메뉴 건너뛰기




Volumn 12, Issue 10, 2016, Pages

Erratum: Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae (PLoS Genetics (2016) 12:10 (e1006372) DOI: 10.1371/journal.pgen.1006372);Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL; BIOFUEL; CARBON; CYCLIC AMP DEPENDENT PROTEIN KINASE; GLUCOSE; HOG1 PROTEIN; IRON SULFUR PROTEIN; PENTOSE PHOSPHATE; PROTEIN; SCAFFOLD PROTEIN; UNCLASSIFIED DRUG; XYLOSE; XYLOSE ISOMERASE; HOG1 PROTEIN, S CEREVISIAE; ISU1 PROTEIN, S CEREVISIAE; MITOCHONDRIAL PROTEIN; MITOGEN ACTIVATED PROTEIN KINASE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84994310843     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/JOURNAL.PGEN.1006447     Document Type: Erratum
Times cited : (81)

References (95)
  • 1
    • 84942422926 scopus 로고    scopus 로고
    • Challenges for the production of bioethanol from biomass using recombinant yeasts
    • 26003934,.;: –.
    • Kricka W, Fitzpatrick J, Bond U, Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv Appl Microbiol. 2015;92:89–125. doi: 10.1016/bs.aambs.2015.02.00326003934.
    • (2015) Adv Appl Microbiol , vol.92 , pp. 89-125
    • Kricka, W.1    Fitzpatrick, J.2    Bond, U.3
  • 2
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • 23524005,.; (): –.
    • Kim SR, Park YC, Jin YS, Seo JH, Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology advances. 2013;31(6):851–61. doi: 10.1016/j.biotechadv.2013.03.00423524005.
    • (2013) Biotechnology advances , vol.31 , Issue.6 , pp. 851-861
    • Kim, S.R.1    Park, Y.C.2    Jin, Y.S.3    Seo, J.H.4
  • 3
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • 19545992,.; (): –.
    • Van Vleet JH, Jeffries TW, Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol. 2009;20(3):300–6. doi: 10.1016/j.copbio.2009.06.00119545992.
    • (2009) Curr Opin Biotechnol , vol.20 , Issue.3 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 5
    • 84862922807 scopus 로고    scopus 로고
    • Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives
    • 22147620,.; (): –.
    • Cai Z, Zhang B, Li Y, Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J. 2012;7(1):34–46. doi: 10.1002/biot.20110005322147620.
    • (2012) Biotechnol J , vol.7 , Issue.1 , pp. 34-46
    • Cai, Z.1    Zhang, B.2    Li, Y.3
  • 6
    • 79956076724 scopus 로고    scopus 로고
    • A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
    • 20714780,.; (): –.
    • Bera AK, Ho NW, Khan A, Sedlak M, A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol. 2011;38(5):617–26. doi: 10.1007/s10295-010-0806-620714780.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , Issue.5 , pp. 617-626
    • Bera, A.K.1    Ho, N.W.2    Khan, A.3    Sedlak, M.4
  • 7
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • 23800147,..; ():.; PubMed Central PMCID: PMCPMC3698012.
    • Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for biofuels. 2013;6(1):89. doi: 10.1186/1754-6834-6-8923800147; PubMed Central PMCID: PMCPMC3698012.
    • (2013) Biotechnology for biofuels , vol.6 , Issue.1 , pp. 89
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3    Foulquie-Moreno, M.R.4    Mutturi, S.5    Deprez, S.6
  • 8
    • 84874499132 scopus 로고    scopus 로고
    • Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
    • 23468911,..; ():.; PubMed Central PMCID: PMCPMC3582614.
    • Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PloS one. 2013;8(2):e57048. doi: 10.1371/journal.pone.005704823468911; PubMed Central PMCID: PMCPMC3582614.
    • (2013) PloS one , vol.8 , Issue.2 , pp. e57048
    • Kim, S.R.1    Skerker, J.M.2    Kang, W.3    Lesmana, A.4    Wei, N.5    Arkin, A.P.6
  • 9
    • 84955276048 scopus 로고    scopus 로고
    • Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
    • 26781725,.;:.; PubMed Central PMCID: PMCPMC4726032.
    • Reider Apel A, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A, Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep. 2016;6:19512. doi: 10.1038/srep1951226781725; PubMed Central PMCID: PMCPMC4726032.
    • (2016) Sci Rep , vol.6 , pp. 19512
    • Reider Apel, A.1    Ouellet, M.2    Szmidt-Middleton, H.3    Keasling, J.D.4    Mukhopadhyay, A.5
  • 10
    • 84907192238 scopus 로고    scopus 로고
    • Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover
    • 25222864,..; ():. PubMed Central PMCID: PMC4164640.
    • Parreiras LS, Breuer RJ, Avanasi Narasimhan R, Higbee AJ, La Reau A, Tremaine M, et al. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PloS one. 2014;9(9):e107499. PubMed Central PMCID: PMC4164640. doi: 10.1371/journal.pone.010749925222864
    • (2014) PloS one , vol.9 , Issue.9 , pp. e107499
    • Parreiras, L.S.1    Breuer, R.J.2    Avanasi Narasimhan, R.3    Higbee, A.J.4    La Reau, A.5    Tremaine, M.6
  • 11
    • 0028969384 scopus 로고
    • Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae
    • 7747971,.; (): –.; PubMed Central PMCID: PMCPMC167412.
    • Kuhn A, van Zyl C, van Tonder A, Prior BA, Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Applied and environmental microbiology. 1995;61(4):1580–5. 7747971; PubMed Central PMCID: PMCPMC167412.
    • (1995) Applied and environmental microbiology , vol.61 , Issue.4 , pp. 1580-1585
    • Kuhn, A.1    van Zyl, C.2    van Tonder, A.3    Prior, B.A.4
  • 12
    • 0032768193 scopus 로고    scopus 로고
    • Three genes whose expression is induced by stress in Saccharomyces cerevisiae
    • 10407268,.; (): –.
    • Garay-Arroyo A, Covarrubias AA, Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast. 1999;15(10A):879–92. doi: 10.1002/(SICI)1097-0061(199907)15:10A<879::AID-YEA428>3.0.CO;2-Q10407268.
    • (1999) Yeast , vol.15 , Issue.10A , pp. 879-892
    • Garay-Arroyo, A.1    Covarrubias, A.A.2
  • 13
    • 0035650510 scopus 로고    scopus 로고
    • Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
    • 11722921,.; (): –.; PubMed Central PMCID: PMCPMC93358.
    • Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hagerdal B, Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Applied and environmental microbiology. 2001;67(12):5668–74. doi: 10.1128/AEM.67.12.5668–5674.200111722921; PubMed Central PMCID: PMCPMC93358.
    • (2001) Applied and environmental microbiology , vol.67 , Issue.12 , pp. 5668-5674
    • Traff, K.L.1    Otero Cordero, R.R.2    van Zyl, W.H.3    Hahn-Hagerdal, B.4
  • 14
    • 85041544925 scopus 로고    scopus 로고
    • An evolutionary perspective on the Crabtree effect
    • 25988158,.;:.; PubMed Central PMCID: PMCPMC4429655.
    • Pfeiffer T, Morley A, An evolutionary perspective on the Crabtree effect. Front Mol Biosci. 2014;1:17. doi: 10.3389/fmolb.2014.0001725988158; PubMed Central PMCID: PMCPMC4429655.
    • (2014) Front Mol Biosci , vol.1 , pp. 17
    • Pfeiffer, T.1    Morley, A.2
  • 15
    • 84866076360 scopus 로고    scopus 로고
    • Nutritional control of growth and development in yeast
    • 22964838,.; (): –.; PubMed Central PMCID: PMCPMC3430547.
    • Broach JR, Nutritional control of growth and development in yeast. Genetics. 2012;192(1):73–105. doi: 10.1534/genetics.111.13573122964838; PubMed Central PMCID: PMCPMC3430547.
    • (2012) Genetics , vol.192 , Issue.1 , pp. 73-105
    • Broach, J.R.1
  • 16
    • 84896696867 scopus 로고    scopus 로고
    • Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae
    • 24483210,.; (): –.; PubMed Central PMCID: PMC4238866.
    • Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM, Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS microbiology reviews. 2014;38(2):254–99. doi: 10.1111/1574-6976.1206524483210; PubMed Central PMCID: PMC4238866.
    • (2014) FEMS microbiology reviews , vol.38 , Issue.2 , pp. 254-299
    • Conrad, M.1    Schothorst, J.2    Kankipati, H.N.3    Van Zeebroeck, G.4    Rubio-Texeira, M.5    Thevelein, J.M.6
  • 17
    • 44849104320 scopus 로고    scopus 로고
    • The early steps of glucose signalling in yeast
    • 18559076,.; (): –.
    • Gancedo JM, The early steps of glucose signalling in yeast. FEMS microbiology reviews. 2008;32(4):673–704. doi: 10.1111/j.1574-6976.2008.00117.x18559076.
    • (2008) FEMS microbiology reviews , vol.32 , Issue.4 , pp. 673-704
    • Gancedo, J.M.1
  • 18
    • 38449110592 scopus 로고    scopus 로고
    • SNF1/AMPK pathways in yeast
    • 17981722,.;: –.; PubMed Central PMCID: PMCPMC2685184.
    • Hedbacker K, Carlson M, SNF1/AMPK pathways in yeast. Front Biosci. 2008;13:2408–20. doi: 10.2741/285417981722; PubMed Central PMCID: PMCPMC2685184.
    • (2008) Front Biosci , vol.13 , pp. 2408-2420
    • Hedbacker, K.1    Carlson, M.2
  • 19
    • 84949194672 scopus 로고    scopus 로고
    • Glucose repression in Saccharomyces cerevisiae
    • 26205245,.; ().; PubMed Central PMCID: PMCPMC4629793.
    • Kayikci O, Nielsen J, Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15(6). doi: 10.1093/femsyr/fov06826205245; PubMed Central PMCID: PMCPMC4629793.
    • (2015) FEMS Yeast Res , vol.15 , Issue.6
    • Kayikci, O.1    Nielsen, J.2
  • 20
    • 84881493545 scopus 로고    scopus 로고
    • The glucose signaling network in yeast
    • 23911748,.; (): –.; PubMed Central PMCID: PMCPMC3785329.
    • Kim JH, Roy A, Jouandot D, 2ndCho KH, The glucose signaling network in yeast. Biochimica et biophysica acta. 2013;1830(11):5204–10. doi: 10.1016/j.bbagen.2013.07.02523911748; PubMed Central PMCID: PMCPMC3785329.
    • (2013) Biochimica et biophysica acta , vol.1830 , Issue.11 , pp. 5204-5210
    • Kim, J.H.1    Roy, A.2    Jouandot, D.3    Cho, K.H.4
  • 21
    • 58549084410 scopus 로고    scopus 로고
    • How Saccharomyces responds to nutrients
    • 18303986,.;: –.
    • Zaman S, Lippman SI, Zhao X, Broach JR, How Saccharomyces responds to nutrients. Annu Rev Genet. 2008;42:27–81. doi: 10.1146/annurev.genet.41.110306.13020618303986.
    • (2008) Annu Rev Genet , vol.42 , pp. 27-81
    • Zaman, S.1    Lippman, S.I.2    Zhao, X.3    Broach, J.R.4
  • 22
    • 0032526715 scopus 로고    scopus 로고
    • Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae
    • 9628870,..; (): –.; PubMed Central PMCID: PMCPMC1170671.
    • Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, et al. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 1998;17(12):3326–41. doi: 10.1093/emboj/17.12.33269628870; PubMed Central PMCID: PMCPMC1170671.
    • (1998) EMBO J , vol.17 , Issue.12 , pp. 3326-3341
    • Colombo, S.1    Ma, P.2    Cauwenberg, L.3    Winderickx, J.4    Crauwels, M.5    Teunissen, A.6
  • 23
    • 0037845131 scopus 로고    scopus 로고
    • Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase
    • 12755632,.; (): –.
    • Dihazi H, Kessler R, Eschrich K, Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase. Biochemistry. 2003;42(20):6275–82. doi: 10.1021/bi034167r12755632.
    • (2003) Biochemistry , vol.42 , Issue.20 , pp. 6275-6282
    • Dihazi, H.1    Kessler, R.2    Eschrich, K.3
  • 24
    • 0037163019 scopus 로고    scopus 로고
    • In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase A
    • 12063246,.; (): –.
    • Portela P, Howell S, Moreno S, Rossi S, In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase A. The Journal of biological chemistry. 2002;277(34):30477–87. doi: 10.1074/jbc.M20109420012063246.
    • (2002) The Journal of biological chemistry , vol.277 , Issue.34 , pp. 30477-30487
    • Portela, P.1    Howell, S.2    Moreno, S.3    Rossi, S.4
  • 25
    • 4644255309 scopus 로고    scopus 로고
    • The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms
    • 15300954,.; (): –.
    • Cameroni E, Hulo N, Roosen J, Winderickx J, De Virgilio C, The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle. 2004;3(4):462–8. 15300954.
    • (2004) Cell Cycle , vol.3 , Issue.4 , pp. 462-468
    • Cameroni, E.1    Hulo, N.2    Roosen, J.3    Winderickx, J.4    De Virgilio, C.5
  • 26
    • 0342657757 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1
    • 10835355,.; (): –.; PubMed Central PMCID: PMCPMC212766.
    • Pedruzzi I, Burckert N, Egger P, De Virgilio C, Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J. 2000;19(11):2569–79. doi: 10.1093/emboj/19.11.256910835355; PubMed Central PMCID: PMCPMC212766.
    • (2000) EMBO J , vol.19 , Issue.11 , pp. 2569-2579
    • Pedruzzi, I.1    Burckert, N.2    Egger, P.3    De Virgilio, C.4
  • 27
    • 0032865543 scopus 로고    scopus 로고
    • Function and regulation of yeast hexose transporters
    • 10477308,.; (): –.; PubMed Central PMCID: PMCPMC103746.
    • Ozcan S, Johnston M, Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev. 1999;63(3):554–69. 10477308; PubMed Central PMCID: PMCPMC103746.
    • (1999) Microbiol Mol Biol Rev , vol.63 , Issue.3 , pp. 554-569
    • Ozcan, S.1    Johnston, M.2
  • 28
    • 0029864499 scopus 로고    scopus 로고
    • Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression
    • 8901598,.; (): –.; PubMed Central PMCID: PMCPMC38008.
    • Ozcan S, Dover J, Rosenwald AG, Wolfl S, Johnston M, Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(22):12428–32. doi: 10.1073/pnas.93.22.124288901598; PubMed Central PMCID: PMCPMC38008.
    • (1996) Proceedings of the National Academy of Sciences of the United States of America , vol.93 , Issue.22 , pp. 12428-12432
    • Ozcan, S.1    Dover, J.2    Rosenwald, A.G.3    Wolfl, S.4    Johnston, M.5
  • 29
    • 84933059966 scopus 로고    scopus 로고
    • Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production
    • 25364804,..; (): –.; PubMed Central PMCID: PMC4202335.
    • Wohlbach DJ, Rovinskiy N, Lewis JA, Sardi M, Schackwitz WS, Martin JA, et al. Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production. Genome biology and evolution. 2014;6(9):2557–66. doi: 10.1093/gbe/evu19925364804; PubMed Central PMCID: PMC4202335.
    • (2014) Genome biology and evolution , vol.6 , Issue.9 , pp. 2557-2566
    • Wohlbach, D.J.1    Rovinskiy, N.2    Lewis, J.A.3    Sardi, M.4    Schackwitz, W.S.5    Martin, J.A.6
  • 30
    • 84973094111 scopus 로고    scopus 로고
    • Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research
    • 27172212,..; (): –.; PubMed Central PMCID: PMCPMC4889671.
    • McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers KS, et al. Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research. G3 (Bethesda). 2016;6(6):1757–66. doi: 10.1534/g3.116.02938927172212; PubMed Central PMCID: PMCPMC4889671.
    • (2016) G3 (Bethesda) , vol.6 , Issue.6 , pp. 1757-1766
    • McIlwain, S.J.1    Peris, D.2    Sardi, M.3    Moskvin, O.V.4    Zhan, F.5    Myers, K.S.6
  • 31
    • 84867162776 scopus 로고    scopus 로고
    • Response to hyperosmotic stress
    • 23028184,.; (): –.; PubMed Central PMCID: PMC3454867.
    • Saito H, Posas F, Response to hyperosmotic stress. Genetics. 2012;192(2):289–318. doi: 10.1534/genetics.112.14086323028184; PubMed Central PMCID: PMC3454867.
    • (2012) Genetics , vol.192 , Issue.2 , pp. 289-318
    • Saito, H.1    Posas, F.2
  • 32
    • 3142716203 scopus 로고    scopus 로고
    • Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function
    • 15123690,.; (): –.
    • Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig EA, Marszalek J, Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. The Journal of biological chemistry. 2004;279(28):29167–74. doi: 10.1074/jbc.M40294720015123690.
    • (2004) The Journal of biological chemistry , vol.279 , Issue.28 , pp. 29167-29174
    • Dutkiewicz, R.1    Schilke, B.2    Cheng, S.3    Knieszner, H.4    Craig, E.A.5    Marszalek, J.6
  • 33
    • 68949128587 scopus 로고    scopus 로고
    • Function and biogenesis of iron-sulphur proteins
    • 19675643,.; (): –.
    • Lill R, Function and biogenesis of iron-sulphur proteins. Nature. 2009;460(7257):831–8. doi: 10.1038/nature0830119675643.
    • (2009) Nature , vol.460 , Issue.7257 , pp. 831-838
    • Lill, R.1
  • 34
    • 0033621156 scopus 로고    scopus 로고
    • Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae
    • 10468587,.; (): –.; PubMed Central PMCID: PMC17867.
    • Schilke B, Voisine C, Beinert H, Craig E, Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(18):10206–11. doi: 10.1073/pnas.96.18.1020610468587; PubMed Central PMCID: PMC17867.
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , vol.96 , Issue.18 , pp. 10206-10211
    • Schilke, B.1    Voisine, C.2    Beinert, H.3    Craig, E.4
  • 35
    • 84883132678 scopus 로고    scopus 로고
    • Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations
    • 23873039,..; (): –.; PubMed Central PMCID: PMC3758440.
    • Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature. 2013;500(7464):571–4. doi: 10.1038/nature1234423873039; PubMed Central PMCID: PMC3758440.
    • (2013) Nature , vol.500 , Issue.7464 , pp. 571-574
    • Lang, G.I.1    Rice, D.P.2    Hickman, M.J.3    Sodergren, E.4    Weinstock, G.M.5    Botstein, D.6
  • 36
    • 0025232840 scopus 로고
    • S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein
    • 2178777,..; (): –.
    • Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, et al. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell. 1990;60(5):803–7. doi: 10.1016/0092-8674(90)90094-u2178777.
    • (1990) Cell , vol.60 , Issue.5 , pp. 803-807
    • Tanaka, K.1    Nakafuku, M.2    Satoh, T.3    Marshall, M.S.4    Gibbs, J.B.5    Matsumoto, K.6
  • 37
    • 0029664530 scopus 로고    scopus 로고
    • The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase
    • 8649382,.; (): –.; PubMed Central PMCID: PMCPMC231265.
    • Luke MM, Della Seta F, Di Como CJ, Sugimoto H, Kobayashi R, Arndt KT, The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Molecular and cellular biology. 1996;16(6):2744–55. doi: 10.1128/mcb.16.6.27448649382; PubMed Central PMCID: PMCPMC231265.
    • (1996) Molecular and cellular biology , vol.16 , Issue.6 , pp. 2744-2755
    • Luke, M.M.1    Della Seta, F.2    Di Como, C.J.3    Sugimoto, H.4    Kobayashi, R.5    Arndt, K.T.6
  • 38
    • 0036228296 scopus 로고    scopus 로고
    • Protein phosphatase 2A on track for nutrient-induced signalling in yeast
    • 11929536,.; (): –.
    • Zabrocki P, Van Hoof C, Goris J, Thevelein JM, Winderickx J, Wera S, Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Molecular microbiology. 2002;43(4):835–42. doi: 10.1046/j.1365-2958.2002.02786.x11929536.
    • (2002) Molecular microbiology , vol.43 , Issue.4 , pp. 835-842
    • Zabrocki, P.1    Van Hoof, C.2    Goris, J.3    Thevelein, J.M.4    Winderickx, J.5    Wera, S.6
  • 39
    • 33745199375 scopus 로고    scopus 로고
    • The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2
    • 16793550,.; (): –.
    • Harashima T, Anderson S, Yates JR, 3rdHeitman J, The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Molecular cell. 2006;22(6):819–30. doi: 10.1016/j.molcel.2006.05.01116793550.
    • (2006) Molecular cell , vol.22 , Issue.6 , pp. 819-830
    • Harashima, T.1    Anderson, S.2    Yates, J.R.3    Heitman, J.4
  • 40
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • 9483801,..; (): –.
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14(2):115–32. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2–29483801.
    • (1998) Yeast , vol.14 , Issue.2 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6
  • 41
    • 80054890771 scopus 로고    scopus 로고
    • Effect of auxotrophies on yeast performance in aerated fed-batch reactor
    • 21986533,.; (): –.
    • Landi C, Paciello L, de Alteriis E, Brambilla L, Parascandola P, Effect of auxotrophies on yeast performance in aerated fed-batch reactor. Biochem Biophys Res Commun. 2011;414(3):604–11. doi: 10.1016/j.bbrc.2011.09.12921986533.
    • (2011) Biochem Biophys Res Commun , vol.414 , Issue.3 , pp. 604-611
    • Landi, C.1    Paciello, L.2    de Alteriis, E.3    Brambilla, L.4    Parascandola, P.5
  • 42
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • 10919795,.; (): –.; PubMed Central PMCID: PMCPMC92159.
    • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B, Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Applied and environmental microbiology. 2000;66(8):3381–6. doi: 10.1128/aem.66.8.3381-3386.200010919795; PubMed Central PMCID: PMCPMC92159.
    • (2000) Applied and environmental microbiology , vol.66 , Issue.8 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hagerdal, B.4
  • 43
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • 11102521,..; (): –.; PubMed Central PMCID: PMCPMC15070.
    • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell. 2000;11(12):4241–57. doi: 10.1091/mbc.11.12.424111102521; PubMed Central PMCID: PMCPMC15070.
    • (2000) Molecular biology of the cell , vol.11 , Issue.12 , pp. 4241-4257
    • Gasch, A.P.1    Spellman, P.T.2    Kao, C.M.3    Carmel-Harel, O.4    Eisen, M.B.5    Storz, G.6
  • 44
    • 38749112941 scopus 로고    scopus 로고
    • Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast
    • 17959824,..; (): –.; PubMed Central PMCID: PMCPMC2174172.
    • Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Molecular biology of the cell. 2008;19(1):352–67. doi: 10.1091/mbc.E07-08-077917959824; PubMed Central PMCID: PMCPMC2174172.
    • (2008) Molecular biology of the cell , vol.19 , Issue.1 , pp. 352-367
    • Brauer, M.J.1    Huttenhower, C.2    Airoldi, E.M.3    Rosenstein, R.4    Matese, J.C.5    Gresham, D.6
  • 45
    • 18244376808 scopus 로고    scopus 로고
    • Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures
    • 15758028,.; (): –.; PubMed Central PMCID: PMCPMC1087253.
    • Brauer MJ, Saldanha AJ, Dolinski K, Botstein D, Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Molecular biology of the cell. 2005;16(5):2503–17. doi: 10.1091/mbc.E04-11-096815758028; PubMed Central PMCID: PMCPMC1087253.
    • (2005) Molecular biology of the cell , vol.16 , Issue.5 , pp. 2503-2517
    • Brauer, M.J.1    Saldanha, A.J.2    Dolinski, K.3    Botstein, D.4
  • 46
    • 33845935641 scopus 로고    scopus 로고
    • Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae
    • 17105650,..; ():.; PubMed Central PMCID: PMCPMC1794586.
    • Regenberg B, Grotkjaer T, Winther O, Fausboll A, Akesson M, Bro C, et al. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol. 2006;7(11):R107. doi: 10.1186/gb-2006-7-11-r10717105650; PubMed Central PMCID: PMCPMC1794586.
    • (2006) Genome Biol , vol.7 , Issue.11 , pp. R107
    • Regenberg, B.1    Grotkjaer, T.2    Winther, O.3    Fausboll, A.4    Akesson, M.5    Bro, C.6
  • 47
    • 84922613720 scopus 로고    scopus 로고
    • Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships
    • 25546499,..; (): –.
    • Jin K, Musso G, Vlasblom J, Jessulat M, Deineko V, Negroni J, et al. Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships. J Proteome Res. 2015;14(2):1220–37. doi: 10.1021/pr501148q25546499.
    • (2015) J Proteome Res , vol.14 , Issue.2 , pp. 1220-1237
    • Jin, K.1    Musso, G.2    Vlasblom, J.3    Jessulat, M.4    Deineko, V.5    Negroni, J.6
  • 48
    • 84930673421 scopus 로고    scopus 로고
    • Pathway connectivity and signaling coordination in the yeast stress-activated signaling network
    • 25411400,..;:.; PubMed Central PMCID: PMCPMC4299600.
    • Chasman D, Ho YH, Berry DB, Nemec CM, MacGilvray ME, Hose J, et al. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. Molecular systems biology. 2014;10:759. doi: 10.15252/msb.2014512025411400; PubMed Central PMCID: PMCPMC4299600.
    • (2014) Molecular systems biology , vol.10 , pp. 759
    • Chasman, D.1    Ho, Y.H.2    Berry, D.B.3    Nemec, C.M.4    MacGilvray, M.E.5    Hose, J.6
  • 49
    • 0033569790 scopus 로고    scopus 로고
    • A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2
    • 10523302,.; (): –.; PubMed Central PMCID: PMCPMC1171626.
    • Versele M, de Winde JH, Thevelein JM, A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J. 1999;18(20):5577–91. doi: 10.1093/emboj/18.20.557710523302; PubMed Central PMCID: PMCPMC1171626.
    • (1999) EMBO J , vol.18 , Issue.20 , pp. 5577-5591
    • Versele, M.1    de Winde, J.H.2    Thevelein, J.M.3
  • 50
    • 0031734864 scopus 로고    scopus 로고
    • Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae
    • 10094633,.; (): –.
    • Geymonat M, Wang L, Garreau H, Jacquet M, Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Molecular microbiology. 1998;30(4):855–64. doi: 10.1046/j.1365-2958.1998.01118.x10094633.
    • (1998) Molecular microbiology , vol.30 , Issue.4 , pp. 855-864
    • Geymonat, M.1    Wang, L.2    Garreau, H.3    Jacquet, M.4
  • 51
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • 12213924,.; (): –.
    • Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E, Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology. 2002;148(Pt 9):2783–8. doi: 10.1099/00221287-148-9-278312213924.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3    Hahn-Hagerdal, B.4    Boles, E.5
  • 52
    • 16244386203 scopus 로고    scopus 로고
    • The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae
    • 15773992,.; (): –.
    • Aguilera J, Rodriguez-Vargas S, Prieto JA, The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Molecular microbiology. 2005;56(1):228–39. doi: 10.1111/j.1365-2958.2005.04533.x15773992.
    • (2005) Molecular microbiology , vol.56 , Issue.1 , pp. 228-239
    • Aguilera, J.1    Rodriguez-Vargas, S.2    Prieto, J.A.3
  • 53
    • 34248195476 scopus 로고    scopus 로고
    • Endogenous synthesis of coenzyme Q in eukaryotes
    • 17482885,.; Suppl: –.; PubMed Central PMCID: PMCPMC1974887.
    • Tran UC, Clarke CF, Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion. 2007;7 Suppl:S62–71. doi: 10.1016/j.mito.2007.03.00717482885; PubMed Central PMCID: PMCPMC1974887.
    • (2007) Mitochondrion , vol.7 , pp. S62-71
    • Tran, U.C.1    Clarke, C.F.2
  • 54
    • 56149104649 scopus 로고    scopus 로고
    • Cytochrome c oxidase biogenesis: new levels of regulation
    • 18465791,.; (): –.; PubMed Central PMCID: PMCPMC2630494.
    • Fontanesi F, Soto IC, Barrientos A, Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life. 2008;60(9):557–68. doi: 10.1002/iub.8618465791; PubMed Central PMCID: PMCPMC2630494.
    • (2008) IUBMB Life , vol.60 , Issue.9 , pp. 557-568
    • Fontanesi, F.1    Soto, I.C.2    Barrientos, A.3
  • 55
    • 84886406190 scopus 로고    scopus 로고
    • Metabolic remodeling in frataxin-deficient yeast is mediated by Cth2 and Adr1
    • 24100161,.; (): –.
    • Moreno-Cermeno A, Alsina D, Cabiscol E, Tamarit J, Ros J, Metabolic remodeling in frataxin-deficient yeast is mediated by Cth2 and Adr1. Biochimica et biophysica acta. 2013;1833(12):3326–37. doi: 10.1016/j.bbamcr.2013.09.01924100161.
    • (2013) Biochimica et biophysica acta , vol.1833 , Issue.12 , pp. 3326-3337
    • Moreno-Cermeno, A.1    Alsina, D.2    Cabiscol, E.3    Tamarit, J.4    Ros, J.5
  • 56
    • 0035697196 scopus 로고    scopus 로고
    • Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae
    • 11748728,.; (): –.
    • Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K, Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast. 2001;18(16):1515–24. doi: 10.1002/yea.77911748728.
    • (2001) Yeast , vol.18 , Issue.16 , pp. 1515-1524
    • Diderich, J.A.1    Schuurmans, J.M.2    Van Gaalen, M.C.3    Kruckeberg, A.L.4    Van Dam, K.5
  • 57
    • 0242380642 scopus 로고    scopus 로고
    • Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae
    • 12853606,.; (): –.; PubMed Central PMCID: PMCPMC165961.
    • Rasmussen AK, Chatterjee A, Rasmussen LJ, Singh KK, Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic acids research. 2003;31(14):3909–17. doi: 10.1093/nar/gkg44612853606; PubMed Central PMCID: PMCPMC165961.
    • (2003) Nucleic acids research , vol.31 , Issue.14 , pp. 3909-3917
    • Rasmussen, A.K.1    Chatterjee, A.2    Rasmussen, L.J.3    Singh, K.K.4
  • 58
    • 46349094089 scopus 로고    scopus 로고
    • Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae
    • 18533012,.;:.; PubMed Central PMCID: PMCPMC2435516.
    • Salusjarvi L, Kankainen M, Soliymani R, Pitkanen JP, Penttila M, Ruohonen L, Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microbial cell factories. 2008;7:18. doi: 10.1186/1475-2859-7-1818533012; PubMed Central PMCID: PMCPMC2435516.
    • (2008) Microbial cell factories , vol.7 , pp. 18
    • Salusjarvi, L.1    Kankainen, M.2    Soliymani, R.3    Pitkanen, J.P.4    Penttila, M.5    Ruohonen, L.6
  • 59
    • 84863618228 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
    • 22487265,.; (): –.
    • Scalcinati G, Otero JM, Van Vleet JR, Jeffries TW, Olsson L, Nielsen J, Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012;12(5):582–97. doi: 10.1111/j.1567-1364.2012.00808.x22487265.
    • (2012) FEMS Yeast Res , vol.12 , Issue.5 , pp. 582-597
    • Scalcinati, G.1    Otero, J.M.2    Van Vleet, J.R.3    Jeffries, T.W.4    Olsson, L.5    Nielsen, J.6
  • 60
    • 84953410315 scopus 로고    scopus 로고
    • Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures
    • 26454869,..; (): –.
    • Alff-Tuomala S, Salusjarvi L, Barth D, Oja M, Penttila M, Pitkanen JP, et al. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol. 2016;100(2):969–85. doi: 10.1007/s00253-015-7038-726454869.
    • (2016) Appl Microbiol Biotechnol , vol.100 , Issue.2 , pp. 969-985
    • Alff-Tuomala, S.1    Salusjarvi, L.2    Barth, D.3    Oja, M.4    Penttila, M.5    Pitkanen, J.P.6
  • 61
    • 84892934934 scopus 로고    scopus 로고
    • Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose
    • 24467867,.;:.; PubMed Central PMCID: PMCPMC3917370.
    • Matsushika A, Goshima T, Hoshino T, Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial cell factories. 2014;13:16. doi: 10.1186/1475-2859-13-1624467867; PubMed Central PMCID: PMCPMC3917370.
    • (2014) Microbial cell factories , vol.13 , pp. 16
    • Matsushika, A.1    Goshima, T.2    Hoshino, T.3
  • 62
    • 84895734196 scopus 로고    scopus 로고
    • Coordination of gene expression and growth-rate in natural populations of budding yeast
    • 24533150,.; ():.; PubMed Central PMCID: PMCPMC3923061.
    • Tamari Z, Rosin D, Voichek Y, Barkai N, Coordination of gene expression and growth-rate in natural populations of budding yeast. PloS one. 2014;9(2):e88801. doi: 10.1371/journal.pone.008880124533150; PubMed Central PMCID: PMCPMC3923061.
    • (2014) PloS one , vol.9 , Issue.2 , pp. e88801
    • Tamari, Z.1    Rosin, D.2    Voichek, Y.3    Barkai, N.4
  • 63
    • 84876941987 scopus 로고    scopus 로고
    • Mechanisms of mitochondrial translational regulation
    • 23554047,.; (): –.
    • Fontanesi F, Mechanisms of mitochondrial translational regulation. IUBMB Life. 2013;65(5):397–408. doi: 10.1002/iub.115623554047.
    • (2013) IUBMB Life , vol.65 , Issue.5 , pp. 397-408
    • Fontanesi, F.1
  • 64
    • 84870489803 scopus 로고    scopus 로고
    • A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis
    • 23217259,.; (): –.; PubMed Central PMCID: PMCPMC3523284.
    • Soto IC, Fontanesi F, Myers RS, Hamel P, Barrientos A, A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis. Cell Metab. 2012;16(6):801–13. doi: 10.1016/j.cmet.2012.10.01823217259; PubMed Central PMCID: PMCPMC3523284.
    • (2012) Cell Metab , vol.16 , Issue.6 , pp. 801-813
    • Soto, I.C.1    Fontanesi, F.2    Myers, R.S.3    Hamel, P.4    Barrientos, A.5
  • 65
    • 75749130711 scopus 로고    scopus 로고
    • Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase
    • 19995914,.; (): –.; PubMed Central PMCID: PMCPMC2815561.
    • Khalimonchuk O, Bestwick M, Meunier B, Watts TC, Winge DR, Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase. Molecular and cellular biology. 2010;30(4):1004–17. doi: 10.1128/MCB.00640-0919995914; PubMed Central PMCID: PMCPMC2815561.
    • (2010) Molecular and cellular biology , vol.30 , Issue.4 , pp. 1004-1017
    • Khalimonchuk, O.1    Bestwick, M.2    Meunier, B.3    Watts, T.C.4    Winge, D.R.5
  • 66
    • 84867233300 scopus 로고    scopus 로고
    • Metabolic activation of the HOG MAP kinase pathway by Snf1/AMPK regulates lipid signaling at the Golgi
    • 22882253,.; (): –.; PubMed Central PMCID: PMCPMC3465495.
    • Piao H, MacLean Freed J, Mayinger P, Metabolic activation of the HOG MAP kinase pathway by Snf1/AMPK regulates lipid signaling at the Golgi. Traffic. 2012;13(11):1522–31. doi: 10.1111/j.1600-0854.2012.01406.x22882253; PubMed Central PMCID: PMCPMC3465495.
    • (2012) Traffic , vol.13 , Issue.11 , pp. 1522-1531
    • Piao, H.1    MacLean Freed, J.2    Mayinger, P.3
  • 67
    • 84944348615 scopus 로고    scopus 로고
    • Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway
    • 26340004,.; ():.; PubMed Central PMCID: PMCPMC4560374.
    • Vallejo MC, Mayinger P, Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway. PloS one. 2015;10(9):e0137199. doi: 10.1371/journal.pone.013719926340004; PubMed Central PMCID: PMCPMC4560374.
    • (2015) PloS one , vol.10 , Issue.9 , pp. e0137199
    • Vallejo, M.C.1    Mayinger, P.2
  • 68
    • 84943535515 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response
    • 26394309,.; ():.; PubMed Central PMCID: PMCPMC4578879.
    • Mizuno T, Masuda Y, Irie K, The Saccharomyces cerevisiae AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response. PLoS genetics. 2015;11(9):e1005491. doi: 10.1371/journal.pgen.100549126394309; PubMed Central PMCID: PMCPMC4578879.
    • (2015) PLoS genetics , vol.11 , Issue.9 , pp. e1005491
    • Mizuno, T.1    Masuda, Y.2    Irie, K.3
  • 69
    • 33847710318 scopus 로고    scopus 로고
    • Dissecting yeast Hog1 MAP kinase pathway using a chemical genetic approach
    • 17346711,.; (): –.
    • Kim S, Shah K, Dissecting yeast Hog1 MAP kinase pathway using a chemical genetic approach. FEBS Lett. 2007;581(6):1209–16. doi: 10.1016/j.febslet.2007.02.03217346711.
    • (2007) FEBS Lett , vol.581 , Issue.6 , pp. 1209-1216
    • Kim, S.1    Shah, K.2
  • 70
    • 33645130011 scopus 로고    scopus 로고
    • Glucose signaling in Saccharomyces cerevisiae
    • 16524925,.; (): –.; PubMed Central PMCID: PMCPMC1393250.
    • Santangelo GM, Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006;70(1):253–82. doi: 10.1128/MMBR.70.1.253–282.200616524925; PubMed Central PMCID: PMCPMC1393250.
    • (2006) Microbiol Mol Biol Rev , vol.70 , Issue.1 , pp. 253-282
    • Santangelo, G.M.1
  • 71
    • 84888213196 scopus 로고    scopus 로고
    • Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment
    • 24278038,.; ():.; PubMed Central PMCID: PMC3836717.
    • Kvitek DJ, Sherlock G, Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS genetics. 2013;9(11):e1003972. doi: 10.1371/journal.pgen.100397224278038; PubMed Central PMCID: PMC3836717.
    • (2013) PLoS genetics , vol.9 , Issue.11 , pp. e1003972
    • Kvitek, D.J.1    Sherlock, G.2
  • 72
    • 84922851448 scopus 로고    scopus 로고
    • Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    • 25170344,.; ():.; PubMed Central PMCID: PMCPMC4147937.
    • Lee SM, Jellison T, Alper HS, Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnology for biofuels. 2014;7(1):122. doi: 10.1186/s13068-014-0122-x25170344; PubMed Central PMCID: PMCPMC4147937.
    • (2014) Biotechnology for biofuels , vol.7 , Issue.1 , pp. 122
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 73
    • 84954457527 scopus 로고    scopus 로고
    • Disruption of PHO13 improves ethanol production via the xylose isomerase pathway
    • 26769491,.; ():.; PubMed Central PMCID: PMCPMC4713403.
    • Bamba T, Hasunuma T, Kondo A, Disruption of PHO13 improves ethanol production via the xylose isomerase pathway. AMB Express. 2016;6(1):4. doi: 10.1186/s13568-015-0175-726769491; PubMed Central PMCID: PMCPMC4713403.
    • (2016) AMB Express , vol.6 , Issue.1 , pp. 4
    • Bamba, T.1    Hasunuma, T.2    Kondo, A.3
  • 74
    • 79952181277 scopus 로고    scopus 로고
    • Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae
    • 21305697,.; (): –.
    • Almeida JR, Runquist D, Sanchez i Nogue V, Liden G, Gorwa-Grauslund MF, Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J. 2011;6(3):286–99. doi: 10.1002/biot.20100030121305697.
    • (2011) Biotechnol J , vol.6 , Issue.3 , pp. 286-299
    • Almeida, J.R.1    Runquist, D.2    Sanchez i Nogue, V.3    Liden, G.4    Gorwa-Grauslund, M.F.5
  • 75
    • 84897953198 scopus 로고    scopus 로고
    • Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors
    • 24672514,..;:.; PubMed Central PMCID: PMC3954026.
    • Piotrowski JS, Zhang Y, Bates DM, Keating DH, Sato TK, Ong IM, et al. Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Frontiers in microbiology. 2014;5:90. doi: 10.3389/fmicb.2014.0009024672514; PubMed Central PMCID: PMC3954026.
    • (2014) Frontiers in microbiology , vol.5 , pp. 90
    • Piotrowski, J.S.1    Zhang, Y.2    Bates, D.M.3    Keating, D.H.4    Sato, T.K.5    Ong, I.M.6
  • 76
    • 84883114857 scopus 로고    scopus 로고
    • Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
    • 23971950,.; ():.; PubMed Central PMCID: PMCPMC3765968.
    • Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquie-Moreno MR, Thevelein JM, Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnology for biofuels. 2013;6(1):120. doi: 10.1186/1754-6834-6-12023971950; PubMed Central PMCID: PMCPMC3765968.
    • (2013) Biotechnology for biofuels , vol.6 , Issue.1 , pp. 120
    • Demeke, M.M.1    Dumortier, F.2    Li, Y.3    Broeckx, T.4    Foulquie-Moreno, M.R.5    Thevelein, J.M.6
  • 77
    • 84864575136 scopus 로고    scopus 로고
    • Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
    • 22578262,.; ():.; PubMed Central PMCID: PMCPMC3408370.
    • Koppram R, Albers E, Olsson L, Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnology for biofuels. 2012;5(1):32. doi: 10.1186/1754-6834-5-3222578262; PubMed Central PMCID: PMCPMC3408370.
    • (2012) Biotechnology for biofuels , vol.5 , Issue.1 , pp. 32
    • Koppram, R.1    Albers, E.2    Olsson, L.3
  • 78
    • 0036275447 scopus 로고    scopus 로고
    • Getting started with yeast
    • 12073320,.;: –.
    • Sherman F, Getting started with yeast. Methods in enzymology. 2002;350:3–41. doi: 10.1016/s0076-6879(02)50954-x12073320.
    • (2002) Methods in enzymology , vol.350 , pp. 3-41
    • Sherman, F.1
  • 80
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • 8692690,.; (): –.; PubMed Central PMCID: PMC145975.
    • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH, A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic acids research. 1996;24(13):2519–24. doi: 10.1093/nar/24.13.25198692690; PubMed Central PMCID: PMC145975.
    • (1996) Nucleic acids research , vol.24 , Issue.13 , pp. 2519-2524
    • Guldener, U.1    Heck, S.2    Fielder, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 81
    • 84960110043 scopus 로고    scopus 로고
    • Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces
    • 26555931,.;: –.; PubMed Central PMCID: PMCPMC4789119.
    • Alexander WG, Peris D, Pfannenstiel BT, Opulente DA, Kuang M, Hittinger CT, Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces. Fungal Genet Biol. 2016;89:10–7. doi: 10.1016/j.fgb.2015.11.00226555931; PubMed Central PMCID: PMCPMC4789119.
    • (2016) Fungal Genet Biol , vol.89 , pp. 10-17
    • Alexander, W.G.1    Peris, D.2    Pfannenstiel, B.T.3    Opulente, D.A.4    Kuang, M.5    Hittinger, C.T.6
  • 82
    • 33746753342 scopus 로고    scopus 로고
    • Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast
    • 16901791,..; (): –.
    • Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell. 2006;126(3):611–25. doi: 10.1016/j.cell.2006.06.04016901791.
    • (2006) Cell , vol.126 , Issue.3 , pp. 611-625
    • Parsons, A.B.1    Lopez, A.2    Givoni, I.E.3    Williams, D.E.4    Gray, C.A.5    Porter, J.6
  • 83
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • 17401334,.; (): –.
    • Gietz RD, Schiestl RH, High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature protocols. 2007;2(1):31–4. doi: 10.1038/nprot.2007.1317401334.
    • (2007) Nature protocols , vol.2 , Issue.1 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 84
    • 84897000131 scopus 로고    scopus 로고
    • The reference genome sequence of Saccharomyces cerevisiae: then and now
    • 24374639,..; (): –.; PubMed Central PMCID: PMCPMC3962479.
    • Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, et al. The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014;4(3):389–98. doi: 10.1534/g3.113.00899524374639; PubMed Central PMCID: PMCPMC3962479.
    • (2014) G3 (Bethesda) , vol.4 , Issue.3 , pp. 389-398
    • Engel, S.R.1    Dietrich, F.S.2    Fisk, D.G.3    Binkley, G.4    Balakrishnan, R.5    Costanzo, M.C.6
  • 85
    • 77956295988 scopus 로고    scopus 로고
    • The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
    • 20644199,..; (): –.; PubMed Central PMCID: PMC2928508.
    • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research. 2010;20(9):1297–303. doi: 10.1101/gr.107524.11020644199; PubMed Central PMCID: PMC2928508.
    • (2010) Genome research , vol.20 , Issue.9 , pp. 1297-1303
    • McKenna, A.1    Hanna, M.2    Banks, E.3    Sivachenko, A.4    Cibulskis, K.5    Kernytsky, A.6
  • 86
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • 22388286,.; (): –.; PubMed Central PMCID: PMCPMC3322381.
    • Langmead B, Salzberg SL, Fast gapped-read alignment with Bowtie 2. Nature methods. 2012;9(4):357–9. doi: 10.1038/nmeth.192322388286; PubMed Central PMCID: PMCPMC3322381.
    • (2012) Nature methods , vol.9 , Issue.4 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 87
    • 84861114172 scopus 로고    scopus 로고
    • Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen
    • 22389370,..; (): –.; PubMed Central PMCID: PMC3346445.
    • Schwalbach MS, Keating DH, Tremaine M, Marner WD, Zhang Y, Bothfeld W, et al. Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen. Applied and environmental microbiology. 2012;78(9):3442–57. doi: 10.1128/AEM.07329-1122389370; PubMed Central PMCID: PMC3346445.
    • (2012) Applied and environmental microbiology , vol.78 , Issue.9 , pp. 3442-3457
    • Schwalbach, M.S.1    Keating, D.H.2    Tremaine, M.3    Marner, W.D.4    Zhang, Y.5    Bothfeld, W.6
  • 89
    • 84907197082 scopus 로고    scopus 로고
    • Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
    • 24942700,.; (): –.; PubMed Central PMCID: PMCPMC4159666.
    • Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26. doi: 10.1074/mcp.M113.03159124942700; PubMed Central PMCID: PMCPMC4159666.
    • (2014) Mol Cell Proteomics , vol.13 , Issue.9 , pp. 2513-2526
    • Cox, J.1    Hein, M.Y.2    Luber, C.A.3    Paron, I.4    Nagaraj, N.5    Mann, M.6
  • 90
    • 57449099865 scopus 로고    scopus 로고
    • MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
    • 19029910,.; (): –.
    • Cox J, Mann M, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. doi: 10.1038/nbt.151119029910.
    • (2008) Nat Biotechnol , vol.26 , Issue.12 , pp. 1367-1372
    • Cox, J.1    Mann, M.2
  • 91
    • 84973094111 scopus 로고    scopus 로고
    • Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae used in Biofuels Research
    • 27172212,...
    • McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers K, et al. Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae used in Biofuels Research. G3 (Bethesda). 2016. doi: 10.1534/g3.116.02938927172212.
    • (2016) G3 (Bethesda)
    • McIlwain, S.J.1    Peris, D.2    Sardi, M.3    Moskvin, O.V.4    Zhan, F.5    Myers, K.6
  • 92
    • 33847630405 scopus 로고    scopus 로고
    • Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry
    • 17327847,.; (): –.
    • Elias JE, Gygi SP, Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature methods. 2007;4(3):207–14. doi: 10.1038/nmeth101917327847.
    • (2007) Nature methods , vol.4 , Issue.3 , pp. 207-214
    • Elias, J.E.1    Gygi, S.P.2
  • 93
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • 19910308,.; (): –.; PubMed Central PMCID: PMCPMC2796818.
    • Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp61619910308; PubMed Central PMCID: PMCPMC2796818.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 94
    • 0013203966 scopus 로고    scopus 로고
    • FunSpec: a web-based cluster interpreter for yeast
    • 12431279,.;:.; PubMed Central PMCID: PMCPMC139976.
    • Robinson MD, Grigull J, Mohammad N, Hughes TR, FunSpec: a web-based cluster interpreter for yeast. BMC bioinformatics. 2002;3:35. 12431279; PubMed Central PMCID: PMCPMC139976.
    • (2002) BMC bioinformatics , vol.3 , pp. 35
    • Robinson, M.D.1    Grigull, J.2    Mohammad, N.3    Hughes, T.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.