메뉴 건너뛰기




Volumn 291, Issue 10, 2016, Pages 5270-5277

The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues

Author keywords

[No Author keywords available]

Indexed keywords

ACETYLATION; AMINO ACIDS; RECOMBINANT PROTEINS; SUBSTRATES;

EID: 84964690528     PISSN: 00219258     EISSN: 1083351X     Source Type: Journal    
DOI: 10.1074/jbc.M115.709428     Document Type: Article
Times cited : (41)

References (31)
  • 1
    • 84926163974 scopus 로고    scopus 로고
    • 50 years of protein acetylation: From gene regulationto epigenetics, metabolism and beyond
    • Verdin, E., and Ott, M. (2015) 50 years of protein acetylation: from gene regulationto epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258-264
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 258-264
    • Verdin, E.1    Ott, M.2
  • 2
    • 84859490749 scopus 로고    scopus 로고
    • Protein N-terminal acetyltransferases: When the start matters
    • Starheim, K. K., Gevaert, K., and Arnesen, T. (2012) Protein N-terminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37, 152-161
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 152-161
    • Starheim, K.K.1    Gevaert, K.2    Arnesen, T.3
  • 3
  • 4
    • 79958027934 scopus 로고    scopus 로고
    • N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum
    • Forte, G. M., and Pool., M. R., and Stirling, C. J. (2011) N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol. 9, e1001073
    • (2011) PLoS Biol. , vol.9
    • Forte, G.M.1    Pool, M.R.2    Stirling, C.J.3
  • 5
    • 80555131132 scopus 로고    scopus 로고
    • N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex
    • Scott, D. C, Monda, J. K., and Bennett., E. J., Harper, J. W., and Schulman, B. A. (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334, 674-678
    • (2011) Science , vol.334 , pp. 674-678
    • Scott, D.C.1    Monda, J.K.2    Bennett, E.J.3    Harper, J.W.4    Schulman, B.A.5
  • 6
    • 77149120798 scopus 로고    scopus 로고
    • N-terminal acetylation of cellular proteins creates specific degradation signals
    • Hwang, C. S., Shemorry, A., and Varshavsky, A. (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973-977
    • (2010) Science , vol.327 , pp. 973-977
    • Hwang, C.S.1    Shemorry, A.2    Varshavsky, A.3
  • 8
    • 0037462954 scopus 로고    scopus 로고
    • N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins
    • Polevoda, B., and Sherman, F. (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 325, 595-622
    • (2003) J. Mol. Biol. , vol.325 , pp. 595-622
    • Polevoda, B.1    Sherman, F.2
  • 10
    • 79955761504 scopus 로고    scopus 로고
    • Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(α)-acetyltransferases and point to hNaa10p as the post-translational actin N(α)-acetyltransferase
    • Van Damme, P., Evjenth, R., Foyn, H, Demeyer, K., De Bock, P. J., Lillehaug, J. R., Vandekerckhove, J., Arnesen, T., and Gevaert, K. (2011) Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(α)-acetyltransferases and point to hNaa10p as the post-translational actin N(α)-acetyltransferase. Mol. Cell. Proteomics 10.1074/mcp.M110.004580
    • (2011) Mol. Cell. Proteomics
    • Van Damme, P.1    Evjenth, R.2    Foyn, H.3    Demeyer, K.4    De Bock, P.J.5    Lillehaug, J.R.6    Vandekerckhove, J.7    Arnesen, T.8    Gevaert, K.9
  • 12
    • 84928016447 scopus 로고    scopus 로고
    • Arrest defective 1 regulates the oxidative stress response in human cells and mice by acetylating methionine sulfoxide reductase A
    • Shin, S. H, Yoon, H., and Chun., Y. S., Shin, H. W., Lee, M. N., and Oh., G. T., and Park, J. W. (2014) Arrest defective 1 regulates the oxidative stress response in human cells and mice by acetylating methionine sulfoxide reductase A. Cell Death Dis. 5, e1490
    • (2014) Cell Death Dis. , vol.5
    • Shin, S.H.1    Yoon, H.2    Chun, Y.S.3    Shin, H.W.4    Lee, M.N.5    Oh, G.T.6    Park, J.W.7
  • 13
    • 70449379394 scopus 로고    scopus 로고
    • Arrest defective-1 controls tumor cell behavior by acetylating myosin light chain kinase
    • Shin, D. H, Chun, Y. S., and Lee., K. H., Shin, H. W., and Park, J. W. (2009) Arrest defective-1 controls tumor cell behavior by acetylating myosin light chain kinase. PloS ONE 4, e7451
    • (2009) PloS ONE , vol.4
    • Shin, D.H.1    Chun, Y.S.2    Lee, K.H.3    Shin, H.W.4    Park, J.W.5
  • 14
    • 52949119208 scopus 로고    scopus 로고
    • Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(α)-acetylation of ribosomal protein S18
    • Vetting, M. W., Bareich, D. C, Yu, M., and Blanchard, J. S. (2008) Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(α)-acetylation of ribosomal protein S18. Protein Sci. 17, 1781-1790
    • (2008) Protein Sci. , vol.17 , pp. 1781-1790
    • Vetting, M.W.1    Bareich, D.C.2    Yu, M.3    Blanchard, J.S.4
  • 15
    • 80054694313 scopus 로고    scopus 로고
    • Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation
    • Liszczak, G., Arnesen, T., and Marmorstein, R. (2011) Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. J. Biol. Chem. 286, 37002-37010
    • (2011) J. Biol. Chem. , vol.286 , pp. 37002-37010
    • Liszczak, G.1    Arnesen, T.2    Marmorstein, R.3
  • 16
    • 84883342432 scopus 로고    scopus 로고
    • Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
    • Liszczak, G., and Marmorstein, R. (2013) Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog. Proc. Natl. Acad. Sci. U.S.A. 110, 14652-14657
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 14652-14657
    • Liszczak, G.1    Marmorstein, R.2
  • 17
    • 84930190696 scopus 로고    scopus 로고
    • The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD
    • Magin, R. S., and Liszczak., G. P., and Marmorstein, R. (2015) The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD. Structure 23, 332-341
    • (2015) Structure , vol.23 , pp. 332-341
    • Magin, R.S.1    Liszczak, G.P.2    Marmorstein, R.3
  • 18
    • 84937635572 scopus 로고    scopus 로고
    • The biological functions of Naa10: From amino-terminal acetylation to human disease
    • Dörfel, M. J., and Lyon, G. J. (2015) The biological functions of Naa10: from amino-terminal acetylation to human disease. Gene 567, 103-131
    • (2015) Gene , vol.567 , pp. 103-131
    • Dörfel, M.J.1    Lyon, G.J.2
  • 20
    • 33645236747 scopus 로고    scopus 로고
    • Purified recombinant hARD1 does not catalyse acetylation of Lys532 of HIF-1a fragments in vitro
    • Murray-Rust, T. A., Oldham, N. J., and Hewitson., K. S., and Schofield, C. J. (2006) Purified recombinant hARD1 does not catalyse acetylation of Lys532 of HIF-1a fragments in vitro. FEBS Lett. 580, 1911-1918
    • (2006) FEBS Lett. , vol.580 , pp. 1911-1918
    • Murray-Rust, T.A.1    Oldham, N.J.2    Hewitson, K.S.3    Schofield, C.J.4
  • 21
    • 27744450043 scopus 로고    scopus 로고
    • Interaction between HIF-1 α (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1α
    • Arnesen, T., Kong, X., Evjenth, R., Gromyko, D., and Varhaug., J. E., Lin, Z., Sang, N, Caro, J., and Lillehaug, J. R. (2005) Interaction between HIF-1 α (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1α. FEBS Lett. 579, 6428-6432
    • (2005) FEBS Lett. , vol.579 , pp. 6428-6432
    • Arnesen, T.1    Kong, X.2    Evjenth, R.3    Gromyko, D.4    Varhaug, J.E.5    Lin, Z.6    Sang, N.7    Caro, J.8    Lillehaug, J.R.9
  • 26
    • 0141640821 scopus 로고    scopus 로고
    • The yeast N(α)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides
    • Gautschi, M., Just, S., Mun, A., Ross, S., Rücknagel, P., Dubaquié, Y., Ehrenhofer-Murray, A., and Rospert, S. (2003) The yeast N(α)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell Biol. 23, 7403-7414
    • (2003) Mol. Cell Biol. , vol.23 , pp. 7403-7414
    • Gautschi, M.1    Just, S.2    Mun, A.3    Ross, S.4    Rücknagel, P.5    Dubaquié, Y.6    Ehrenhofer-Murray, A.7    Rospert, S.8
  • 27
    • 78651162036 scopus 로고
    • Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
    • Allfrey, V. G., Faulkner, R., and Mirsky, A. E. (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 51, 786-794
    • (1964) Proc. Natl. Acad. Sci. U.S.A. , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.E.3
  • 28
    • 84921405747 scopus 로고    scopus 로고
    • Site-specific reactivity of nonenzymatic lysine acetylation
    • Baeza, J., and Smallegan., M. J., and Denu, J. M. (2015) Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10, 122-128
    • (2015) ACS Chem. Biol. , vol.10 , pp. 122-128
    • Baeza, J.1    Smallegan, M.J.2    Denu, J.M.3
  • 31
    • 0034619554 scopus 로고    scopus 로고
    • Structure and mechanism of peptide methionine sulfoxide reductase, an "anti-oxidation" enzyme
    • Lowther, W. T., Brot, N, Weissbach, H., and Matthews, B. W. (2000) Structure and mechanism of peptide methionine sulfoxide reductase, an "anti-oxidation" enzyme. Biochemistry 39, 13307-13312
    • (2000) Biochemistry , vol.39 , pp. 13307-13312
    • Lowther, W.T.1    Brot, N.2    Weissbach, H.3    Matthews, B.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.