-
1
-
-
84942422926
-
Challenges for the production of bioethanol from biomass using recombinant yeasts
-
26003934,.;: –.
-
Kricka W, Fitzpatrick J, Bond U, Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv Appl Microbiol. 2015;92:89–125. doi: 10.1016/bs.aambs.2015.02.00326003934.
-
(2015)
Adv Appl Microbiol
, vol.92
, pp. 89-125
-
-
Kricka, W.1
Fitzpatrick, J.2
Bond, U.3
-
2
-
-
84882640990
-
Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
-
23524005,.; (): –.
-
Kim SR, Park YC, Jin YS, Seo JH, Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology advances. 2013;31(6):851–61. doi: 10.1016/j.biotechadv.2013.03.00423524005.
-
(2013)
Biotechnology advances
, vol.31
, Issue.6
, pp. 851-861
-
-
Kim, S.R.1
Park, Y.C.2
Jin, Y.S.3
Seo, J.H.4
-
3
-
-
67649757165
-
Yeast metabolic engineering for hemicellulosic ethanol production
-
19545992,.; (): –.
-
Van Vleet JH, Jeffries TW, Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol. 2009;20(3):300–6. doi: 10.1016/j.copbio.2009.06.00119545992.
-
(2009)
Curr Opin Biotechnol
, vol.20
, Issue.3
, pp. 300-306
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
-
4
-
-
33947191174
-
Towards industrial pentose-fermenting yeast strains
-
17294186,.; (): –.
-
Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF, Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol. 2007;74(5):937–53. doi: 10.1007/s00253-006-0827-217294186.
-
(2007)
Appl Microbiol Biotechnol
, vol.74
, Issue.5
, pp. 937-953
-
-
Hahn-Hagerdal, B.1
Karhumaa, K.2
Fonseca, C.3
Spencer-Martins, I.4
Gorwa-Grauslund, M.F.5
-
5
-
-
84862922807
-
Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives
-
22147620,.; (): –.
-
Cai Z, Zhang B, Li Y, Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J. 2012;7(1):34–46. doi: 10.1002/biot.20110005322147620.
-
(2012)
Biotechnol J
, vol.7
, Issue.1
, pp. 34-46
-
-
Cai, Z.1
Zhang, B.2
Li, Y.3
-
6
-
-
79956076724
-
A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation
-
20714780,.; (): –.
-
Bera AK, Ho NW, Khan A, Sedlak M, A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biotechnol. 2011;38(5):617–26. doi: 10.1007/s10295-010-0806-620714780.
-
(2011)
J Ind Microbiol Biotechnol
, vol.38
, Issue.5
, pp. 617-626
-
-
Bera, A.K.1
Ho, N.W.2
Khan, A.3
Sedlak, M.4
-
7
-
-
84879119602
-
Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
-
23800147,..; ():.; PubMed Central PMCID: PMCPMC3698012.
-
Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for biofuels. 2013;6(1):89. doi: 10.1186/1754-6834-6-8923800147; PubMed Central PMCID: PMCPMC3698012.
-
(2013)
Biotechnology for biofuels
, vol.6
, Issue.1
, pp. 89
-
-
Demeke, M.M.1
Dietz, H.2
Li, Y.3
Foulquie-Moreno, M.R.4
Mutturi, S.5
Deprez, S.6
-
8
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
23468911,..; ():.; PubMed Central PMCID: PMCPMC3582614.
-
Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PloS one. 2013;8(2):e57048. doi: 10.1371/journal.pone.005704823468911; PubMed Central PMCID: PMCPMC3582614.
-
(2013)
PloS one
, vol.8
, Issue.2
, pp. e57048
-
-
Kim, S.R.1
Skerker, J.M.2
Kang, W.3
Lesmana, A.4
Wei, N.5
Arkin, A.P.6
-
9
-
-
84955276048
-
Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
-
26781725,.;:.; PubMed Central PMCID: PMCPMC4726032.
-
Reider Apel A, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A, Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep. 2016;6:19512. doi: 10.1038/srep1951226781725; PubMed Central PMCID: PMCPMC4726032.
-
(2016)
Sci Rep
, vol.6
, pp. 19512
-
-
Reider Apel, A.1
Ouellet, M.2
Szmidt-Middleton, H.3
Keasling, J.D.4
Mukhopadhyay, A.5
-
10
-
-
84907192238
-
Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover
-
25222864,..; ():. PubMed Central PMCID: PMC4164640.
-
Parreiras LS, Breuer RJ, Avanasi Narasimhan R, Higbee AJ, La Reau A, Tremaine M, et al. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PloS one. 2014;9(9):e107499. PubMed Central PMCID: PMC4164640. doi: 10.1371/journal.pone.010749925222864
-
(2014)
PloS one
, vol.9
, Issue.9
, pp. e107499
-
-
Parreiras, L.S.1
Breuer, R.J.2
Avanasi Narasimhan, R.3
Higbee, A.J.4
La Reau, A.5
Tremaine, M.6
-
11
-
-
0028969384
-
Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae
-
7747971,.; (): –.; PubMed Central PMCID: PMCPMC167412.
-
Kuhn A, van Zyl C, van Tonder A, Prior BA, Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Applied and environmental microbiology. 1995;61(4):1580–5. 7747971; PubMed Central PMCID: PMCPMC167412.
-
(1995)
Applied and environmental microbiology
, vol.61
, Issue.4
, pp. 1580-1585
-
-
Kuhn, A.1
van Zyl, C.2
van Tonder, A.3
Prior, B.A.4
-
12
-
-
0032768193
-
Three genes whose expression is induced by stress in Saccharomyces cerevisiae
-
10407268,.; (): –.
-
Garay-Arroyo A, Covarrubias AA, Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast. 1999;15(10A):879–92. doi: 10.1002/(SICI)1097-0061(199907)15:10A<879::AID-YEA428>3.0.CO;2-Q10407268.
-
(1999)
Yeast
, vol.15
, Issue.10A
, pp. 879-892
-
-
Garay-Arroyo, A.1
Covarrubias, A.A.2
-
13
-
-
0035650510
-
Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes
-
11722921,.; (): –.; PubMed Central PMCID: PMCPMC93358.
-
Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hagerdal B, Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Applied and environmental microbiology. 2001;67(12):5668–74. doi: 10.1128/AEM.67.12.5668–5674.200111722921; PubMed Central PMCID: PMCPMC93358.
-
(2001)
Applied and environmental microbiology
, vol.67
, Issue.12
, pp. 5668-5674
-
-
Traff, K.L.1
Otero Cordero, R.R.2
van Zyl, W.H.3
Hahn-Hagerdal, B.4
-
14
-
-
85041544925
-
An evolutionary perspective on the Crabtree effect
-
25988158,.;:.; PubMed Central PMCID: PMCPMC4429655.
-
Pfeiffer T, Morley A, An evolutionary perspective on the Crabtree effect. Front Mol Biosci. 2014;1:17. doi: 10.3389/fmolb.2014.0001725988158; PubMed Central PMCID: PMCPMC4429655.
-
(2014)
Front Mol Biosci
, vol.1
, pp. 17
-
-
Pfeiffer, T.1
Morley, A.2
-
15
-
-
84866076360
-
Nutritional control of growth and development in yeast
-
22964838,.; (): –.; PubMed Central PMCID: PMCPMC3430547.
-
Broach JR, Nutritional control of growth and development in yeast. Genetics. 2012;192(1):73–105. doi: 10.1534/genetics.111.13573122964838; PubMed Central PMCID: PMCPMC3430547.
-
(2012)
Genetics
, vol.192
, Issue.1
, pp. 73-105
-
-
Broach, J.R.1
-
16
-
-
84896696867
-
Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae
-
24483210,.; (): –.; PubMed Central PMCID: PMC4238866.
-
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM, Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS microbiology reviews. 2014;38(2):254–99. doi: 10.1111/1574-6976.1206524483210; PubMed Central PMCID: PMC4238866.
-
(2014)
FEMS microbiology reviews
, vol.38
, Issue.2
, pp. 254-299
-
-
Conrad, M.1
Schothorst, J.2
Kankipati, H.N.3
Van Zeebroeck, G.4
Rubio-Texeira, M.5
Thevelein, J.M.6
-
17
-
-
44849104320
-
The early steps of glucose signalling in yeast
-
18559076,.; (): –.
-
Gancedo JM, The early steps of glucose signalling in yeast. FEMS microbiology reviews. 2008;32(4):673–704. doi: 10.1111/j.1574-6976.2008.00117.x18559076.
-
(2008)
FEMS microbiology reviews
, vol.32
, Issue.4
, pp. 673-704
-
-
Gancedo, J.M.1
-
18
-
-
38449110592
-
SNF1/AMPK pathways in yeast
-
17981722,.;: –.; PubMed Central PMCID: PMCPMC2685184.
-
Hedbacker K, Carlson M, SNF1/AMPK pathways in yeast. Front Biosci. 2008;13:2408–20. doi: 10.2741/285417981722; PubMed Central PMCID: PMCPMC2685184.
-
(2008)
Front Biosci
, vol.13
, pp. 2408-2420
-
-
Hedbacker, K.1
Carlson, M.2
-
19
-
-
84949194672
-
Glucose repression in Saccharomyces cerevisiae
-
26205245,.; ().; PubMed Central PMCID: PMCPMC4629793.
-
Kayikci O, Nielsen J, Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15(6). doi: 10.1093/femsyr/fov06826205245; PubMed Central PMCID: PMCPMC4629793.
-
(2015)
FEMS Yeast Res
, vol.15
, Issue.6
-
-
Kayikci, O.1
Nielsen, J.2
-
20
-
-
84881493545
-
The glucose signaling network in yeast
-
23911748,.; (): –.; PubMed Central PMCID: PMCPMC3785329.
-
Kim JH, Roy A, Jouandot D, 2ndCho KH, The glucose signaling network in yeast. Biochimica et biophysica acta. 2013;1830(11):5204–10. doi: 10.1016/j.bbagen.2013.07.02523911748; PubMed Central PMCID: PMCPMC3785329.
-
(2013)
Biochimica et biophysica acta
, vol.1830
, Issue.11
, pp. 5204-5210
-
-
Kim, J.H.1
Roy, A.2
Jouandot, D.3
Cho, K.H.4
-
21
-
-
58549084410
-
How Saccharomyces responds to nutrients
-
18303986,.;: –.
-
Zaman S, Lippman SI, Zhao X, Broach JR, How Saccharomyces responds to nutrients. Annu Rev Genet. 2008;42:27–81. doi: 10.1146/annurev.genet.41.110306.13020618303986.
-
(2008)
Annu Rev Genet
, vol.42
, pp. 27-81
-
-
Zaman, S.1
Lippman, S.I.2
Zhao, X.3
Broach, J.R.4
-
22
-
-
0032526715
-
Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae
-
9628870,..; (): –.; PubMed Central PMCID: PMCPMC1170671.
-
Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, et al. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 1998;17(12):3326–41. doi: 10.1093/emboj/17.12.33269628870; PubMed Central PMCID: PMCPMC1170671.
-
(1998)
EMBO J
, vol.17
, Issue.12
, pp. 3326-3341
-
-
Colombo, S.1
Ma, P.2
Cauwenberg, L.3
Winderickx, J.4
Crauwels, M.5
Teunissen, A.6
-
23
-
-
0037845131
-
Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase
-
12755632,.; (): –.
-
Dihazi H, Kessler R, Eschrich K, Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase. Biochemistry. 2003;42(20):6275–82. doi: 10.1021/bi034167r12755632.
-
(2003)
Biochemistry
, vol.42
, Issue.20
, pp. 6275-6282
-
-
Dihazi, H.1
Kessler, R.2
Eschrich, K.3
-
24
-
-
0037163019
-
In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase A
-
12063246,.; (): –.
-
Portela P, Howell S, Moreno S, Rossi S, In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase A. The Journal of biological chemistry. 2002;277(34):30477–87. doi: 10.1074/jbc.M20109420012063246.
-
(2002)
The Journal of biological chemistry
, vol.277
, Issue.34
, pp. 30477-30487
-
-
Portela, P.1
Howell, S.2
Moreno, S.3
Rossi, S.4
-
25
-
-
4644255309
-
The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms
-
15300954,.; (): –.
-
Cameroni E, Hulo N, Roosen J, Winderickx J, De Virgilio C, The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle. 2004;3(4):462–8. 15300954.
-
(2004)
Cell Cycle
, vol.3
, Issue.4
, pp. 462-468
-
-
Cameroni, E.1
Hulo, N.2
Roosen, J.3
Winderickx, J.4
De Virgilio, C.5
-
26
-
-
0342657757
-
Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1
-
10835355,.; (): –.; PubMed Central PMCID: PMCPMC212766.
-
Pedruzzi I, Burckert N, Egger P, De Virgilio C, Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J. 2000;19(11):2569–79. doi: 10.1093/emboj/19.11.256910835355; PubMed Central PMCID: PMCPMC212766.
-
(2000)
EMBO J
, vol.19
, Issue.11
, pp. 2569-2579
-
-
Pedruzzi, I.1
Burckert, N.2
Egger, P.3
De Virgilio, C.4
-
27
-
-
0032865543
-
Function and regulation of yeast hexose transporters
-
10477308,.; (): –.; PubMed Central PMCID: PMCPMC103746.
-
Ozcan S, Johnston M, Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev. 1999;63(3):554–69. 10477308; PubMed Central PMCID: PMCPMC103746.
-
(1999)
Microbiol Mol Biol Rev
, vol.63
, Issue.3
, pp. 554-569
-
-
Ozcan, S.1
Johnston, M.2
-
28
-
-
0029864499
-
Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression
-
8901598,.; (): –.; PubMed Central PMCID: PMCPMC38008.
-
Ozcan S, Dover J, Rosenwald AG, Wolfl S, Johnston M, Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(22):12428–32. doi: 10.1073/pnas.93.22.124288901598; PubMed Central PMCID: PMCPMC38008.
-
(1996)
Proceedings of the National Academy of Sciences of the United States of America
, vol.93
, Issue.22
, pp. 12428-12432
-
-
Ozcan, S.1
Dover, J.2
Rosenwald, A.G.3
Wolfl, S.4
Johnston, M.5
-
29
-
-
84933059966
-
Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production
-
25364804,..; (): –.; PubMed Central PMCID: PMC4202335.
-
Wohlbach DJ, Rovinskiy N, Lewis JA, Sardi M, Schackwitz WS, Martin JA, et al. Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production. Genome biology and evolution. 2014;6(9):2557–66. doi: 10.1093/gbe/evu19925364804; PubMed Central PMCID: PMC4202335.
-
(2014)
Genome biology and evolution
, vol.6
, Issue.9
, pp. 2557-2566
-
-
Wohlbach, D.J.1
Rovinskiy, N.2
Lewis, J.A.3
Sardi, M.4
Schackwitz, W.S.5
Martin, J.A.6
-
30
-
-
84973094111
-
Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research
-
27172212,..; (): –.; PubMed Central PMCID: PMCPMC4889671.
-
McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers KS, et al. Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research. G3 (Bethesda). 2016;6(6):1757–66. doi: 10.1534/g3.116.02938927172212; PubMed Central PMCID: PMCPMC4889671.
-
(2016)
G3 (Bethesda)
, vol.6
, Issue.6
, pp. 1757-1766
-
-
McIlwain, S.J.1
Peris, D.2
Sardi, M.3
Moskvin, O.V.4
Zhan, F.5
Myers, K.S.6
-
31
-
-
84867162776
-
Response to hyperosmotic stress
-
23028184,.; (): –.; PubMed Central PMCID: PMC3454867.
-
Saito H, Posas F, Response to hyperosmotic stress. Genetics. 2012;192(2):289–318. doi: 10.1534/genetics.112.14086323028184; PubMed Central PMCID: PMC3454867.
-
(2012)
Genetics
, vol.192
, Issue.2
, pp. 289-318
-
-
Saito, H.1
Posas, F.2
-
32
-
-
3142716203
-
Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function
-
15123690,.; (): –.
-
Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig EA, Marszalek J, Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. The Journal of biological chemistry. 2004;279(28):29167–74. doi: 10.1074/jbc.M40294720015123690.
-
(2004)
The Journal of biological chemistry
, vol.279
, Issue.28
, pp. 29167-29174
-
-
Dutkiewicz, R.1
Schilke, B.2
Cheng, S.3
Knieszner, H.4
Craig, E.A.5
Marszalek, J.6
-
33
-
-
68949128587
-
Function and biogenesis of iron-sulphur proteins
-
19675643,.; (): –.
-
Lill R, Function and biogenesis of iron-sulphur proteins. Nature. 2009;460(7257):831–8. doi: 10.1038/nature0830119675643.
-
(2009)
Nature
, vol.460
, Issue.7257
, pp. 831-838
-
-
Lill, R.1
-
34
-
-
0033621156
-
Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae
-
10468587,.; (): –.; PubMed Central PMCID: PMC17867.
-
Schilke B, Voisine C, Beinert H, Craig E, Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(18):10206–11. doi: 10.1073/pnas.96.18.1020610468587; PubMed Central PMCID: PMC17867.
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.18
, pp. 10206-10211
-
-
Schilke, B.1
Voisine, C.2
Beinert, H.3
Craig, E.4
-
35
-
-
84883132678
-
Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations
-
23873039,..; (): –.; PubMed Central PMCID: PMC3758440.
-
Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature. 2013;500(7464):571–4. doi: 10.1038/nature1234423873039; PubMed Central PMCID: PMC3758440.
-
(2013)
Nature
, vol.500
, Issue.7464
, pp. 571-574
-
-
Lang, G.I.1
Rice, D.P.2
Hickman, M.J.3
Sodergren, E.4
Weinstock, G.M.5
Botstein, D.6
-
36
-
-
0025232840
-
S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein
-
2178777,..; (): –.
-
Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, et al. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell. 1990;60(5):803–7. doi: 10.1016/0092-8674(90)90094-u2178777.
-
(1990)
Cell
, vol.60
, Issue.5
, pp. 803-807
-
-
Tanaka, K.1
Nakafuku, M.2
Satoh, T.3
Marshall, M.S.4
Gibbs, J.B.5
Matsumoto, K.6
-
37
-
-
0029664530
-
The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase
-
8649382,.; (): –.; PubMed Central PMCID: PMCPMC231265.
-
Luke MM, Della Seta F, Di Como CJ, Sugimoto H, Kobayashi R, Arndt KT, The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Molecular and cellular biology. 1996;16(6):2744–55. doi: 10.1128/mcb.16.6.27448649382; PubMed Central PMCID: PMCPMC231265.
-
(1996)
Molecular and cellular biology
, vol.16
, Issue.6
, pp. 2744-2755
-
-
Luke, M.M.1
Della Seta, F.2
Di Como, C.J.3
Sugimoto, H.4
Kobayashi, R.5
Arndt, K.T.6
-
38
-
-
0036228296
-
Protein phosphatase 2A on track for nutrient-induced signalling in yeast
-
11929536,.; (): –.
-
Zabrocki P, Van Hoof C, Goris J, Thevelein JM, Winderickx J, Wera S, Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Molecular microbiology. 2002;43(4):835–42. doi: 10.1046/j.1365-2958.2002.02786.x11929536.
-
(2002)
Molecular microbiology
, vol.43
, Issue.4
, pp. 835-842
-
-
Zabrocki, P.1
Van Hoof, C.2
Goris, J.3
Thevelein, J.M.4
Winderickx, J.5
Wera, S.6
-
39
-
-
33745199375
-
The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2
-
16793550,.; (): –.
-
Harashima T, Anderson S, Yates JR, 3rdHeitman J, The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Molecular cell. 2006;22(6):819–30. doi: 10.1016/j.molcel.2006.05.01116793550.
-
(2006)
Molecular cell
, vol.22
, Issue.6
, pp. 819-830
-
-
Harashima, T.1
Anderson, S.2
Yates, J.R.3
Heitman, J.4
-
40
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
9483801,..; (): –.
-
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14(2):115–32. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2–29483801.
-
(1998)
Yeast
, vol.14
, Issue.2
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
-
41
-
-
80054890771
-
Effect of auxotrophies on yeast performance in aerated fed-batch reactor
-
21986533,.; (): –.
-
Landi C, Paciello L, de Alteriis E, Brambilla L, Parascandola P, Effect of auxotrophies on yeast performance in aerated fed-batch reactor. Biochem Biophys Res Commun. 2011;414(3):604–11. doi: 10.1016/j.bbrc.2011.09.12921986533.
-
(2011)
Biochem Biophys Res Commun
, vol.414
, Issue.3
, pp. 604-611
-
-
Landi, C.1
Paciello, L.2
de Alteriis, E.3
Brambilla, L.4
Parascandola, P.5
-
42
-
-
0033856888
-
Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
-
10919795,.; (): –.; PubMed Central PMCID: PMCPMC92159.
-
Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B, Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Applied and environmental microbiology. 2000;66(8):3381–6. doi: 10.1128/aem.66.8.3381-3386.200010919795; PubMed Central PMCID: PMCPMC92159.
-
(2000)
Applied and environmental microbiology
, vol.66
, Issue.8
, pp. 3381-3386
-
-
Eliasson, A.1
Christensson, C.2
Wahlbom, C.F.3
Hahn-Hagerdal, B.4
-
43
-
-
0033637153
-
Genomic expression programs in the response of yeast cells to environmental changes
-
11102521,..; (): –.; PubMed Central PMCID: PMCPMC15070.
-
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell. 2000;11(12):4241–57. doi: 10.1091/mbc.11.12.424111102521; PubMed Central PMCID: PMCPMC15070.
-
(2000)
Molecular biology of the cell
, vol.11
, Issue.12
, pp. 4241-4257
-
-
Gasch, A.P.1
Spellman, P.T.2
Kao, C.M.3
Carmel-Harel, O.4
Eisen, M.B.5
Storz, G.6
-
44
-
-
38749112941
-
Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast
-
17959824,..; (): –.; PubMed Central PMCID: PMCPMC2174172.
-
Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Molecular biology of the cell. 2008;19(1):352–67. doi: 10.1091/mbc.E07-08-077917959824; PubMed Central PMCID: PMCPMC2174172.
-
(2008)
Molecular biology of the cell
, vol.19
, Issue.1
, pp. 352-367
-
-
Brauer, M.J.1
Huttenhower, C.2
Airoldi, E.M.3
Rosenstein, R.4
Matese, J.C.5
Gresham, D.6
-
45
-
-
18244376808
-
Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures
-
15758028,.; (): –.; PubMed Central PMCID: PMCPMC1087253.
-
Brauer MJ, Saldanha AJ, Dolinski K, Botstein D, Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Molecular biology of the cell. 2005;16(5):2503–17. doi: 10.1091/mbc.E04-11-096815758028; PubMed Central PMCID: PMCPMC1087253.
-
(2005)
Molecular biology of the cell
, vol.16
, Issue.5
, pp. 2503-2517
-
-
Brauer, M.J.1
Saldanha, A.J.2
Dolinski, K.3
Botstein, D.4
-
46
-
-
33845935641
-
Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae
-
17105650,..; ():.; PubMed Central PMCID: PMCPMC1794586.
-
Regenberg B, Grotkjaer T, Winther O, Fausboll A, Akesson M, Bro C, et al. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol. 2006;7(11):R107. doi: 10.1186/gb-2006-7-11-r10717105650; PubMed Central PMCID: PMCPMC1794586.
-
(2006)
Genome Biol
, vol.7
, Issue.11
, pp. R107
-
-
Regenberg, B.1
Grotkjaer, T.2
Winther, O.3
Fausboll, A.4
Akesson, M.5
Bro, C.6
-
47
-
-
84922613720
-
Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships
-
25546499,..; (): –.
-
Jin K, Musso G, Vlasblom J, Jessulat M, Deineko V, Negroni J, et al. Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships. J Proteome Res. 2015;14(2):1220–37. doi: 10.1021/pr501148q25546499.
-
(2015)
J Proteome Res
, vol.14
, Issue.2
, pp. 1220-1237
-
-
Jin, K.1
Musso, G.2
Vlasblom, J.3
Jessulat, M.4
Deineko, V.5
Negroni, J.6
-
48
-
-
84930673421
-
Pathway connectivity and signaling coordination in the yeast stress-activated signaling network
-
25411400,..;:.; PubMed Central PMCID: PMCPMC4299600.
-
Chasman D, Ho YH, Berry DB, Nemec CM, MacGilvray ME, Hose J, et al. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. Molecular systems biology. 2014;10:759. doi: 10.15252/msb.2014512025411400; PubMed Central PMCID: PMCPMC4299600.
-
(2014)
Molecular systems biology
, vol.10
, pp. 759
-
-
Chasman, D.1
Ho, Y.H.2
Berry, D.B.3
Nemec, C.M.4
MacGilvray, M.E.5
Hose, J.6
-
49
-
-
0033569790
-
A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2
-
10523302,.; (): –.; PubMed Central PMCID: PMCPMC1171626.
-
Versele M, de Winde JH, Thevelein JM, A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J. 1999;18(20):5577–91. doi: 10.1093/emboj/18.20.557710523302; PubMed Central PMCID: PMCPMC1171626.
-
(1999)
EMBO J
, vol.18
, Issue.20
, pp. 5577-5591
-
-
Versele, M.1
de Winde, J.H.2
Thevelein, J.M.3
-
50
-
-
0031734864
-
Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae
-
10094633,.; (): –.
-
Geymonat M, Wang L, Garreau H, Jacquet M, Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Molecular microbiology. 1998;30(4):855–64. doi: 10.1046/j.1365-2958.1998.01118.x10094633.
-
(1998)
Molecular microbiology
, vol.30
, Issue.4
, pp. 855-864
-
-
Geymonat, M.1
Wang, L.2
Garreau, H.3
Jacquet, M.4
-
51
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
12213924,.; (): –.
-
Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E, Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology. 2002;148(Pt 9):2783–8. doi: 10.1099/00221287-148-9-278312213924.
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gardonyi, M.3
Hahn-Hagerdal, B.4
Boles, E.5
-
52
-
-
16244386203
-
The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae
-
15773992,.; (): –.
-
Aguilera J, Rodriguez-Vargas S, Prieto JA, The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Molecular microbiology. 2005;56(1):228–39. doi: 10.1111/j.1365-2958.2005.04533.x15773992.
-
(2005)
Molecular microbiology
, vol.56
, Issue.1
, pp. 228-239
-
-
Aguilera, J.1
Rodriguez-Vargas, S.2
Prieto, J.A.3
-
53
-
-
34248195476
-
Endogenous synthesis of coenzyme Q in eukaryotes
-
17482885,.; Suppl: –.; PubMed Central PMCID: PMCPMC1974887.
-
Tran UC, Clarke CF, Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion. 2007;7 Suppl:S62–71. doi: 10.1016/j.mito.2007.03.00717482885; PubMed Central PMCID: PMCPMC1974887.
-
(2007)
Mitochondrion
, vol.7
, pp. S62-71
-
-
Tran, U.C.1
Clarke, C.F.2
-
54
-
-
56149104649
-
Cytochrome c oxidase biogenesis: new levels of regulation
-
18465791,.; (): –.; PubMed Central PMCID: PMCPMC2630494.
-
Fontanesi F, Soto IC, Barrientos A, Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life. 2008;60(9):557–68. doi: 10.1002/iub.8618465791; PubMed Central PMCID: PMCPMC2630494.
-
(2008)
IUBMB Life
, vol.60
, Issue.9
, pp. 557-568
-
-
Fontanesi, F.1
Soto, I.C.2
Barrientos, A.3
-
55
-
-
84886406190
-
Metabolic remodeling in frataxin-deficient yeast is mediated by Cth2 and Adr1
-
24100161,.; (): –.
-
Moreno-Cermeno A, Alsina D, Cabiscol E, Tamarit J, Ros J, Metabolic remodeling in frataxin-deficient yeast is mediated by Cth2 and Adr1. Biochimica et biophysica acta. 2013;1833(12):3326–37. doi: 10.1016/j.bbamcr.2013.09.01924100161.
-
(2013)
Biochimica et biophysica acta
, vol.1833
, Issue.12
, pp. 3326-3337
-
-
Moreno-Cermeno, A.1
Alsina, D.2
Cabiscol, E.3
Tamarit, J.4
Ros, J.5
-
56
-
-
0035697196
-
Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae
-
11748728,.; (): –.
-
Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K, Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast. 2001;18(16):1515–24. doi: 10.1002/yea.77911748728.
-
(2001)
Yeast
, vol.18
, Issue.16
, pp. 1515-1524
-
-
Diderich, J.A.1
Schuurmans, J.M.2
Van Gaalen, M.C.3
Kruckeberg, A.L.4
Van Dam, K.5
-
57
-
-
0242380642
-
Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae
-
12853606,.; (): –.; PubMed Central PMCID: PMCPMC165961.
-
Rasmussen AK, Chatterjee A, Rasmussen LJ, Singh KK, Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic acids research. 2003;31(14):3909–17. doi: 10.1093/nar/gkg44612853606; PubMed Central PMCID: PMCPMC165961.
-
(2003)
Nucleic acids research
, vol.31
, Issue.14
, pp. 3909-3917
-
-
Rasmussen, A.K.1
Chatterjee, A.2
Rasmussen, L.J.3
Singh, K.K.4
-
58
-
-
46349094089
-
Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae
-
18533012,.;:.; PubMed Central PMCID: PMCPMC2435516.
-
Salusjarvi L, Kankainen M, Soliymani R, Pitkanen JP, Penttila M, Ruohonen L, Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microbial cell factories. 2008;7:18. doi: 10.1186/1475-2859-7-1818533012; PubMed Central PMCID: PMCPMC2435516.
-
(2008)
Microbial cell factories
, vol.7
, pp. 18
-
-
Salusjarvi, L.1
Kankainen, M.2
Soliymani, R.3
Pitkanen, J.P.4
Penttila, M.5
Ruohonen, L.6
-
59
-
-
84863618228
-
Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
-
22487265,.; (): –.
-
Scalcinati G, Otero JM, Van Vleet JR, Jeffries TW, Olsson L, Nielsen J, Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012;12(5):582–97. doi: 10.1111/j.1567-1364.2012.00808.x22487265.
-
(2012)
FEMS Yeast Res
, vol.12
, Issue.5
, pp. 582-597
-
-
Scalcinati, G.1
Otero, J.M.2
Van Vleet, J.R.3
Jeffries, T.W.4
Olsson, L.5
Nielsen, J.6
-
60
-
-
84953410315
-
Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures
-
26454869,..; (): –.
-
Alff-Tuomala S, Salusjarvi L, Barth D, Oja M, Penttila M, Pitkanen JP, et al. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol. 2016;100(2):969–85. doi: 10.1007/s00253-015-7038-726454869.
-
(2016)
Appl Microbiol Biotechnol
, vol.100
, Issue.2
, pp. 969-985
-
-
Alff-Tuomala, S.1
Salusjarvi, L.2
Barth, D.3
Oja, M.4
Penttila, M.5
Pitkanen, J.P.6
-
61
-
-
84892934934
-
Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose
-
24467867,.;:.; PubMed Central PMCID: PMCPMC3917370.
-
Matsushika A, Goshima T, Hoshino T, Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial cell factories. 2014;13:16. doi: 10.1186/1475-2859-13-1624467867; PubMed Central PMCID: PMCPMC3917370.
-
(2014)
Microbial cell factories
, vol.13
, pp. 16
-
-
Matsushika, A.1
Goshima, T.2
Hoshino, T.3
-
62
-
-
84895734196
-
Coordination of gene expression and growth-rate in natural populations of budding yeast
-
24533150,.; ():.; PubMed Central PMCID: PMCPMC3923061.
-
Tamari Z, Rosin D, Voichek Y, Barkai N, Coordination of gene expression and growth-rate in natural populations of budding yeast. PloS one. 2014;9(2):e88801. doi: 10.1371/journal.pone.008880124533150; PubMed Central PMCID: PMCPMC3923061.
-
(2014)
PloS one
, vol.9
, Issue.2
, pp. e88801
-
-
Tamari, Z.1
Rosin, D.2
Voichek, Y.3
Barkai, N.4
-
63
-
-
84876941987
-
Mechanisms of mitochondrial translational regulation
-
23554047,.; (): –.
-
Fontanesi F, Mechanisms of mitochondrial translational regulation. IUBMB Life. 2013;65(5):397–408. doi: 10.1002/iub.115623554047.
-
(2013)
IUBMB Life
, vol.65
, Issue.5
, pp. 397-408
-
-
Fontanesi, F.1
-
64
-
-
84870489803
-
A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis
-
23217259,.; (): –.; PubMed Central PMCID: PMCPMC3523284.
-
Soto IC, Fontanesi F, Myers RS, Hamel P, Barrientos A, A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis. Cell Metab. 2012;16(6):801–13. doi: 10.1016/j.cmet.2012.10.01823217259; PubMed Central PMCID: PMCPMC3523284.
-
(2012)
Cell Metab
, vol.16
, Issue.6
, pp. 801-813
-
-
Soto, I.C.1
Fontanesi, F.2
Myers, R.S.3
Hamel, P.4
Barrientos, A.5
-
65
-
-
75749130711
-
Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase
-
19995914,.; (): –.; PubMed Central PMCID: PMCPMC2815561.
-
Khalimonchuk O, Bestwick M, Meunier B, Watts TC, Winge DR, Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase. Molecular and cellular biology. 2010;30(4):1004–17. doi: 10.1128/MCB.00640-0919995914; PubMed Central PMCID: PMCPMC2815561.
-
(2010)
Molecular and cellular biology
, vol.30
, Issue.4
, pp. 1004-1017
-
-
Khalimonchuk, O.1
Bestwick, M.2
Meunier, B.3
Watts, T.C.4
Winge, D.R.5
-
66
-
-
84867233300
-
Metabolic activation of the HOG MAP kinase pathway by Snf1/AMPK regulates lipid signaling at the Golgi
-
22882253,.; (): –.; PubMed Central PMCID: PMCPMC3465495.
-
Piao H, MacLean Freed J, Mayinger P, Metabolic activation of the HOG MAP kinase pathway by Snf1/AMPK regulates lipid signaling at the Golgi. Traffic. 2012;13(11):1522–31. doi: 10.1111/j.1600-0854.2012.01406.x22882253; PubMed Central PMCID: PMCPMC3465495.
-
(2012)
Traffic
, vol.13
, Issue.11
, pp. 1522-1531
-
-
Piao, H.1
MacLean Freed, J.2
Mayinger, P.3
-
67
-
-
84944348615
-
Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway
-
26340004,.; ():.; PubMed Central PMCID: PMCPMC4560374.
-
Vallejo MC, Mayinger P, Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway. PloS one. 2015;10(9):e0137199. doi: 10.1371/journal.pone.013719926340004; PubMed Central PMCID: PMCPMC4560374.
-
(2015)
PloS one
, vol.10
, Issue.9
, pp. e0137199
-
-
Vallejo, M.C.1
Mayinger, P.2
-
68
-
-
84943535515
-
The Saccharomyces cerevisiae AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response
-
26394309,.; ():.; PubMed Central PMCID: PMCPMC4578879.
-
Mizuno T, Masuda Y, Irie K, The Saccharomyces cerevisiae AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response. PLoS genetics. 2015;11(9):e1005491. doi: 10.1371/journal.pgen.100549126394309; PubMed Central PMCID: PMCPMC4578879.
-
(2015)
PLoS genetics
, vol.11
, Issue.9
, pp. e1005491
-
-
Mizuno, T.1
Masuda, Y.2
Irie, K.3
-
69
-
-
33847710318
-
Dissecting yeast Hog1 MAP kinase pathway using a chemical genetic approach
-
17346711,.; (): –.
-
Kim S, Shah K, Dissecting yeast Hog1 MAP kinase pathway using a chemical genetic approach. FEBS Lett. 2007;581(6):1209–16. doi: 10.1016/j.febslet.2007.02.03217346711.
-
(2007)
FEBS Lett
, vol.581
, Issue.6
, pp. 1209-1216
-
-
Kim, S.1
Shah, K.2
-
70
-
-
33645130011
-
Glucose signaling in Saccharomyces cerevisiae
-
16524925,.; (): –.; PubMed Central PMCID: PMCPMC1393250.
-
Santangelo GM, Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006;70(1):253–82. doi: 10.1128/MMBR.70.1.253–282.200616524925; PubMed Central PMCID: PMCPMC1393250.
-
(2006)
Microbiol Mol Biol Rev
, vol.70
, Issue.1
, pp. 253-282
-
-
Santangelo, G.M.1
-
71
-
-
84888213196
-
Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment
-
24278038,.; ():.; PubMed Central PMCID: PMC3836717.
-
Kvitek DJ, Sherlock G, Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS genetics. 2013;9(11):e1003972. doi: 10.1371/journal.pgen.100397224278038; PubMed Central PMCID: PMC3836717.
-
(2013)
PLoS genetics
, vol.9
, Issue.11
, pp. e1003972
-
-
Kvitek, D.J.1
Sherlock, G.2
-
72
-
-
84922851448
-
Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
-
25170344,.; ():.; PubMed Central PMCID: PMCPMC4147937.
-
Lee SM, Jellison T, Alper HS, Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnology for biofuels. 2014;7(1):122. doi: 10.1186/s13068-014-0122-x25170344; PubMed Central PMCID: PMCPMC4147937.
-
(2014)
Biotechnology for biofuels
, vol.7
, Issue.1
, pp. 122
-
-
Lee, S.M.1
Jellison, T.2
Alper, H.S.3
-
73
-
-
84954457527
-
Disruption of PHO13 improves ethanol production via the xylose isomerase pathway
-
26769491,.; ():.; PubMed Central PMCID: PMCPMC4713403.
-
Bamba T, Hasunuma T, Kondo A, Disruption of PHO13 improves ethanol production via the xylose isomerase pathway. AMB Express. 2016;6(1):4. doi: 10.1186/s13568-015-0175-726769491; PubMed Central PMCID: PMCPMC4713403.
-
(2016)
AMB Express
, vol.6
, Issue.1
, pp. 4
-
-
Bamba, T.1
Hasunuma, T.2
Kondo, A.3
-
74
-
-
79952181277
-
Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae
-
21305697,.; (): –.
-
Almeida JR, Runquist D, Sanchez i Nogue V, Liden G, Gorwa-Grauslund MF, Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J. 2011;6(3):286–99. doi: 10.1002/biot.20100030121305697.
-
(2011)
Biotechnol J
, vol.6
, Issue.3
, pp. 286-299
-
-
Almeida, J.R.1
Runquist, D.2
Sanchez i Nogue, V.3
Liden, G.4
Gorwa-Grauslund, M.F.5
-
75
-
-
84897953198
-
Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors
-
24672514,..;:.; PubMed Central PMCID: PMC3954026.
-
Piotrowski JS, Zhang Y, Bates DM, Keating DH, Sato TK, Ong IM, et al. Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Frontiers in microbiology. 2014;5:90. doi: 10.3389/fmicb.2014.0009024672514; PubMed Central PMCID: PMC3954026.
-
(2014)
Frontiers in microbiology
, vol.5
, pp. 90
-
-
Piotrowski, J.S.1
Zhang, Y.2
Bates, D.M.3
Keating, D.H.4
Sato, T.K.5
Ong, I.M.6
-
76
-
-
84883114857
-
Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
-
23971950,.; ():.; PubMed Central PMCID: PMCPMC3765968.
-
Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquie-Moreno MR, Thevelein JM, Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnology for biofuels. 2013;6(1):120. doi: 10.1186/1754-6834-6-12023971950; PubMed Central PMCID: PMCPMC3765968.
-
(2013)
Biotechnology for biofuels
, vol.6
, Issue.1
, pp. 120
-
-
Demeke, M.M.1
Dumortier, F.2
Li, Y.3
Broeckx, T.4
Foulquie-Moreno, M.R.5
Thevelein, J.M.6
-
77
-
-
84864575136
-
Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
-
22578262,.; ():.; PubMed Central PMCID: PMCPMC3408370.
-
Koppram R, Albers E, Olsson L, Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnology for biofuels. 2012;5(1):32. doi: 10.1186/1754-6834-5-3222578262; PubMed Central PMCID: PMCPMC3408370.
-
(2012)
Biotechnology for biofuels
, vol.5
, Issue.1
, pp. 32
-
-
Koppram, R.1
Albers, E.2
Olsson, L.3
-
78
-
-
0036275447
-
Getting started with yeast
-
12073320,.;: –.
-
Sherman F, Getting started with yeast. Methods in enzymology. 2002;350:3–41. doi: 10.1016/s0076-6879(02)50954-x12073320.
-
(2002)
Methods in enzymology
, vol.350
, pp. 3-41
-
-
Sherman, F.1
-
80
-
-
0029994841
-
A new efficient gene disruption cassette for repeated use in budding yeast
-
8692690,.; (): –.; PubMed Central PMCID: PMC145975.
-
Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH, A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic acids research. 1996;24(13):2519–24. doi: 10.1093/nar/24.13.25198692690; PubMed Central PMCID: PMC145975.
-
(1996)
Nucleic acids research
, vol.24
, Issue.13
, pp. 2519-2524
-
-
Guldener, U.1
Heck, S.2
Fielder, T.3
Beinhauer, J.4
Hegemann, J.H.5
-
81
-
-
84960110043
-
Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces
-
26555931,.;: –.; PubMed Central PMCID: PMCPMC4789119.
-
Alexander WG, Peris D, Pfannenstiel BT, Opulente DA, Kuang M, Hittinger CT, Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces. Fungal Genet Biol. 2016;89:10–7. doi: 10.1016/j.fgb.2015.11.00226555931; PubMed Central PMCID: PMCPMC4789119.
-
(2016)
Fungal Genet Biol
, vol.89
, pp. 10-17
-
-
Alexander, W.G.1
Peris, D.2
Pfannenstiel, B.T.3
Opulente, D.A.4
Kuang, M.5
Hittinger, C.T.6
-
82
-
-
33746753342
-
Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast
-
16901791,..; (): –.
-
Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell. 2006;126(3):611–25. doi: 10.1016/j.cell.2006.06.04016901791.
-
(2006)
Cell
, vol.126
, Issue.3
, pp. 611-625
-
-
Parsons, A.B.1
Lopez, A.2
Givoni, I.E.3
Williams, D.E.4
Gray, C.A.5
Porter, J.6
-
83
-
-
34347206860
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
17401334,.; (): –.
-
Gietz RD, Schiestl RH, High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature protocols. 2007;2(1):31–4. doi: 10.1038/nprot.2007.1317401334.
-
(2007)
Nature protocols
, vol.2
, Issue.1
, pp. 31-34
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
84
-
-
84897000131
-
The reference genome sequence of Saccharomyces cerevisiae: then and now
-
24374639,..; (): –.; PubMed Central PMCID: PMCPMC3962479.
-
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, et al. The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014;4(3):389–98. doi: 10.1534/g3.113.00899524374639; PubMed Central PMCID: PMCPMC3962479.
-
(2014)
G3 (Bethesda)
, vol.4
, Issue.3
, pp. 389-398
-
-
Engel, S.R.1
Dietrich, F.S.2
Fisk, D.G.3
Binkley, G.4
Balakrishnan, R.5
Costanzo, M.C.6
-
85
-
-
77956295988
-
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
-
20644199,..; (): –.; PubMed Central PMCID: PMC2928508.
-
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research. 2010;20(9):1297–303. doi: 10.1101/gr.107524.11020644199; PubMed Central PMCID: PMC2928508.
-
(2010)
Genome research
, vol.20
, Issue.9
, pp. 1297-1303
-
-
McKenna, A.1
Hanna, M.2
Banks, E.3
Sivachenko, A.4
Cibulskis, K.5
Kernytsky, A.6
-
86
-
-
84859210032
-
Fast gapped-read alignment with Bowtie 2
-
22388286,.; (): –.; PubMed Central PMCID: PMCPMC3322381.
-
Langmead B, Salzberg SL, Fast gapped-read alignment with Bowtie 2. Nature methods. 2012;9(4):357–9. doi: 10.1038/nmeth.192322388286; PubMed Central PMCID: PMCPMC3322381.
-
(2012)
Nature methods
, vol.9
, Issue.4
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.L.2
-
87
-
-
84861114172
-
Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen
-
22389370,..; (): –.; PubMed Central PMCID: PMC3346445.
-
Schwalbach MS, Keating DH, Tremaine M, Marner WD, Zhang Y, Bothfeld W, et al. Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen. Applied and environmental microbiology. 2012;78(9):3442–57. doi: 10.1128/AEM.07329-1122389370; PubMed Central PMCID: PMC3346445.
-
(2012)
Applied and environmental microbiology
, vol.78
, Issue.9
, pp. 3442-3457
-
-
Schwalbach, M.S.1
Keating, D.H.2
Tremaine, M.3
Marner, W.D.4
Zhang, Y.5
Bothfeld, W.6
-
88
-
-
84891815508
-
The one hour yeast proteome
-
24143002,..; (): –.; PubMed Central PMCID: PMCPMC3879625.
-
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, et al. The one hour yeast proteome. Mol Cell Proteomics. 2014;13(1):339–47. doi: 10.1074/mcp.M113.03476924143002; PubMed Central PMCID: PMCPMC3879625.
-
(2014)
Mol Cell Proteomics
, vol.13
, Issue.1
, pp. 339-347
-
-
Hebert, A.S.1
Richards, A.L.2
Bailey, D.J.3
Ulbrich, A.4
Coughlin, E.E.5
Westphall, M.S.6
-
89
-
-
84907197082
-
Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
-
24942700,.; (): –.; PubMed Central PMCID: PMCPMC4159666.
-
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26. doi: 10.1074/mcp.M113.03159124942700; PubMed Central PMCID: PMCPMC4159666.
-
(2014)
Mol Cell Proteomics
, vol.13
, Issue.9
, pp. 2513-2526
-
-
Cox, J.1
Hein, M.Y.2
Luber, C.A.3
Paron, I.4
Nagaraj, N.5
Mann, M.6
-
90
-
-
57449099865
-
MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
-
19029910,.; (): –.
-
Cox J, Mann M, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. doi: 10.1038/nbt.151119029910.
-
(2008)
Nat Biotechnol
, vol.26
, Issue.12
, pp. 1367-1372
-
-
Cox, J.1
Mann, M.2
-
91
-
-
84973094111
-
Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae used in Biofuels Research
-
27172212,...
-
McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers K, et al. Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae used in Biofuels Research. G3 (Bethesda). 2016. doi: 10.1534/g3.116.02938927172212.
-
(2016)
G3 (Bethesda)
-
-
McIlwain, S.J.1
Peris, D.2
Sardi, M.3
Moskvin, O.V.4
Zhan, F.5
Myers, K.6
-
92
-
-
33847630405
-
Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry
-
17327847,.; (): –.
-
Elias JE, Gygi SP, Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature methods. 2007;4(3):207–14. doi: 10.1038/nmeth101917327847.
-
(2007)
Nature methods
, vol.4
, Issue.3
, pp. 207-214
-
-
Elias, J.E.1
Gygi, S.P.2
-
93
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
19910308,.; (): –.; PubMed Central PMCID: PMCPMC2796818.
-
Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp61619910308; PubMed Central PMCID: PMCPMC2796818.
-
(2010)
Bioinformatics
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
94
-
-
0013203966
-
FunSpec: a web-based cluster interpreter for yeast
-
12431279,.;:.; PubMed Central PMCID: PMCPMC139976.
-
Robinson MD, Grigull J, Mohammad N, Hughes TR, FunSpec: a web-based cluster interpreter for yeast. BMC bioinformatics. 2002;3:35. 12431279; PubMed Central PMCID: PMCPMC139976.
-
(2002)
BMC bioinformatics
, vol.3
, pp. 35
-
-
Robinson, M.D.1
Grigull, J.2
Mohammad, N.3
Hughes, T.R.4
-
95
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
9843981,.; (): –.; PubMed Central PMCID: PMCPMC24541.
-
Eisen MB, Spellman PT, Brown PO, Botstein D, Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(25):14863–8. doi: 10.1073/pnas.95.25.148639843981; PubMed Central PMCID: PMCPMC24541.
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.25
, pp. 14863-14868
-
-
Eisen, M.B.1
Spellman, P.T.2
Brown, P.O.3
Botstein, D.4
|