
, pp. 2336-2349
-
-
Frottin, F.1
Martinez, A.2
Peynot, P.3
Mitra, S.4
-
48
-
-
34247281027
-
Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence
-
Raue, U., Oellerer, S., Rospert, S., Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 2007, 282, 7809–7816.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 7809-7816
-
-
Raue, U.1
Oellerer, S.2
Rospert, S.3
-
49
-
-
84878195272
-
Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway
-
Shemorry, A., Hwang, C. S., Varshavsky, A., Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 2013, 50, 540–551.
-
(2013)
Mol. Cell
, vol.50
, pp. 540-551
-
-
Shemorry, A.1
Hwang, C.S.2
Varshavsky, A.3
-
50
-
-
77149120798
-
N-terminal acetylation of cellular proteins creates specific degradation signals
-
Hwang, C. S., Shemorry, A., Varshavsky, A., N-terminal acetylation of cellular proteins creates specific degradation signals. Science 2010, 327, 973–977.
-
(2010)
Science
, vol.327
, pp. 973-977
-
-
Hwang, C.S.1
Shemorry, A.2
Varshavsky, A.3
-
51
-
-
80054958053
-
The N-end rule pathway: emerging functions and molecular principles of substrate recognition
-
Sriram, S. M., Kim, B. Y., Kwon, Y. T., The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 2011, 12, 735–747.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 735-747
-
-
Sriram, S.M.1
Kim, B.Y.2
Kwon, Y.T.3
|