-
1
-
-
84975755192
-
Mitochondrial ROS signaling in organismal homeostasis
-
[1] Shadel, G.S., Horvath, T.L., Mitochondrial ROS signaling in organismal homeostasis. Cell 163 (2015), 560–569.
-
(2015)
Cell
, vol.163
, pp. 560-569
-
-
Shadel, G.S.1
Horvath, T.L.2
-
2
-
-
84861212393
-
Mitochondria and cell signalling
-
[2] Tait, S.W., Green, D.R., Mitochondria and cell signalling. J. Cell Sci. 125 (2012), 807–815.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 807-815
-
-
Tait, S.W.1
Green, D.R.2
-
3
-
-
84878258476
-
Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health
-
[3] Figueira, T.R., Barros, M.H., Camargo, A.A., Castilho, R.F., Ferreira, J.C., Kowaltowski, A.J., Sluse, F.E., Souza-Pinto, N.C., Vercesi, A.E., Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid. Redox Signal. 18 (2013), 2029–2074.
-
(2013)
Antioxid. Redox Signal.
, vol.18
, pp. 2029-2074
-
-
Figueira, T.R.1
Barros, M.H.2
Camargo, A.A.3
Castilho, R.F.4
Ferreira, J.C.5
Kowaltowski, A.J.6
Sluse, F.E.7
Souza-Pinto, N.C.8
Vercesi, A.E.9
-
4
-
-
84938739650
-
Evolution of mitochondria as signaling organelles
-
[4] Chandel, N.S., Evolution of mitochondria as signaling organelles. Cell Metab. 22 (2015), 204–206.
-
(2015)
Cell Metab.
, vol.22
, pp. 204-206
-
-
Chandel, N.S.1
-
5
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
[5] Sena, L.A., Chandel, N.S., Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48 (2012), 158–167.
-
(2012)
Mol. Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
6
-
-
84863301287
-
Mitochondrial redox signalling at a glance
-
[6] Collins, Y., Chouchani, E.T., James, A.M., Menger, K.E., Cocheme, H.M., Murphy, M.P., Mitochondrial redox signalling at a glance. J. Cell Sci. 125 (2012), 801–806.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 801-806
-
-
Collins, Y.1
Chouchani, E.T.2
James, A.M.3
Menger, K.E.4
Cocheme, H.M.5
Murphy, M.P.6
-
7
-
-
84908213474
-
Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?
-
[7] Sabharwal, S.S., Schumacker, P.T., Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?. Nat. Rev. Cancer 14 (2014), 709–721.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 709-721
-
-
Sabharwal, S.S.1
Schumacker, P.T.2
-
8
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
[8] Balaban, R.S., Nemoto, S., Finkel, T., Mitochondria, oxidants, and aging. Cell 120 (2005), 483–495.
-
(2005)
Cell
, vol.120
, pp. 483-495
-
-
Balaban, R.S.1
Nemoto, S.2
Finkel, T.3
-
9
-
-
77956186783
-
Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
-
[9] Hamanaka, R.B., Chandel, N.S., Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35 (2010), 505–513.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 505-513
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
10
-
-
79957597757
-
Mitochondria in innate immune responses
-
[10] West, A.P., Shadel, G.S., Ghosh, S., Mitochondria in innate immune responses. Nat. Rev. Immunol. 11 (2011), 389–402.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 389-402
-
-
West, A.P.1
Shadel, G.S.2
Ghosh, S.3
-
11
-
-
84874229027
-
Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development
-
ra8
-
[11] Hamanaka, R.B., Glasauer, A., Hoover, P., Yang, S., Blatt, H., Mullen, A.R., Getsios, S., Gottardi, C.J., DeBerardinis, R.J., Lavker, R.M., Chandel, N.S., Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal., 6, 2013 ra8.
-
(2013)
Sci. Signal.
, vol.6
-
-
Hamanaka, R.B.1
Glasauer, A.2
Hoover, P.3
Yang, S.4
Blatt, H.5
Mullen, A.R.6
Getsios, S.7
Gottardi, C.J.8
DeBerardinis, R.J.9
Lavker, R.M.10
Chandel, N.S.11
-
12
-
-
84861964383
-
Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
-
[12] Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., Bae, S.H., Rhee, S.G., Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46 (2012), 584–594.
-
(2012)
Mol. Cell
, vol.46
, pp. 584-594
-
-
Kil, I.S.1
Lee, S.K.2
Ryu, K.W.3
Woo, H.A.4
Hu, M.C.5
Bae, S.H.6
Rhee, S.G.7
-
13
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
[13] Murphy, M.P., How mitochondria produce reactive oxygen species. Biochem. J. 417 (2009), 1–13.
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
14
-
-
77952541558
-
The sites and topology of mitochondrial superoxide production
-
[14] Brand, M.D., The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45 (2010), 466–472.
-
(2010)
Exp. Gerontol.
, vol.45
, pp. 466-472
-
-
Brand, M.D.1
-
15
-
-
84879430920
-
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
-
[15] Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Orr, A.L., Brand, M.D., Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 1 (2013), 304–312.
-
(2013)
Redox Biol.
, vol.1
, pp. 304-312
-
-
Quinlan, C.L.1
Perevoshchikova, I.V.2
Hey-Mogensen, M.3
Orr, A.L.4
Brand, M.D.5
-
16
-
-
54049146740
-
Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
-
[16] Hurd, T.R., Requejo, R., Filipovska, A., Brown, S., Prime, T.A., Robinson, A.J., Fearnley, I.M., Murphy, M.P., Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 283 (2008), 24801–24815.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24801-24815
-
-
Hurd, T.R.1
Requejo, R.2
Filipovska, A.3
Brown, S.4
Prime, T.A.5
Robinson, A.J.6
Fearnley, I.M.7
Murphy, M.P.8
-
17
-
-
84923912767
-
S-glutathionylation reactions in mitochondrial function and disease
-
[17] Mailloux, R.J., Willmore, W.G., S-glutathionylation reactions in mitochondrial function and disease. Front. Cell Dev. Biol., 2, 2014, 68.
-
(2014)
Front. Cell Dev. Biol.
, vol.2
, pp. 68
-
-
Mailloux, R.J.1
Willmore, W.G.2
-
18
-
-
84880253528
-
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
-
[18] Chouchani, E.T., Methner, C., Nadtochiy, S.M., Logan, A., Pell, V.R., Ding, S., James, A.M., Cocheme, H.M., Reinhold, J., Lilley, K.S., Partridge, L., Fearnley, I.M., Robinson, A.J., Hartley, R.C., Smith, R.A., Krieg, T., Brookes, P.S., Murphy, M.P., Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19 (2013), 753–759.
-
(2013)
Nat. Med.
, vol.19
, pp. 753-759
-
-
Chouchani, E.T.1
Methner, C.2
Nadtochiy, S.M.3
Logan, A.4
Pell, V.R.5
Ding, S.6
James, A.M.7
Cocheme, H.M.8
Reinhold, J.9
Lilley, K.S.10
Partridge, L.11
Fearnley, I.M.12
Robinson, A.J.13
Hartley, R.C.14
Smith, R.A.15
Krieg, T.16
Brookes, P.S.17
Murphy, M.P.18
-
19
-
-
84902258597
-
ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use
-
[19] Acin-Perez, R., Carrascoso, I., Baixauli, F., Roche-Molina, M., Latorre-Pellicer, A., Fernandez-Silva, P., Mittelbrunn, M., Sanchez-Madrid, F., Perez-Martos, A., Lowell, C.A., Manfredi, G., Enriquez, J.A., ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19 (2014), 1020–1033.
-
(2014)
Cell Metab.
, vol.19
, pp. 1020-1033
-
-
Acin-Perez, R.1
Carrascoso, I.2
Baixauli, F.3
Roche-Molina, M.4
Latorre-Pellicer, A.5
Fernandez-Silva, P.6
Mittelbrunn, M.7
Sanchez-Madrid, F.8
Perez-Martos, A.9
Lowell, C.A.10
Manfredi, G.11
Enriquez, J.A.12
-
20
-
-
84872577684
-
Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation
-
rs1
-
[20] Doulias, P.T., Tenopoulou, M., Greene, J.L., Raju, K., Ischiropoulos, H., Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal., 6, 2013 rs1.
-
(2013)
Sci. Signal.
, vol.6
-
-
Doulias, P.T.1
Tenopoulou, M.2
Greene, J.L.3
Raju, K.4
Ischiropoulos, H.5
-
21
-
-
34548218789
-
Catalase takes part in rat liver mitochondria oxidative stress defense
-
[21] Salvi, M., Battaglia, V., Brunati, A.M., La Rocca, N., Tibaldi, E., Pietrangeli, P., Marcocci, L., Mondovi, B., Rossi, C.A., Toninello, A., Catalase takes part in rat liver mitochondria oxidative stress defense. J. Biol. Chem. 282 (2007), 24407–24415.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24407-24415
-
-
Salvi, M.1
Battaglia, V.2
Brunati, A.M.3
La Rocca, N.4
Tibaldi, E.5
Pietrangeli, P.6
Marcocci, L.7
Mondovi, B.8
Rossi, C.A.9
Toninello, A.10
-
22
-
-
0025719056
-
Detection of catalase in rat heart mitochondria
-
[22] Radi, R., Turrens, J.F., Chang, L.Y., Bush, K.M., Crapo, J.D., Freeman, B.A., Detection of catalase in rat heart mitochondria. J. Biol. Chem. 266 (1991), 22028–22034.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 22028-22034
-
-
Radi, R.1
Turrens, J.F.2
Chang, L.Y.3
Bush, K.M.4
Crapo, J.D.5
Freeman, B.A.6
-
23
-
-
84872715073
-
High dietary fat selectively increases catalase expression within cardiac mitochondria
-
[23] Rindler, P.M., Plafker, S.M., Szweda, L.I., Kinter, M., High dietary fat selectively increases catalase expression within cardiac mitochondria. J. Biol. Chem. 288 (2013), 1979–1990.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 1979-1990
-
-
Rindler, P.M.1
Plafker, S.M.2
Szweda, L.I.3
Kinter, M.4
-
24
-
-
0042905738
-
Catalase activity is regulated by c-Abl and Arg in the oxidative stress response
-
[24] Cao, C., Leng, Y., Kufe, D., Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J. Biol. Chem. 278 (2003), 29667–29675.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 29667-29675
-
-
Cao, C.1
Leng, Y.2
Kufe, D.3
-
25
-
-
84916620048
-
Dysregulation of catalase activity in newborn myocytes during hypoxia is mediated by c-Abl tyrosine kinase
-
[25] Cabigas, E.B., Liu, J., Boopathy, A.V., Che, P.L., Crawford, B.H., Baroi, G., Bhutani, S., Shen, M., Wagner, M.B., Davis, M.E., Dysregulation of catalase activity in newborn myocytes during hypoxia is mediated by c-Abl tyrosine kinase. J. Cardiovasc. Pharmacol. Ther. 20 (2015), 93–103.
-
(2015)
J. Cardiovasc. Pharmacol. Ther.
, vol.20
, pp. 93-103
-
-
Cabigas, E.B.1
Liu, J.2
Boopathy, A.V.3
Che, P.L.4
Crawford, B.H.5
Baroi, G.6
Bhutani, S.7
Shen, M.8
Wagner, M.B.9
Davis, M.E.10
-
26
-
-
0141994844
-
Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases
-
[26] Cao, C., Leng, Y., Huang, W., Liu, X., Kufe, D., Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases. J. Biol. Chem. 278 (2003), 39609–39614.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 39609-39614
-
-
Cao, C.1
Leng, Y.2
Huang, W.3
Liu, X.4
Kufe, D.5
-
27
-
-
84889055908
-
Endothelin-1 stimulates catalase activity through the PKCdelta-mediated phosphorylation of serine 167
-
[27] Rafikov, R., Kumar, S., Aggarwal, S., Hou, Y., Kangath, A., Pardo, D., Fineman, J.R., Black, S.M., Endothelin-1 stimulates catalase activity through the PKCdelta-mediated phosphorylation of serine 167. Free Radic. Biol. Med. 67 (2014), 255–264.
-
(2014)
Free Radic. Biol. Med.
, vol.67
, pp. 255-264
-
-
Rafikov, R.1
Kumar, S.2
Aggarwal, S.3
Hou, Y.4
Kangath, A.5
Pardo, D.6
Fineman, J.R.7
Black, S.M.8
-
28
-
-
19444375216
-
Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
-
[28] Rhee, S.G., Chae, H.Z., Kim, K., Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38 (2005), 1543–1552.
-
(2005)
Free Radic. Biol. Med.
, vol.38
, pp. 1543-1552
-
-
Rhee, S.G.1
Chae, H.Z.2
Kim, K.3
-
29
-
-
84975229762
-
Overview on peroxiredoxin
-
[29] Rhee, S.G., Overview on peroxiredoxin. Mol. Cells 39 (2016), 1–5.
-
(2016)
Mol. Cells
, vol.39
, pp. 1-5
-
-
Rhee, S.G.1
-
30
-
-
79951643450
-
Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones
-
[30] Rhee, S.G., Woo, H.A., Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones. Antioxid. Redox Signal. 15 (2011), 781–794.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 781-794
-
-
Rhee, S.G.1
Woo, H.A.2
-
31
-
-
79953249112
-
Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities
-
[31] Fisher, A.B., Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid. Redox Signal. 15 (2011), 831–844.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 831-844
-
-
Fisher, A.B.1
-
32
-
-
79960017554
-
Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin
-
[32] Knoops, B., Goemaere, J., Van der Eecken, V., Declercq, J.P., Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 15 (2011), 817–829.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 817-829
-
-
Knoops, B.1
Goemaere, J.2
Van der Eecken, V.3
Declercq, J.P.4
-
33
-
-
75649122929
-
Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide
-
[33] Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K., Inoue, T., Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 147 (2010), 109–115.
-
(2010)
J. Biochem.
, vol.147
, pp. 109-115
-
-
Nakamura, T.1
Kado, Y.2
Yamaguchi, T.3
Matsumura, H.4
Ishikawa, K.5
Inoue, T.6
-
34
-
-
84937519769
-
Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling
-
[34] Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., Karplus, P.A., Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40 (2015), 435–445.
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 435-445
-
-
Perkins, A.1
Nelson, K.J.2
Parsonage, D.3
Poole, L.B.4
Karplus, P.A.5
-
35
-
-
64749114296
-
The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2
-
[35] Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., Denicola, A., The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484 (2009), 146–154.
-
(2009)
Arch. Biochem. Biophys.
, vol.484
, pp. 146-154
-
-
Manta, B.1
Hugo, M.2
Ortiz, C.3
Ferrer-Sueta, G.4
Trujillo, M.5
Denicola, A.6
-
36
-
-
67650079177
-
Redox potential and peroxide reactivity of human peroxiredoxin 3
-
[36] Cox, A.G., Peskin, A.V., Paton, L.N., Winterbourn, C.C., Hampton, M.B., Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 48 (2009), 6495–6501.
-
(2009)
Biochemistry
, vol.48
, pp. 6495-6501
-
-
Cox, A.G.1
Peskin, A.V.2
Paton, L.N.3
Winterbourn, C.C.4
Hampton, M.B.5
-
37
-
-
73849144014
-
Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
-
[37] Cox, A.G., Winterbourn, C.C., Hampton, M.B., Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425 (2010), 313–325.
-
(2010)
Biochem. J.
, vol.425
, pp. 313-325
-
-
Cox, A.G.1
Winterbourn, C.C.2
Hampton, M.B.3
-
38
-
-
0242668688
-
Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation
-
[38] Woo, H.A., Chae, H.Z., Hwang, S.C., Yang, K.S., Kang, S.W., Kim, K., Rhee, S.G., Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300 (2003), 653–656.
-
(2003)
Science
, vol.300
, pp. 653-656
-
-
Woo, H.A.1
Chae, H.Z.2
Hwang, S.C.3
Yang, K.S.4
Kang, S.W.5
Kim, K.6
Rhee, S.G.7
-
39
-
-
0242668686
-
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
-
[39] Wood, Z.A., Poole, L.B., Karplus, P.A., Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300 (2003), 650–653.
-
(2003)
Science
, vol.300
, pp. 650-653
-
-
Wood, Z.A.1
Poole, L.B.2
Karplus, P.A.3
-
40
-
-
0037064080
-
Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
-
[40] Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., Rhee, S.G., Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277 (2002), 38029–38036.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 38029-38036
-
-
Yang, K.S.1
Kang, S.W.2
Woo, H.A.3
Hwang, S.C.4
Chae, H.Z.5
Kim, K.6
Rhee, S.G.7
-
41
-
-
0037205455
-
Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site
-
[41] Rabilloud, T., Heller, M., Gasnier, F., Luche, S., Rey, C., Aebersold, R., Benahmed, M., Louisot, P., Lunardi, J., Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277 (2002), 19396–19401.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 19396-19401
-
-
Rabilloud, T.1
Heller, M.2
Gasnier, F.3
Luche, S.4
Rey, C.5
Aebersold, R.6
Benahmed, M.7
Louisot, P.8
Lunardi, J.9
-
42
-
-
2542464938
-
Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
-
[42] Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., Choi, Y.O., Kim, W.Y., Kang, J.S., Cheong, G.W., Yun, D.J., Rhee, S.G., Cho, M.J., Lee, S.Y., Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117 (2004), 625–635.
-
(2004)
Cell
, vol.117
, pp. 625-635
-
-
Jang, H.H.1
Lee, K.O.2
Chi, Y.H.3
Jung, B.G.4
Park, S.K.5
Park, J.H.6
Lee, J.R.7
Lee, S.S.8
Moon, J.C.9
Yun, J.W.10
Choi, Y.O.11
Kim, W.Y.12
Kang, J.S.13
Cheong, G.W.14
Yun, D.J.15
Rhee, S.G.16
Cho, M.J.17
Lee, S.Y.18
-
43
-
-
23344451043
-
Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death
-
[43] Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.G., Kim, C.W., Cho, M.J., Lee, S.Y., Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J. Biol. Chem. 280 (2005), 28775–28784.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 28775-28784
-
-
Moon, J.C.1
Hah, Y.S.2
Kim, W.Y.3
Jung, B.G.4
Jang, H.H.5
Lee, J.R.6
Kim, S.Y.7
Lee, Y.M.8
Jeon, M.G.9
Kim, C.W.10
Cho, M.J.11
Lee, S.Y.12
-
44
-
-
0242416188
-
ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
-
[44] Biteau, B., Labarre, J., Toledano, M.B., ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425 (2003), 980–984.
-
(2003)
Nature
, vol.425
, pp. 980-984
-
-
Biteau, B.1
Labarre, J.2
Toledano, M.B.3
-
45
-
-
53049083629
-
Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate
-
[45] Jonsson, T.J., Murray, M.S., Johnson, L.C., Lowther, W.T., Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J. Biol. Chem. 283 (2008), 23846–23851.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23846-23851
-
-
Jonsson, T.J.1
Murray, M.S.2
Johnson, L.C.3
Lowther, W.T.4
-
46
-
-
10944237769
-
Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
-
[46] Chang, T.S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., Rhee, S.G., Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279 (2004), 50994–51001.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 50994-51001
-
-
Chang, T.S.1
Jeong, W.2
Woo, H.A.3
Lee, S.M.4
Park, S.5
Rhee, S.G.6
-
47
-
-
80051578564
-
A eukaryotic-like sulfiredoxin involved in oxidative stress responses and in the reduction of the sulfinic form of 2-Cys peroxiredoxin in the cyanobacterium Anabaena PCC 7120
-
[47] Boileau, C., Eme, L., Brochier-Armanet, C., Janicki, A., Zhang, C.C., Latifi, A., A eukaryotic-like sulfiredoxin involved in oxidative stress responses and in the reduction of the sulfinic form of 2-Cys peroxiredoxin in the cyanobacterium Anabaena PCC 7120. New Phytol. 191 (2011), 1108–1118.
-
(2011)
New Phytol.
, vol.191
, pp. 1108-1118
-
-
Boileau, C.1
Eme, L.2
Brochier-Armanet, C.3
Janicki, A.4
Zhang, C.C.5
Latifi, A.6
-
48
-
-
84877886960
-
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
-
[48] Peskin, A.V., Dickerhof, N., Poynton, R.A., Paton, L.N., Pace, P.E., Hampton, M.B., Winterbourn, C.C., Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J. Biol. Chem. 288 (2013), 14170–14177.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 14170-14177
-
-
Peskin, A.V.1
Dickerhof, N.2
Poynton, R.A.3
Paton, L.N.4
Pace, P.E.5
Hampton, M.B.6
Winterbourn, C.C.7
-
49
-
-
84958576476
-
Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation
-
[49] Poynton, R.A., Peskin, A.V., Haynes, A.C., Lowther, W.T., Hampton, M.B., Winterbourn, C.C., Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation. Biochem. J. 473 (2016), 411–421.
-
(2016)
Biochem. J.
, vol.473
, pp. 411-421
-
-
Poynton, R.A.1
Peskin, A.V.2
Haynes, A.C.3
Lowther, W.T.4
Hampton, M.B.5
Winterbourn, C.C.6
-
50
-
-
0346850874
-
Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence
-
[50] Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., Rhee, S.G., Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278 (2003), 47361–47364.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 47361-47364
-
-
Woo, H.A.1
Kang, S.W.2
Kim, H.K.3
Yang, K.S.4
Chae, H.Z.5
Rhee, S.G.6
-
51
-
-
79952224744
-
Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver
-
[51] Bae, S.H., Sung, S.H., Cho, E.J., Lee, S.K., Lee, H.E., Woo, H.A., Yu, D.Y., Kil, I.S., Rhee, S.G., Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver. Hepatology 53 (2011), 945–953.
-
(2011)
Hepatology
, vol.53
, pp. 945-953
-
-
Bae, S.H.1
Sung, S.H.2
Cho, E.J.3
Lee, S.K.4
Lee, H.E.5
Woo, H.A.6
Yu, D.Y.7
Kil, I.S.8
Rhee, S.G.9
-
52
-
-
84939492716
-
Circadian oscillation of sulfiredoxin in the mitochondria
-
[52] Kil, I.S., Ryu, K.W., Lee, S.Y., Kim, Y.Y., Chu, S.Y., Kim, J.H., Park, S., Rhee, S.G., Circadian oscillation of sulfiredoxin in the mitochondria. Mol. Cell 59 (2015), 1–13.
-
(2015)
Mol. Cell
, vol.59
, pp. 1-13
-
-
Kil, I.S.1
Ryu, K.W.2
Lee, S.Y.3
Kim, Y.Y.4
Chu, S.Y.5
Kim, J.H.6
Park, S.7
Rhee, S.G.8
-
53
-
-
33646701679
-
Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells
-
[53] Hanukoglu, I., Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab. Rev. 38 (2006), 171–196.
-
(2006)
Drug Metab. Rev.
, vol.38
, pp. 171-196
-
-
Hanukoglu, I.1
-
54
-
-
49349083531
-
Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling
-
[54] Matsuzawa, A., Ichijo, H., Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim. Biophys. Acta 1780 (2008), 1325–1336.
-
(2008)
Biochim. Biophys. Acta
, vol.1780
, pp. 1325-1336
-
-
Matsuzawa, A.1
Ichijo, H.2
-
55
-
-
34948845017
-
Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis
-
[55] Nadeau, P.J., Charette, S.J., Toledano, M.B., Landry, J., Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18 (2007), 3903–3913.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 3903-3913
-
-
Nadeau, P.J.1
Charette, S.J.2
Toledano, M.B.3
Landry, J.4
-
57
-
-
79952070873
-
cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover
-
[57] Jefcoate, C.R., Lee, J., Cherradi, N., Takemori, H., Duan, H., cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol. Cell. Endocrinol. 336 (2011), 53–62.
-
(2011)
Mol. Cell. Endocrinol.
, vol.336
, pp. 53-62
-
-
Jefcoate, C.R.1
Lee, J.2
Cherradi, N.3
Takemori, H.4
Duan, H.5
-
58
-
-
33746518020
-
The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock
-
[58] Oster, H., Damerow, S., Kiessling, S., Jakubcakova, V., Abraham, D., Tian, J., Hoffmann, M.W., Eichele, G., The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4 (2006), 163–173.
-
(2006)
Cell Metab.
, vol.4
, pp. 163-173
-
-
Oster, H.1
Damerow, S.2
Kiessling, S.3
Jakubcakova, V.4
Abraham, D.5
Tian, J.6
Hoffmann, M.W.7
Eichele, G.8
-
59
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
[59] Asher, G., Schibler, U., Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13 (2011), 125–137.
-
(2011)
Cell Metab.
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
60
-
-
84884248040
-
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
-
[60] Peek, C.B., Affinati, A.H., Ramsey, K.M., Kuo, H.Y., Yu, W., Sena, L.A., Ilkayeva, O., Marcheva, B., Kobayashi, Y., Omura, C., Levine, D.C., Bacsik, D.J., Gius, D., Newgard, C.B., Goetzman, E., Chandel, N.S., Denu, J.M., Mrksich, M., Bass, J., Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science, 342, 2013, 1243417.
-
(2013)
Science
, vol.342
, pp. 1243417
-
-
Peek, C.B.1
Affinati, A.H.2
Ramsey, K.M.3
Kuo, H.Y.4
Yu, W.5
Sena, L.A.6
Ilkayeva, O.7
Marcheva, B.8
Kobayashi, Y.9
Omura, C.10
Levine, D.C.11
Bacsik, D.J.12
Gius, D.13
Newgard, C.B.14
Goetzman, E.15
Chandel, N.S.16
Denu, J.M.17
Mrksich, M.18
Bass, J.19
-
61
-
-
84888042813
-
The nuclear receptor Rev-erbalpha controls circadian thermogenic plasticity
-
[61] Gerhart-Hines, Z., Feng, D., Emmett, M.J., Everett, L.J., Loro, E., Briggs, E.R., Bugge, A., Hou, C., Ferrara, C., Seale, P., Pryma, D.A., Khurana, T.S., Lazar, M.A., The nuclear receptor Rev-erbalpha controls circadian thermogenic plasticity. Nature 503 (2013), 410–413.
-
(2013)
Nature
, vol.503
, pp. 410-413
-
-
Gerhart-Hines, Z.1
Feng, D.2
Emmett, M.J.3
Everett, L.J.4
Loro, E.5
Briggs, E.R.6
Bugge, A.7
Hou, C.8
Ferrara, C.9
Seale, P.10
Pryma, D.A.11
Khurana, T.S.12
Lazar, M.A.13
-
62
-
-
67649279837
-
Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III
-
[62] Noh, Y.H., Baek, J.Y., Jeong, W., Rhee, S.G., Chang, T.S., Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. 284 (2009), 8470–8477.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8470-8477
-
-
Noh, Y.H.1
Baek, J.Y.2
Jeong, W.3
Rhee, S.G.4
Chang, T.S.5
-
63
-
-
68749112707
-
Importing mitochondrial proteins: machineries and mechanisms
-
[63] Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T., Pfanner, N., Importing mitochondrial proteins: machineries and mechanisms. Cell 138 (2009), 628–644.
-
(2009)
Cell
, vol.138
, pp. 628-644
-
-
Chacinska, A.1
Koehler, C.M.2
Milenkovic, D.3
Lithgow, T.4
Pfanner, N.5
-
64
-
-
79953308070
-
Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone
-
[64] Street, T.O., Lavery, L.A., Agard, D.A., Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol. Cell 42 (2011), 96–105.
-
(2011)
Mol. Cell
, vol.42
, pp. 96-105
-
-
Street, T.O.1
Lavery, L.A.2
Agard, D.A.3
-
65
-
-
0036713692
-
Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism
-
[65] Bota, D.A., Davies, K.J., Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell Biol. 4 (2002), 674–680.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 674-680
-
-
Bota, D.A.1
Davies, K.J.2
-
66
-
-
84871793725
-
Chaperone-protease networks in mitochondrial protein homeostasis
-
[66] Voos, W., Chaperone-protease networks in mitochondrial protein homeostasis. Biochim. Biophys. Acta 1833 (2013), 388–399.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 388-399
-
-
Voos, W.1
|