메뉴 건너뛰기




Volumn 13, Issue 8, 2014, Pages 2031-2041

A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant

Author keywords

[No Author keywords available]

Indexed keywords

PEPTIDE ALPHA N ACETYLTRANSFERASE; PEPTIDE ALPHA N ACETYLTRANSFERASE B; PEPTIDE ALPHA N ACETYLTRANSFERASE C; PEPTIDE ALPHA N ACETYLTRANSFERASE D; NAA10 PROTEIN, HUMAN; PEPTIDE ALPHA N ACETYLTRANSFERASE A; PEPTIDE ALPHA N ACETYLTRANSFERASE E; PROLINE; SACCHAROMYCES CEREVISIAE PROTEIN; SERINE;

EID: 84904481340     PISSN: 15359476     EISSN: 15359484     Source Type: Journal    
DOI: 10.1074/mcp.M113.035402     Document Type: Article
Times cited : (44)

References (63)
  • 2
    • 84859490749 scopus 로고    scopus 로고
    • Protein N-terminal acetyltransferases: When the start matters
    • Starheim, K. K., Gevaert, K., and Arnesen, T. (2012) Protein N-terminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37, 152-161
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 152-161
    • Starheim, K.K.1    Gevaert, K.2    Arnesen, T.3
  • 3
    • 71449089622 scopus 로고    scopus 로고
    • A synopsis of eukaryotic Nalpha-terminal acetyltransferases: Nomenclature, subunits and substrates
    • Polevoda, B., Arnesen, T., and Sherman, F. (2009) A synopsis of eukaryotic Nalpha-terminal acetyltransferases: nomenclature, subunits and substrates. BMC Proc 3, S2
    • (2009) BMC Proc , vol.3
    • Polevoda, B.1    Arnesen, T.2    Sherman, F.3
  • 4
    • 15944413192 scopus 로고    scopus 로고
    • Identification and characterization of the human ARD1-NATH protein acetyltransferase complex
    • DOI 10.1042/BJ20041071
    • Arnesen, T., Anderson, D., Baldersheim, C., Lanotte, M., Varhaug, J. E., and Lillehaug, J. R. (2005) Identification and characterization of the human ARD1-NATH protein acetyltransferase complex. Biochem. J. 386, 433-443 (Pubitemid 40445867)
    • (2005) Biochemical Journal , vol.386 , Issue.3 , pp. 433-443
    • Arnesen, T.1    Anderson, D.2    Baldersheim, C.3    Lanotte, M.4    Varhaug, J.E.5    Lillehaug, J.R.6
  • 6
    • 80052829164 scopus 로고    scopus 로고
    • The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4
    • Hole, K., Van Damme, P., Dalva, M., Aksnes, H., Glomnes, N., Varhaug, J. E., Lillehaug, J. R., Gevaert, K., and Arnesen, T. (2011) The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PloS one 6, e24713
    • (2011) PloS One , vol.6
    • Hole, K.1    Van Damme, P.2    Dalva, M.3    Aksnes, H.4    Glomnes, N.5    Varhaug, J.E.6    Lillehaug, J.R.7    Gevaert, K.8    Arnesen, T.9
  • 8
    • 67650085001 scopus 로고    scopus 로고
    • Knockdown of human N alphaterminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization
    • Starheim, K. K., Gromyko, D., Evjenth, R., Ryningen, A., Varhaug, J. E., Lillehaug, J. R., and Arnesen, T. (2009) Knockdown of human N alphaterminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol. Cell. Biol. 29, 3569-3581
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 3569-3581
    • Starheim, K.K.1    Gromyko, D.2    Evjenth, R.3    Ryningen, A.4    Varhaug, J.E.5    Lillehaug, J.R.6    Arnesen, T.7
  • 9
    • 71449101084 scopus 로고    scopus 로고
    • Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity
    • Evjenth, R., Hole, K., Karlsen, O. A., Ziegler, M., Arnesen, T., and Lillehaug, J. R. (2009) Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. J. Biol. Chem. 284, 31122-31129
    • (2009) J. Biol. Chem. , vol.284 , pp. 31122-31129
    • Evjenth, R.1    Hole, K.2    Karlsen, O.A.3    Ziegler, M.4    Arnesen, T.5    Lillehaug, J.R.6
  • 10
    • 79955761504 scopus 로고    scopus 로고
    • Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase
    • M110 004580
    • Van Damme, P., Evjenth, R., Foyn, H., Demeyer, K., De Bock, P. J., Lillehaug, J. R., Vandekerckhove, J., Arnesen, T., and Gevaert, K. (2011) Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase. Mol. Cell. Proteomics 10, M110 004580
    • (2011) Mol. Cell. Proteomics , vol.10
    • Van Damme, P.1    Evjenth, R.2    Foyn, H.3    Demeyer, K.4    De Bock, P.J.5    Lillehaug, J.R.6    Vandekerckhove, J.7    Arnesen, T.8    Gevaert, K.9
  • 11
    • 84859515208 scopus 로고    scopus 로고
    • Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alphaacetylation features
    • M111 015131
    • Bienvenut, W. V., Sumpton, D., Martinez, A., Lilla, S., Espagne, C., Meinnel, T., and Giglione, C. (2012) Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alphaacetylation features. Mol. Cell. Proteomics 11, M111 015131
    • (2012) Mol. Cell. Proteomics , vol.11
    • Bienvenut, W.V.1    Sumpton, D.2    Martinez, A.3    Lilla, S.4    Espagne, C.5    Meinnel, T.6    Giglione, C.7
  • 12
    • 54049149934 scopus 로고    scopus 로고
    • Identification of the human N(alpha)-acetyltransferase complex B (hNatB): A complex important for cell-cycle progression
    • Starheim, K. K., Arnesen, T., Gromyko, D., Ryningen, A., Varhaug, J. E., and Lillehaug, J. R. (2008) Identification of the human N(alpha)- acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem. J. 415, 325-331
    • (2008) Biochem. J. , vol.415 , pp. 325-331
    • Starheim, K.K.1    Arnesen, T.2    Gromyko, D.3    Ryningen, A.4    Varhaug, J.E.5    Lillehaug, J.R.6
  • 13
    • 0033231015 scopus 로고    scopus 로고
    • Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae
    • DOI 10.1093/emboj/18.21.6155
    • Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., and Sherman, F. (1999) Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J. 18, 6155-6168 (Pubitemid 29515690)
    • (1999) EMBO Journal , vol.18 , Issue.21 , pp. 6155-6168
    • Polevoda, B.1    Norbeck, J.2    Takakura, H.3    Blomberg, A.4    Sherman, F.5
  • 14
    • 0016617116 scopus 로고
    • Acetylation of Protein N-terminal amino groups structural observations on alpha-amino acetylated proteins
    • Jornvall, H. (1975) Acetylation of Protein N-terminal amino groups structural observations on alpha-amino acetylated proteins. J. Theor. Biol. 55, 1-12
    • (1975) J. Theor. Biol. , vol.55 , pp. 1-12
    • Jornvall, H.1
  • 15
    • 77149120798 scopus 로고    scopus 로고
    • N-terminal acetylation of cellular proteins creates specific degradation signals
    • Hwang, C. S., Shemorry, A., and Varshavsky, A. (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973-977
    • (2010) Science , vol.327 , pp. 973-977
    • Hwang, C.S.1    Shemorry, A.2    Varshavsky, A.3
  • 16
    • 84878195272 scopus 로고    scopus 로고
    • Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway
    • Shemorry, A., Hwang, C. S., and Varshavsky, A. (2013) Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540-551
    • (2013) Mol. Cell , vol.50 , pp. 540-551
    • Shemorry, A.1    Hwang, C.S.2    Varshavsky, A.3
  • 18
    • 84872613178 scopus 로고    scopus 로고
    • Protein N-terminal acetyltransferases in cancer
    • Kalvik, T. V., and Arnesen, T. (2013) Protein N-terminal acetyltransferases in cancer. Oncogene 32, 269-276
    • (2013) Oncogene , vol.32 , pp. 269-276
    • Kalvik, T.V.1    Arnesen, T.2
  • 19
    • 79958027934 scopus 로고    scopus 로고
    • N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum
    • Forte, G. M., Pool, M. R., and Stirling, C. J. (2011) N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLoS Biol. 9, e1001073
    • (2011) PLoS Biol. , vol.9
    • Forte, G.M.1    Pool, M.R.2    Stirling, C.J.3
  • 20
    • 33646174748 scopus 로고    scopus 로고
    • An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility
    • DOI 10.1242/jcs.02958
    • Hofmann, I., and Munro, S. (2006) An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J. Cell Sci. 119, 1494-1503 (Pubitemid 43732978)
    • (2006) Journal of Cell Science , vol.119 , Issue.8 , pp. 1494-1503
    • Hofmann, I.1    Munro, S.2
  • 21
    • 80555131132 scopus 로고    scopus 로고
    • N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex
    • Scott, D. C., Monda, J. K., Bennett, E. J., Harper, J. W., and Schulman, B. A. (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334, 674-678
    • (2011) Science , vol.334 , pp. 674-678
    • Scott, D.C.1    Monda, J.K.2    Bennett, E.J.3    Harper, J.W.4    Schulman, B.A.5
  • 23
    • 77955297697 scopus 로고    scopus 로고
    • Depletion of the human Nalpha-terminal acetyltransferase A induces p53-dependent apoptosis and p53-independent growth inhibition
    • Gromyko, D., Arnesen, T., Ryningen, A., Varhaug, J. E., and Lillehaug, J. R. (2010) Depletion of the human Nalpha-terminal acetyltransferase A induces p53-dependent apoptosis and p53-independent growth inhibition. Int. J. Cancer 127, 2777-2789
    • (2010) Int. J. Cancer , vol.127 , pp. 2777-2789
    • Gromyko, D.1    Arnesen, T.2    Ryningen, A.3    Varhaug, J.E.4    Lillehaug, J.R.5
  • 24
    • 20544431636 scopus 로고    scopus 로고
    • Analysis of ARD1 function in hypoxia response using retroviral RNA interference
    • DOI 10.1074/jbc.M412055200
    • Fisher, T. S., Etages, S. D., Hayes, L., Crimin, K., and Li, B. (2005) Analysis of ARD1 function in hypoxia response using retroviral RNA interference. J. Biol. Chem. 280, 17749-17757 (Pubitemid 41389013)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.18 , pp. 17749-17757
    • Fisher, T.S.1    Des, E.S.2    Hayes, L.3    Crimin, K.4    Li, B.5
  • 25
    • 33845293454 scopus 로고    scopus 로고
    • Human arrest defective 1 acetylates and activates beta-catenin, promoting lung cancer cell proliferation
    • Lim, J. H., Park, J. W., and Chun, Y. S. (2006) Human arrest defective 1 acetylates and activates beta-catenin, promoting lung cancer cell proliferation. Cancer Res. 66, 10677-10682
    • (2006) Cancer Res. , vol.66 , pp. 10677-10682
    • Lim, J.H.1    Park, J.W.2    Chun, Y.S.3
  • 26
    • 48549098557 scopus 로고    scopus 로고
    • Hypoxia-inducible factor- 1alpha obstructs a Wnt signaling pathway by inhibiting the hARD1- mediated activation of beta-catenin
    • Lim, J. H., Chun, Y. S., and Park, J. W. (2008) Hypoxia-inducible factor- 1alpha obstructs a Wnt signaling pathway by inhibiting the hARD1- mediated activation of beta-catenin. Cancer Res. 68, 5177-5184
    • (2008) Cancer Res. , vol.68 , pp. 5177-5184
    • Lim, J.H.1    Chun, Y.S.2    Park, J.W.3
  • 28
    • 84871698501 scopus 로고    scopus 로고
    • Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases
    • Grauffel, C., Abboud, A., Liszczak, G., Marmorstein, R., Arnesen, T., and Reuter, N. (2012) Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases. PLoS One 7, e52642
    • (2012) PLoS One , vol.7
    • Grauffel, C.1    Abboud, A.2    Liszczak, G.3    Marmorstein, R.4    Arnesen, T.5    Reuter, N.6
  • 29
    • 80054694313 scopus 로고    scopus 로고
    • Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation
    • Liszczak, G., Arnesen, T., and Marmorstein, R. (2011) Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. J. Biol. Chem. 286, 37002-37010
    • (2011) J. Biol. Chem. , vol.286 , pp. 37002-37010
    • Liszczak, G.1    Arnesen, T.2    Marmorstein, R.3
  • 30
    • 84883342432 scopus 로고    scopus 로고
    • Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
    • Liszczak, G., and Marmorstein, R. (2013) Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog. Proc. Natl. Acad. Sci. U.S.A. 110, 14652-14657
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 14652-14657
    • Liszczak, G.1    Marmorstein, R.2
  • 31
    • 0041848257 scopus 로고    scopus 로고
    • Composition and function of the eukaryotic N-terminal acetyltransferase subunits
    • DOI 10.1016/S0006-291X(03)01316-0
    • Polevoda, B., and Sherman, F. (2003) Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem. Biophys. Res. Commun. 308, 1-11 (Pubitemid 36904113)
    • (2003) Biochemical and Biophysical Research Communications , vol.308 , Issue.1 , pp. 1-11
    • Polevoda, B.1    Sherman, F.2
  • 32
    • 0022407123 scopus 로고
    • The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways
    • Whiteway, M., and Szostak, J. W. (1985) The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways. Cell 43, 483-492 (Pubitemid 16213273)
    • (1985) Cell , vol.43 , Issue.2 I , pp. 483-492
    • Whiteway, M.1    Szostak, J.W.2
  • 34
    • 0026605888 scopus 로고
    • ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity
    • Park, E. C., and Szostak, J. W. (1992) ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. EMBO J. 11, 2087-2093
    • (1992) EMBO J. , vol.11 , pp. 2087-2093
    • Park, E.C.1    Szostak, J.W.2
  • 35
    • 0043234609 scopus 로고    scopus 로고
    • Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin
    • DOI 10.1074/jbc.M304690200
    • Polevoda, B., Cardillo, T. S., Doyle, T. C., Bedi, G. S., and Sherman, F. (2003) Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J. Biol. Chem. 278, 30686-30697 (Pubitemid 36994574)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.33 , pp. 30686-30697
    • Polevoda, B.1    Cardillo, T.S.2    Doyle, T.C.3    Bedi, G.S.4    Sherman, F.5
  • 36
    • 0030951615 scopus 로고    scopus 로고
    • The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton
    • DOI 10.1083/jcb.137.1.141
    • Hermann, G. J., King, E. J., and Shaw, J. M. (1997) The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J. Cell Biol. 137, 141-153 (Pubitemid 27167302)
    • (1997) Journal of Cell Biology , vol.137 , Issue.1 , pp. 141-153
    • Hermann, G.J.1    King, E.J.2    Shaw, J.M.3
  • 37
    • 0035827594 scopus 로고    scopus 로고
    • NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p
    • Polevoda, B., and Sherman, F. (2001) NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J. Biol. Chem. 276, 20154-20159
    • (2001) J. Biol. Chem. , vol.276 , pp. 20154-20159
    • Polevoda, B.1    Sherman, F.2
  • 38
    • 0026744480 scopus 로고
    • MAK3 encodes an N-acetyltransferase whose modification of the L-A gag NH2 terminus is necessary for virus particle assembly
    • Tercero, J. C., and Wickner, R. B. (1992) MAK3 encodes an N-acetyltransferase whose modification of the L-A gag NH2 terminus is necessary for virus particle assembly. J. Biol. Chem. 267, 20277-20281
    • (1992) J. Biol. Chem. , vol.267 , pp. 20277-20281
    • Tercero, J.C.1    Wickner, R.B.2
  • 39
    • 0026757389 scopus 로고
    • MAK10, a glucose-repressible gene necessary for replication of a dsRNA virus of Saccharomyces cerevisiae, has T cell receptor alpha-subunit motifs
    • Lee, Y. J., and Wickner, R. B. (1992) MAK10, a glucose-repressible gene necessary for replication of a dsRNA virus of Saccharomyces cerevisiae, has T cell receptor alpha-subunit motifs. Genetics 132, 87-96
    • (1992) Genetics , vol.132 , pp. 87-96
    • Lee, Y.J.1    Wickner, R.B.2
  • 43
    • 77958608444 scopus 로고    scopus 로고
    • Drosophila variable nurse cells encodes arrest defective 1 (ARD1), the catalytic subunit of the major N-terminal acetyltransferase complex
    • Wang, Y., Mijares, M., Gall, M. D., Turan, T., Javier, A., Bornemann, D. J., Manage, K., and Warrior, R. (2010) Drosophila variable nurse cells encodes arrest defective 1 (ARD1), the catalytic subunit of the major N-terminal acetyltransferase complex. Dev. Dyn. 239, 2813-2827
    • (2010) Dev. Dyn. , vol.239 , pp. 2813-2827
    • Wang, Y.1    Mijares, M.2    Gall, M.D.3    Turan, T.4    Javier, A.5    Bornemann, D.J.6    Manage, K.7    Warrior, R.8
  • 44
    • 0034494265 scopus 로고    scopus 로고
    • alpha-acetyltransferase in Trypanosoma brucei
    • DOI 10.1016/S0166-6851(00)00322-4, PII S0166685100003224
    • Ingram, A. K., Cross, G. A., and Horn, D. (2000) Genetic manipulation indicates that ARD1 is an essential N(alpha)-acetyltransferase in Trypanosoma brucei. Mol. Biochem. Parasitol. 111, 309-317 (Pubitemid 32121674)
    • (2000) Molecular and Biochemical Parasitology , vol.111 , Issue.2 , pp. 309-317
    • Ingram, A.K.1    Cross, G.A.M.2    Horn, D.3
  • 45
    • 71449119677 scopus 로고    scopus 로고
    • Application of reverse-phase HPLC to quantify oligopeptide acetylation eliminates interference from unspecific acetyl CoA hydrolysis
    • Evjenth, R., Hole, K., Ziegler, M., and Lillehaug, J. R. (2009) Application of reverse-phase HPLC to quantify oligopeptide acetylation eliminates interference from unspecific acetyl CoA hydrolysis. BMC Proc 3, S5
    • (2009) BMC Proc , vol.3
    • Evjenth, R.1    Hole, K.2    Ziegler, M.3    Lillehaug, J.R.4
  • 47
    • 42049084149 scopus 로고    scopus 로고
    • Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC)
    • DOI 10.1002/pmic.200700950
    • Staes, A., Van Damme, P., Helsens, K., Demol, H., Vandekerckhove, J., and Gevaert, K. (2008) Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8, 1362-1370 (Pubitemid 351518548)
    • (2008) Proteomics , vol.8 , Issue.7 , pp. 1362-1370
    • Staes, A.1    Van Damme, P.2    Helsens, K.3    Demol, H.4    Vandekerckhove, J.5    Gevaert, K.6
  • 48
    • 24144480557 scopus 로고    scopus 로고
    • DBToolkit: Processing protein databases for peptide-centric proteomics
    • DOI 10.1093/bioinformatics/bti588
    • Martens, L., Vandekerckhove, J., and Gevaert, K. (2005) DBToolkit: processing protein databases for peptide-centric proteomics. Bioinformatics 21, 3584-3585 (Pubitemid 41236010)
    • (2005) Bioinformatics , vol.21 , Issue.17 , pp. 3584-3585
    • Martens, L.1    Vandekerckhove, J.2    Gevaert, K.3
  • 51
    • 0141640821 scopus 로고    scopus 로고
    • alpha-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides
    • DOI 10.1128/MCB.23.20.7403-7414.2003
    • Gautschi, M., Just, S., Mun, A., Ross, S., Rucknagel, P., Dubaquie, Y., Ehrenhofer-Murray, A., and Rospert, S. (2003) The yeast N(alpha)- acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 23, 7403-7414 (Pubitemid 37211018)
    • (2003) Molecular and Cellular Biology , vol.23 , Issue.20 , pp. 7403-7414
    • Gautschi, M.1    Just, S.2    Mun, A.3    Ross, S.4    Rucknagel, P.5    Dubaquie, Y.6    Ehrenhofer-Murray, A.7    Rospert, S.8
  • 54
    • 79961232419 scopus 로고    scopus 로고
    • Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation
    • Helsens, K., Van Damme, P., Degroeve, S., Martens, L., Arnesen, T., Vandekerckhove, J., and Gevaert, K. (2011) Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. J. Proteome Res. 10, 3578-3589
    • (2011) J. Proteome Res. , vol.10 , pp. 3578-3589
    • Helsens, K.1    Van Damme, P.2    Degroeve, S.3    Martens, L.4    Arnesen, T.5    Vandekerckhove, J.6    Gevaert, K.7
  • 55
    • 62549134121 scopus 로고    scopus 로고
    • Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
    • Ingolia, N. T., Ghaemmaghami, S., Newman, J. R., and Weissman, J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223
    • (2009) Science , vol.324 , pp. 218-223
    • Ingolia, N.T.1    Ghaemmaghami, S.2    Newman, J.R.3    Weissman, J.S.4
  • 56
    • 66349135032 scopus 로고    scopus 로고
    • Properties of Nat4, an N(alpha)-acetyltransferase of Saccharomyces cerevisiae that modifies N termini of histones H2A and H4
    • Polevoda, B., Hoskins, J., and Sherman, F. (2009) Properties of Nat4, an N(alpha)-acetyltransferase of Saccharomyces cerevisiae that modifies N termini of histones H2A and H4. Mol. Cell. Biol. 29, 2913-2924
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 2913-2924
    • Polevoda, B.1    Hoskins, J.2    Sherman, F.3
  • 57
    • 77954194681 scopus 로고    scopus 로고
    • Protein N-terminal processing: Substrate specificity of Escherichia coli and human methionine aminopeptidases
    • Xiao, Q., Zhang, F., Nacev, B. A., Liu, J. O., and Pei, D. (2010) Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry 49, 5588-5599
    • (2010) Biochemistry , vol.49 , pp. 5588-5599
    • Xiao, Q.1    Zhang, F.2    Nacev, B.A.3    Liu, J.O.4    Pei, D.5
  • 58
    • 0023754392 scopus 로고
    • Cotranslational processing and protein turnover in eukaryotic cells
    • Arfin, S. M., and Bradshaw, R. A. (1988) Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27, 7979-7984
    • (1988) Biochemistry , vol.27 , pp. 7979-7984
    • Arfin, S.M.1    Bradshaw, R.A.2
  • 59
    • 0025200973 scopus 로고
    • The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo: Processing of altered ISO-1-cytochromes c created by oligonucleotide transformation
    • Moerschell, R. P., Hosokawa, Y., Tsunasawa, S., and Sherman, F. (1990) The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J. Biol. Chem. 265, 19638-19643 (Pubitemid 120013909)
    • (1990) Journal of Biological Chemistry , vol.265 , Issue.32 , pp. 19638-19643
    • Moerschell, R.P.1    Hosokawa, Y.2    Tsunasawa, S.3    Sherman, F.4
  • 60
    • 0021876647 scopus 로고
    • Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase
    • Tsunasawa, S., Stewart, J. W., and Sherman, F. (1985) Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase. J. Biol. Chem. 260, 5382-5391 (Pubitemid 15003281)
    • (1985) Journal of Biological Chemistry , vol.260 , Issue.9 , pp. 5382-5391
    • Tsunasawa, S.1    Stewart, J.W.2    Sherman, F.3
  • 61
    • 84884170556 scopus 로고    scopus 로고
    • Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids
    • Huesgen, P. F., Alami, M., Lange, P. F., Foster, L. J., Schroder, W. P., Overall, C. M., and Green, B. R. (2013) Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids. PLoS One 8, e74483
    • (2013) PLoS One , vol.8
    • Huesgen, P.F.1    Alami, M.2    Lange, P.F.3    Foster, L.J.4    Schroder, W.P.5    Overall, C.M.6    Green, B.R.7
  • 62
    • 0018036479 scopus 로고
    • The mitochondrial genome of yeast
    • Borst, P., and Grivell, L. A. (1978) The mitochondrial genome of yeast. Cell 15, 705-723
    • (1978) Cell , vol.15 , pp. 705-723
    • Borst, P.1    Grivell, L.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.