메뉴 건너뛰기




Volumn 100, Issue , 2016, Pages 73-80

Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm

Author keywords

Circadian rhythm; Cysteine sulfinic acid; Hydrogen peroxide; Mitochondria; Peroxidase; Peroxiredoxin; Sulfiredoxin

Indexed keywords

CYSTEINE; DISULFIDE; ENDOPEPTIDASE LA; HEAT SHOCK PROTEIN 90; HYDROGEN PEROXIDE; PEROXIREDOXIN 3; SULFINIC ACID DERIVATIVE; SULFIREDOXIN; UNCLASSIFIED DRUG; OXIDOREDUCTASE;

EID: 84994316377     PISSN: 08915849     EISSN: 18734596     Source Type: Journal    
DOI: 10.1016/j.freeradbiomed.2016.10.011     Document Type: Review
Times cited : (42)

References (66)
  • 1
    • 84975755192 scopus 로고    scopus 로고
    • Mitochondrial ROS signaling in organismal homeostasis
    • [1] Shadel, G.S., Horvath, T.L., Mitochondrial ROS signaling in organismal homeostasis. Cell 163 (2015), 560–569.
    • (2015) Cell , vol.163 , pp. 560-569
    • Shadel, G.S.1    Horvath, T.L.2
  • 2
    • 84861212393 scopus 로고    scopus 로고
    • Mitochondria and cell signalling
    • [2] Tait, S.W., Green, D.R., Mitochondria and cell signalling. J. Cell Sci. 125 (2012), 807–815.
    • (2012) J. Cell Sci. , vol.125 , pp. 807-815
    • Tait, S.W.1    Green, D.R.2
  • 4
    • 84938739650 scopus 로고    scopus 로고
    • Evolution of mitochondria as signaling organelles
    • [4] Chandel, N.S., Evolution of mitochondria as signaling organelles. Cell Metab. 22 (2015), 204–206.
    • (2015) Cell Metab. , vol.22 , pp. 204-206
    • Chandel, N.S.1
  • 5
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • [5] Sena, L.A., Chandel, N.S., Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48 (2012), 158–167.
    • (2012) Mol. Cell , vol.48 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 7
    • 84908213474 scopus 로고    scopus 로고
    • Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?
    • [7] Sabharwal, S.S., Schumacker, P.T., Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?. Nat. Rev. Cancer 14 (2014), 709–721.
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 709-721
    • Sabharwal, S.S.1    Schumacker, P.T.2
  • 8
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, and aging
    • [8] Balaban, R.S., Nemoto, S., Finkel, T., Mitochondria, oxidants, and aging. Cell 120 (2005), 483–495.
    • (2005) Cell , vol.120 , pp. 483-495
    • Balaban, R.S.1    Nemoto, S.2    Finkel, T.3
  • 9
    • 77956186783 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
    • [9] Hamanaka, R.B., Chandel, N.S., Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35 (2010), 505–513.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 505-513
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 10
    • 79957597757 scopus 로고    scopus 로고
    • Mitochondria in innate immune responses
    • [10] West, A.P., Shadel, G.S., Ghosh, S., Mitochondria in innate immune responses. Nat. Rev. Immunol. 11 (2011), 389–402.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 389-402
    • West, A.P.1    Shadel, G.S.2    Ghosh, S.3
  • 12
    • 84861964383 scopus 로고    scopus 로고
    • Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
    • [12] Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., Bae, S.H., Rhee, S.G., Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46 (2012), 584–594.
    • (2012) Mol. Cell , vol.46 , pp. 584-594
    • Kil, I.S.1    Lee, S.K.2    Ryu, K.W.3    Woo, H.A.4    Hu, M.C.5    Bae, S.H.6    Rhee, S.G.7
  • 13
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • [13] Murphy, M.P., How mitochondria produce reactive oxygen species. Biochem. J. 417 (2009), 1–13.
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 14
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • [14] Brand, M.D., The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45 (2010), 466–472.
    • (2010) Exp. Gerontol. , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 15
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • [15] Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Orr, A.L., Brand, M.D., Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 1 (2013), 304–312.
    • (2013) Redox Biol. , vol.1 , pp. 304-312
    • Quinlan, C.L.1    Perevoshchikova, I.V.2    Hey-Mogensen, M.3    Orr, A.L.4    Brand, M.D.5
  • 16
    • 54049146740 scopus 로고    scopus 로고
    • Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
    • [16] Hurd, T.R., Requejo, R., Filipovska, A., Brown, S., Prime, T.A., Robinson, A.J., Fearnley, I.M., Murphy, M.P., Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 283 (2008), 24801–24815.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24801-24815
    • Hurd, T.R.1    Requejo, R.2    Filipovska, A.3    Brown, S.4    Prime, T.A.5    Robinson, A.J.6    Fearnley, I.M.7    Murphy, M.P.8
  • 17
    • 84923912767 scopus 로고    scopus 로고
    • S-glutathionylation reactions in mitochondrial function and disease
    • [17] Mailloux, R.J., Willmore, W.G., S-glutathionylation reactions in mitochondrial function and disease. Front. Cell Dev. Biol., 2, 2014, 68.
    • (2014) Front. Cell Dev. Biol. , vol.2 , pp. 68
    • Mailloux, R.J.1    Willmore, W.G.2
  • 20
    • 84872577684 scopus 로고    scopus 로고
    • Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation
    • rs1
    • [20] Doulias, P.T., Tenopoulou, M., Greene, J.L., Raju, K., Ischiropoulos, H., Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal., 6, 2013 rs1.
    • (2013) Sci. Signal. , vol.6
    • Doulias, P.T.1    Tenopoulou, M.2    Greene, J.L.3    Raju, K.4    Ischiropoulos, H.5
  • 23
    • 84872715073 scopus 로고    scopus 로고
    • High dietary fat selectively increases catalase expression within cardiac mitochondria
    • [23] Rindler, P.M., Plafker, S.M., Szweda, L.I., Kinter, M., High dietary fat selectively increases catalase expression within cardiac mitochondria. J. Biol. Chem. 288 (2013), 1979–1990.
    • (2013) J. Biol. Chem. , vol.288 , pp. 1979-1990
    • Rindler, P.M.1    Plafker, S.M.2    Szweda, L.I.3    Kinter, M.4
  • 24
    • 0042905738 scopus 로고    scopus 로고
    • Catalase activity is regulated by c-Abl and Arg in the oxidative stress response
    • [24] Cao, C., Leng, Y., Kufe, D., Catalase activity is regulated by c-Abl and Arg in the oxidative stress response. J. Biol. Chem. 278 (2003), 29667–29675.
    • (2003) J. Biol. Chem. , vol.278 , pp. 29667-29675
    • Cao, C.1    Leng, Y.2    Kufe, D.3
  • 26
    • 0141994844 scopus 로고    scopus 로고
    • Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases
    • [26] Cao, C., Leng, Y., Huang, W., Liu, X., Kufe, D., Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases. J. Biol. Chem. 278 (2003), 39609–39614.
    • (2003) J. Biol. Chem. , vol.278 , pp. 39609-39614
    • Cao, C.1    Leng, Y.2    Huang, W.3    Liu, X.4    Kufe, D.5
  • 28
    • 19444375216 scopus 로고    scopus 로고
    • Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
    • [28] Rhee, S.G., Chae, H.Z., Kim, K., Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38 (2005), 1543–1552.
    • (2005) Free Radic. Biol. Med. , vol.38 , pp. 1543-1552
    • Rhee, S.G.1    Chae, H.Z.2    Kim, K.3
  • 29
    • 84975229762 scopus 로고    scopus 로고
    • Overview on peroxiredoxin
    • [29] Rhee, S.G., Overview on peroxiredoxin. Mol. Cells 39 (2016), 1–5.
    • (2016) Mol. Cells , vol.39 , pp. 1-5
    • Rhee, S.G.1
  • 30
    • 79951643450 scopus 로고    scopus 로고
    • Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones
    • [30] Rhee, S.G., Woo, H.A., Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones. Antioxid. Redox Signal. 15 (2011), 781–794.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 781-794
    • Rhee, S.G.1    Woo, H.A.2
  • 31
    • 79953249112 scopus 로고    scopus 로고
    • Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities
    • [31] Fisher, A.B., Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid. Redox Signal. 15 (2011), 831–844.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 831-844
    • Fisher, A.B.1
  • 32
    • 79960017554 scopus 로고    scopus 로고
    • Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin
    • [32] Knoops, B., Goemaere, J., Van der Eecken, V., Declercq, J.P., Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid. Redox Signal. 15 (2011), 817–829.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 817-829
    • Knoops, B.1    Goemaere, J.2    Van der Eecken, V.3    Declercq, J.P.4
  • 33
    • 75649122929 scopus 로고    scopus 로고
    • Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide
    • [33] Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K., Inoue, T., Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 147 (2010), 109–115.
    • (2010) J. Biochem. , vol.147 , pp. 109-115
    • Nakamura, T.1    Kado, Y.2    Yamaguchi, T.3    Matsumura, H.4    Ishikawa, K.5    Inoue, T.6
  • 34
    • 84937519769 scopus 로고    scopus 로고
    • Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling
    • [34] Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., Karplus, P.A., Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40 (2015), 435–445.
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 435-445
    • Perkins, A.1    Nelson, K.J.2    Parsonage, D.3    Poole, L.B.4    Karplus, P.A.5
  • 35
    • 64749114296 scopus 로고    scopus 로고
    • The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2
    • [35] Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., Denicola, A., The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484 (2009), 146–154.
    • (2009) Arch. Biochem. Biophys. , vol.484 , pp. 146-154
    • Manta, B.1    Hugo, M.2    Ortiz, C.3    Ferrer-Sueta, G.4    Trujillo, M.5    Denicola, A.6
  • 37
    • 73849144014 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
    • [37] Cox, A.G., Winterbourn, C.C., Hampton, M.B., Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425 (2010), 313–325.
    • (2010) Biochem. J. , vol.425 , pp. 313-325
    • Cox, A.G.1    Winterbourn, C.C.2    Hampton, M.B.3
  • 38
    • 0242668688 scopus 로고    scopus 로고
    • Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation
    • [38] Woo, H.A., Chae, H.Z., Hwang, S.C., Yang, K.S., Kang, S.W., Kim, K., Rhee, S.G., Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300 (2003), 653–656.
    • (2003) Science , vol.300 , pp. 653-656
    • Woo, H.A.1    Chae, H.Z.2    Hwang, S.C.3    Yang, K.S.4    Kang, S.W.5    Kim, K.6    Rhee, S.G.7
  • 39
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • [39] Wood, Z.A., Poole, L.B., Karplus, P.A., Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300 (2003), 650–653.
    • (2003) Science , vol.300 , pp. 650-653
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3
  • 40
    • 0037064080 scopus 로고    scopus 로고
    • Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
    • [40] Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., Rhee, S.G., Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277 (2002), 38029–38036.
    • (2002) J. Biol. Chem. , vol.277 , pp. 38029-38036
    • Yang, K.S.1    Kang, S.W.2    Woo, H.A.3    Hwang, S.C.4    Chae, H.Z.5    Kim, K.6    Rhee, S.G.7
  • 41
    • 0037205455 scopus 로고    scopus 로고
    • Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site
    • [41] Rabilloud, T., Heller, M., Gasnier, F., Luche, S., Rey, C., Aebersold, R., Benahmed, M., Louisot, P., Lunardi, J., Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277 (2002), 19396–19401.
    • (2002) J. Biol. Chem. , vol.277 , pp. 19396-19401
    • Rabilloud, T.1    Heller, M.2    Gasnier, F.3    Luche, S.4    Rey, C.5    Aebersold, R.6    Benahmed, M.7    Louisot, P.8    Lunardi, J.9
  • 43
    • 23344451043 scopus 로고    scopus 로고
    • Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death
    • [43] Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Lee, Y.M., Jeon, M.G., Kim, C.W., Cho, M.J., Lee, S.Y., Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J. Biol. Chem. 280 (2005), 28775–28784.
    • (2005) J. Biol. Chem. , vol.280 , pp. 28775-28784
    • Moon, J.C.1    Hah, Y.S.2    Kim, W.Y.3    Jung, B.G.4    Jang, H.H.5    Lee, J.R.6    Kim, S.Y.7    Lee, Y.M.8    Jeon, M.G.9    Kim, C.W.10    Cho, M.J.11    Lee, S.Y.12
  • 44
    • 0242416188 scopus 로고    scopus 로고
    • ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
    • [44] Biteau, B., Labarre, J., Toledano, M.B., ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425 (2003), 980–984.
    • (2003) Nature , vol.425 , pp. 980-984
    • Biteau, B.1    Labarre, J.2    Toledano, M.B.3
  • 45
    • 53049083629 scopus 로고    scopus 로고
    • Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate
    • [45] Jonsson, T.J., Murray, M.S., Johnson, L.C., Lowther, W.T., Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J. Biol. Chem. 283 (2008), 23846–23851.
    • (2008) J. Biol. Chem. , vol.283 , pp. 23846-23851
    • Jonsson, T.J.1    Murray, M.S.2    Johnson, L.C.3    Lowther, W.T.4
  • 46
    • 10944237769 scopus 로고    scopus 로고
    • Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
    • [46] Chang, T.S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., Rhee, S.G., Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279 (2004), 50994–51001.
    • (2004) J. Biol. Chem. , vol.279 , pp. 50994-51001
    • Chang, T.S.1    Jeong, W.2    Woo, H.A.3    Lee, S.M.4    Park, S.5    Rhee, S.G.6
  • 47
    • 80051578564 scopus 로고    scopus 로고
    • A eukaryotic-like sulfiredoxin involved in oxidative stress responses and in the reduction of the sulfinic form of 2-Cys peroxiredoxin in the cyanobacterium Anabaena PCC 7120
    • [47] Boileau, C., Eme, L., Brochier-Armanet, C., Janicki, A., Zhang, C.C., Latifi, A., A eukaryotic-like sulfiredoxin involved in oxidative stress responses and in the reduction of the sulfinic form of 2-Cys peroxiredoxin in the cyanobacterium Anabaena PCC 7120. New Phytol. 191 (2011), 1108–1118.
    • (2011) New Phytol. , vol.191 , pp. 1108-1118
    • Boileau, C.1    Eme, L.2    Brochier-Armanet, C.3    Janicki, A.4    Zhang, C.C.5    Latifi, A.6
  • 48
    • 84877886960 scopus 로고    scopus 로고
    • Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
    • [48] Peskin, A.V., Dickerhof, N., Poynton, R.A., Paton, L.N., Pace, P.E., Hampton, M.B., Winterbourn, C.C., Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J. Biol. Chem. 288 (2013), 14170–14177.
    • (2013) J. Biol. Chem. , vol.288 , pp. 14170-14177
    • Peskin, A.V.1    Dickerhof, N.2    Poynton, R.A.3    Paton, L.N.4    Pace, P.E.5    Hampton, M.B.6    Winterbourn, C.C.7
  • 49
    • 84958576476 scopus 로고    scopus 로고
    • Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation
    • [49] Poynton, R.A., Peskin, A.V., Haynes, A.C., Lowther, W.T., Hampton, M.B., Winterbourn, C.C., Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation. Biochem. J. 473 (2016), 411–421.
    • (2016) Biochem. J. , vol.473 , pp. 411-421
    • Poynton, R.A.1    Peskin, A.V.2    Haynes, A.C.3    Lowther, W.T.4    Hampton, M.B.5    Winterbourn, C.C.6
  • 50
    • 0346850874 scopus 로고    scopus 로고
    • Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence
    • [50] Woo, H.A., Kang, S.W., Kim, H.K., Yang, K.S., Chae, H.Z., Rhee, S.G., Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278 (2003), 47361–47364.
    • (2003) J. Biol. Chem. , vol.278 , pp. 47361-47364
    • Woo, H.A.1    Kang, S.W.2    Kim, H.K.3    Yang, K.S.4    Chae, H.Z.5    Rhee, S.G.6
  • 51
    • 79952224744 scopus 로고    scopus 로고
    • Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver
    • [51] Bae, S.H., Sung, S.H., Cho, E.J., Lee, S.K., Lee, H.E., Woo, H.A., Yu, D.Y., Kil, I.S., Rhee, S.G., Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver. Hepatology 53 (2011), 945–953.
    • (2011) Hepatology , vol.53 , pp. 945-953
    • Bae, S.H.1    Sung, S.H.2    Cho, E.J.3    Lee, S.K.4    Lee, H.E.5    Woo, H.A.6    Yu, D.Y.7    Kil, I.S.8    Rhee, S.G.9
  • 53
    • 33646701679 scopus 로고    scopus 로고
    • Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells
    • [53] Hanukoglu, I., Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab. Rev. 38 (2006), 171–196.
    • (2006) Drug Metab. Rev. , vol.38 , pp. 171-196
    • Hanukoglu, I.1
  • 54
    • 49349083531 scopus 로고    scopus 로고
    • Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling
    • [54] Matsuzawa, A., Ichijo, H., Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim. Biophys. Acta 1780 (2008), 1325–1336.
    • (2008) Biochim. Biophys. Acta , vol.1780 , pp. 1325-1336
    • Matsuzawa, A.1    Ichijo, H.2
  • 55
    • 34948845017 scopus 로고    scopus 로고
    • Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis
    • [55] Nadeau, P.J., Charette, S.J., Toledano, M.B., Landry, J., Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18 (2007), 3903–3913.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3903-3913
    • Nadeau, P.J.1    Charette, S.J.2    Toledano, M.B.3    Landry, J.4
  • 57
    • 79952070873 scopus 로고    scopus 로고
    • cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover
    • [57] Jefcoate, C.R., Lee, J., Cherradi, N., Takemori, H., Duan, H., cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol. Cell. Endocrinol. 336 (2011), 53–62.
    • (2011) Mol. Cell. Endocrinol. , vol.336 , pp. 53-62
    • Jefcoate, C.R.1    Lee, J.2    Cherradi, N.3    Takemori, H.4    Duan, H.5
  • 58
    • 33746518020 scopus 로고    scopus 로고
    • The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock
    • [58] Oster, H., Damerow, S., Kiessling, S., Jakubcakova, V., Abraham, D., Tian, J., Hoffmann, M.W., Eichele, G., The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4 (2006), 163–173.
    • (2006) Cell Metab. , vol.4 , pp. 163-173
    • Oster, H.1    Damerow, S.2    Kiessling, S.3    Jakubcakova, V.4    Abraham, D.5    Tian, J.6    Hoffmann, M.W.7    Eichele, G.8
  • 59
    • 79551534130 scopus 로고    scopus 로고
    • Crosstalk between components of circadian and metabolic cycles in mammals
    • [59] Asher, G., Schibler, U., Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 13 (2011), 125–137.
    • (2011) Cell Metab. , vol.13 , pp. 125-137
    • Asher, G.1    Schibler, U.2
  • 62
    • 67649279837 scopus 로고    scopus 로고
    • Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III
    • [62] Noh, Y.H., Baek, J.Y., Jeong, W., Rhee, S.G., Chang, T.S., Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. 284 (2009), 8470–8477.
    • (2009) J. Biol. Chem. , vol.284 , pp. 8470-8477
    • Noh, Y.H.1    Baek, J.Y.2    Jeong, W.3    Rhee, S.G.4    Chang, T.S.5
  • 63
    • 68749112707 scopus 로고    scopus 로고
    • Importing mitochondrial proteins: machineries and mechanisms
    • [63] Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T., Pfanner, N., Importing mitochondrial proteins: machineries and mechanisms. Cell 138 (2009), 628–644.
    • (2009) Cell , vol.138 , pp. 628-644
    • Chacinska, A.1    Koehler, C.M.2    Milenkovic, D.3    Lithgow, T.4    Pfanner, N.5
  • 64
    • 79953308070 scopus 로고    scopus 로고
    • Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone
    • [64] Street, T.O., Lavery, L.A., Agard, D.A., Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol. Cell 42 (2011), 96–105.
    • (2011) Mol. Cell , vol.42 , pp. 96-105
    • Street, T.O.1    Lavery, L.A.2    Agard, D.A.3
  • 65
    • 0036713692 scopus 로고    scopus 로고
    • Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism
    • [65] Bota, D.A., Davies, K.J., Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell Biol. 4 (2002), 674–680.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 674-680
    • Bota, D.A.1    Davies, K.J.2
  • 66
    • 84871793725 scopus 로고    scopus 로고
    • Chaperone-protease networks in mitochondrial protein homeostasis
    • [66] Voos, W., Chaperone-protease networks in mitochondrial protein homeostasis. Biochim. Biophys. Acta 1833 (2013), 388–399.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 388-399
    • Voos, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.