-
1
-
-
84857660885
-
Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S cerevisiae ADY2 promoter
-
Abate G, Bastonini E, Braun KA, et al. Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S. cerevisiae ADY2 promoter. BBA-Gene Regul Mech 2012;1819:419-27.
-
(2012)
BBA-Gene Regul Mech
, vol.1819
, pp. 419-427
-
-
Abate, G.1
Bastonini, E.2
Braun, K.A.3
-
2
-
-
3042857554
-
Common chromatin Architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae
-
Agricola E, Verdone L, Xella B, et al. Common chromatin Architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae. Biochemistry 2004;43:8878-84.
-
(2004)
Biochemistry
, vol.43
, pp. 8878-8884
-
-
Agricola, E.1
Verdone, L.2
Xella, B.3
-
3
-
-
33947493105
-
Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution
-
Ahuatzi D, Riera A, Pelaez R, et al. Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 2007;282:4485-93.
-
(2007)
J Biol Chem
, vol.282
, pp. 4485-4493
-
-
Ahuatzi, D.1
Riera, A.2
Peĺaez, R.3
-
4
-
-
34848843526
-
Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1
-
Amodeo GA, Rudolph MJ, Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 2007;449:492-5.
-
(2007)
Nature
, vol.449
, pp. 492-495
-
-
Amodeo, G.A.1
Rudolph, M.J.2
Tong, L.3
-
5
-
-
84899724708
-
Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels
-
Bendrioua L, Smedh M, Almquist J, et al. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem 2014;289:12863-75.
-
(2014)
J Biol Chem
, vol.289
, pp. 12863-12875
-
-
Bendrioua, L.1
Smedh, M.2
Almquist, J.3
-
6
-
-
39049121209
-
Adr1 and Cat8 mediate coactivator recruitment and chromatin remodeling at glucoseregulated genes
-
Biddick RK, Law GL, Young ET. Adr1 and Cat8 mediate coactivator recruitment and chromatin remodeling at glucoseregulated genes. PLoS One 2008;3:e1436.
-
(2008)
PLoS One
, vol.3
, pp. e1436
-
-
Biddick, R.K.1
Law, G.L.2
Young, E.T.3
-
7
-
-
84908892437
-
Coupling mRNA synthesis and decay
-
Braun KA, Young ET. Coupling mRNA synthesis and decay. Mol Cell Biol 2014;34:4078-87.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 4078-4087
-
-
Braun, K.A.1
Young, E.T.2
-
8
-
-
0019566797
-
Mutants of yeast defective in sucrose utilization
-
CarlsonM, Osmond BC, Botstein D. Mutants of yeast defective in sucrose utilization. Genetics 1981;98:25-40.
-
(1981)
Genetics
, vol.98
, pp. 25-40
-
-
Carlson, M.1
Osmond, B.C.2
Botstein, D.3
-
9
-
-
84861840057
-
Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast
-
Castermans D, Somers I, Kriel J, et al. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res 2012;22:1058-77.
-
(2012)
Cell Res
, vol.22
, pp. 1058-1077
-
-
Castermans, D.1
Somers, I.2
Kriel, J.3
-
10
-
-
0024343258
-
Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein
-
Celenza JL, Carlson M. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol Cell Biol 1989;9:5034-44.
-
(1989)
Mol Cell Biol
, vol.9
, pp. 5034-5044
-
-
Celenza, J.L.1
Carlson, M.2
-
11
-
-
84887618970
-
Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks
-
Chen Y, Nielsen J. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 2013;24:965-72.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 965-972
-
-
Chen, Y.1
Nielsen, J.2
-
12
-
-
77953414533
-
Snf1 promotes phosphorylation of the subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4
-
Cherkasova V, Qiu H, Hinnebusch AG. Snf1 promotes phosphorylation of the subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4. Mol Cell Biol 2010;30:2862-73.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 2862-2873
-
-
Cherkasova, V.1
Qiu, H.2
Hinnebusch, A.G.3
-
13
-
-
85027943094
-
Yeast synthetic biology for high-value metabolites
-
Dai Z, Liu Y, Guo J, et al. Yeast synthetic biology for high-value metabolites. FEMS Yeast Res 2015;15:1-11.
-
(2015)
FEMS Yeast Res
, vol.15
, pp. 1-11
-
-
Dai, Z.1
Liu, Y.2
Guo, J.3
-
14
-
-
28644434811
-
A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation
-
De Wever V, Reiter W, Ballarini A, et al. A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J 2005;24:4115-23.
-
(2005)
EMBO J
, vol.24
, pp. 4115-4123
-
-
De Wever, V.1
Reiter, W.2
Ballarini, A.3
-
15
-
-
0034677988
-
Two distinct nucleosome alterations characterize chromatin remodeling at the Saccharomyces cerevisiae ADH2 promoter
-
Di Mauro E. Two distinct nucleosome alterations characterize chromatin remodeling at the Saccharomyces cerevisiae ADH2 promoter. J Biol Chem 2000;275:7612-8.
-
(2000)
J Biol Chem
, vol.275
, pp. 7612-7618
-
-
Di Mauro, E.1
-
16
-
-
4644360186
-
The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae
-
Dombek KM, Kacherovsky N, Young ET. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae. J Biol Chem 2004;279:39165-74.
-
(2004)
J Biol Chem
, vol.279
, pp. 39165-39174
-
-
Dombek, K.M.1
Kacherovsky, N.2
Young, E.T.3
-
17
-
-
0026343742
-
The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase
-
Feng ZH, Wilson SE, Peng ZY, et al. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J Biol Chem 1991;266:23796-801.
-
(1991)
J Biol Chem
, vol.266
, pp. 23796-23801
-
-
Feng, Z.H.1
Wilson, S.E.2
Peng, Z.Y.3
-
18
-
-
84871267949
-
Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling
-
Ferńandez-Garćia P, Pelaez R, Herrero P, et al. Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling. J Biol Chem 2012;287:42151-64.
-
(2012)
J Biol Chem
, vol.287
, pp. 42151-42164
-
-
Ferńandez-Garćia, P.1
Peĺaez, R.2
Herrero, P.3
-
19
-
-
0042970750
-
Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters
-
Flick KM, Spielewoy N, Kalashnikova TI, et al. Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 2003;14: 3230-41.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 3230-3241
-
-
Flick, K.M.1
Spielewoy, N.2
Kalashnikova, T.I.3
-
20
-
-
0031810672
-
Yeast carbon catabolite repression
-
Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol R 1998;62:334-61.
-
(1998)
Microbiol Mol Biol R
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
21
-
-
0033966775
-
Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae
-
Griffioen G, Anghileri P, Imre E, et al. Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J Biol Chem 2000;275:1449-56.
-
(2000)
J Biol Chem
, vol.275
, pp. 1449-1456
-
-
Griffioen, G.1
Anghileri, P.2
Imre, E.3
-
22
-
-
84878270249
-
Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis
-
Haimovich G, Medina DA, Causse SZ, et al. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell 2013;153:1000-11.
-
(2013)
Cell
, vol.153
, pp. 1000-1011
-
-
Haimovich, G.1
Medina, D.A.2
Causse, S.Z.3
-
23
-
-
38449110592
-
SNF1/AMPK pathways in yeast
-
Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci 2008;13:2408-20.
-
(2008)
Front Biosci
, vol.13
, pp. 2408-2420
-
-
Hedbacker, K.1
Carlson, M.2
-
25
-
-
4444311163
-
Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase
-
Hedbacker K, Hong S-P, CarlsonM. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol Cell Biol 2004;24:8255-63.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8255-8263
-
-
Hedbacker, K.1
Hong, S.-P.2
Carlson, M.3
-
26
-
-
0028930777
-
CAT8, a new zinc clusterencoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae
-
Hedges D, Proft M, Entian KD. CAT8, a new zinc clusterencoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1995;15:1915-22.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 1915-1922
-
-
Hedges, D.1
Proft, M.2
Entian, K.D.3
-
27
-
-
0037383706
-
The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae
-
Hiltunen JK, Mursula AM, Rottensteiner H, et al. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2003;27:35-64.
-
(2003)
FEMS Microbiol Rev
, vol.27
, pp. 35-64
-
-
Hiltunen, J.K.1
Mursula, A.M.2
Rottensteiner, H.3
-
28
-
-
0041305909
-
Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
-
Hong S-P, Leiper FC, Woods A, et al. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. P Natl Acad Sci USA 2003;100:8839-43.
-
(2003)
P Natl Acad Sci USA
, vol.100
, pp. 8839-8843
-
-
Hong, S.-P.1
Leiper, F.C.2
Woods, A.3
-
29
-
-
0030468365
-
Glucose regulates protein interactions within the yeast SNF1 protein kinase complex
-
Jiang R, Carlson M. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Gene Dev 1996;10:3105-15.
-
(1996)
Gene Dev
, vol.10
, pp. 3105-3115
-
-
Jiang, R.1
Carlson, M.2
-
30
-
-
1242300132
-
Regulatory network Connecting two glucose signal transduction pathways in Saccharomyces cerevisiae
-
Kaniak A, Xue Z, Macool D, et al. Regulatory network Connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell 2004;3:221-31.
-
(2004)
Eukaryot Cell
, vol.3
, pp. 221-231
-
-
Kaniak, A.1
Xue, Z.2
Macool, D.3
-
31
-
-
77954101739
-
Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae
-
Karhumaa K, Wu B, Kielland-Brandt MC. Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae. J Cell Biochem 2010;110:920-5.
-
(2010)
J Cell Biochem
, vol.110
, pp. 920-925
-
-
Karhumaa, K.1
Wu, B.2
Kielland-Brandt, M.C.3
-
32
-
-
33748744634
-
Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae
-
Kim J-H, Johnston M. Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem 2006;281:26144-9.
-
(2006)
J Biol Chem
, vol.281
, pp. 26144-26149
-
-
Kim, J.-H.1
Johnston, M.2
-
33
-
-
0031983739
-
Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions
-
Klein CJL, Olsson L, Nielsen J. Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology 1998;144:13-24.
-
(1998)
Microbiology
, vol.144
, pp. 13-24
-
-
Klein, C.J.L.1
Olsson, L.2
Nielsen, J.3
-
34
-
-
84899904022
-
Yeast lipid metabolism at a glance
-
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014;14:369-88.
-
(2014)
FEMS Yeast Res
, vol.14
, pp. 369-388
-
-
Klug, L.1
Daum, G.2
-
35
-
-
0030710569
-
Transcriptional control of the yeast acetyl- CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6
-
Kratzer S, Schüller HJ. Transcriptional control of the yeast acetyl- CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6. Mol Microbiol 1997;26:631-41.
-
(1997)
Mol Microbiol
, vol.26
, pp. 631-641
-
-
Kratzer, S.1
Schüller, H.J.2
-
36
-
-
0034608811
-
A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme
-
Kuchin S, Treich I, Carlson M. A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. P Natl Acad Sci USA 2000;97:7916-20.
-
(2000)
P Natl Acad Sci USA
, vol.97
, pp. 7916-7920
-
-
Kuchin, S.1
Treich, I.2
Carlson, M.3
-
37
-
-
0038735287
-
Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit
-
Leech A, Nath N, McCartney RR, et al. Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Eukaryot Cell 2003;2: 265-73.
-
(2003)
Eukaryot Cell
, vol.2
, pp. 265-273
-
-
Leech, A.1
Nath, N.2
McCartney, R.R.3
-
38
-
-
84927933565
-
Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae
-
Li M, Borodina I. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res 2015;15:1-12.
-
(2015)
FEMS Yeast Res
, vol.15
, pp. 1-12
-
-
Li, M.1
Borodina, I.2
-
39
-
-
74249097001
-
Snf1p regulates Gcn5p transcriptional activity by antagonizing Spt3p
-
Liu Y, Xu X, Kuo M-H. Snf1p regulates Gcn5p transcriptional activity by antagonizing Spt3p. Genetics 2010;184: 91-105.
-
(2010)
Genetics
, vol.184
, pp. 91-105
-
-
Liu, Y.1
Xu, X.2
Kuo, M.-H.3
-
40
-
-
0032568542
-
Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
-
P Natl Acad Sci U.S.A
-
Ludin K, Jiang R, Carlson M Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. P Natl Acad Sci USA 1998;95:6245-50.
-
(1998)
, vol.95
, pp. 6245-6250
-
-
Ludin, K.1
Jiang, R.2
Carlson, M.3
-
41
-
-
0031761689
-
Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
-
Lutfiyya LL, Iyer VR, DeRisi J, et al. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 1998;150:1377-91.
-
(1998)
Genetics
, vol.150
, pp. 1377-1391
-
-
Lutfiyya, L.L.1
Iyer, V.R.2
DeRisi, J.3
-
42
-
-
21344472380
-
Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases
-
McCartney RR, Rubenstein EM, Schmidt MC. Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Curr Genet 2005;47:335-44.
-
(2005)
Curr Genet
, vol.47
, pp. 335-344
-
-
McCartney, R.R.1
Rubenstein, E.M.2
Schmidt, M.C.3
-
43
-
-
0035965277
-
Regulation of Snf1 kinase Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
-
McCartney RR, Schmidt MC. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 2001;276:36460-6.
-
(2001)
J Biol Chem
, vol.276
, pp. 36460-36466
-
-
McCartney, R.R.1
Schmidt, M.C.2
-
44
-
-
80455160062
-
ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase
-
Mayer FV, Heath R, Underwood E, et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab 2011;14:707-14.
-
(2011)
Cell Metab
, vol.14
, pp. 707-714
-
-
Mayer, F.V.1
Heath, R.2
Underwood, E.3
-
45
-
-
1242274644
-
Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I
-
Moriya H, Johnston M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. P Natl Acad Sci USA 2004;101:1572-7.
-
(2004)
P Natl Acad Sci USA
, vol.101
, pp. 1572-1577
-
-
Moriya, H.1
Johnston, M.2
-
46
-
-
0038583957
-
Yeast Pak1 kinase associates with and activates Snf1
-
Nath N, McCartney RR, Schmidt MC. Yeast Pak1 kinase associates with and activates Snf1. Mol Cell Biol 2003;23:3909-17.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 3909-3917
-
-
Nath, N.1
McCartney, R.R.2
Schmidt, M.C.3
-
47
-
-
0037033027
-
Two different signals regulate repression and induction of gene expression by glucose
-
Ozcan S. Two different signals regulate repression and induction of gene expression by glucose. J Biol Chem 2002;277:46993-7.
-
(2002)
J Biol Chem
, vol.277
, pp. 46993-46997
-
-
Ozcan, S.1
-
48
-
-
0032080298
-
Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae
-
Özcan S, Dover J, Johnston M. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 1998;17:2566-73.
-
(1998)
EMBO J
, vol.17
, pp. 2566-2573
-
-
Özcan, S.1
Dover, J.2
Johnston, M.3
-
49
-
-
0032865543
-
Function and regulation of yeast hexose transporters
-
Ozcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol R 1999;63:554-69.
-
(1999)
Microbiol Mol Biol R
, vol.63
, pp. 554-569
-
-
Ozcan, S.1
Johnston, M.2
-
50
-
-
33645530751
-
Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter
-
Palomino A, Herrero P, Moreno F. Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter. Nucleic Acids Res 2006;34:1427-38.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 1427-1438
-
-
Palomino, A.1
Herrero, P.2
Moreno, F.3
-
51
-
-
77951248251
-
Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast
-
Pasula S, Chakraborty S, Choi JH, et al. Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast. BMC Cell Biol 2010;11:17.
-
(2010)
BMC Cell Biol
, vol.11
, pp. 17
-
-
Pasula, S.1
Chakraborty, S.2
Choi, J.H.3
-
52
-
-
78649735310
-
Functional domains of yeast hexokinase 2
-
Pelaez R, Herrero P, Moreno F. Functional domains of yeast hexokinase 2. Biochem J 2010;432:181-90.
-
(2010)
Biochem J
, vol.432
, pp. 181-190
-
-
Peĺaez, R.1
Herrero, P.2
Moreno, F.3
-
53
-
-
53949122260
-
Can yeast systems biology contribute to the understanding of human disease?
-
Petranovic D, Nielsen J. Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol 2008;26:584-90.
-
(2008)
Trends Biotechnol
, vol.26
, pp. 584-590
-
-
Petranovic, D.1
Nielsen, J.2
-
54
-
-
78349256225
-
Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism
-
Petranovic D, Tyo K, Vemuri GN, et al. Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 2010;10:1046-59.
-
(2010)
FEMS Yeast Res
, vol.10
, pp. 1046-1059
-
-
Petranovic, D.1
Tyo, K.2
Vemuri, G.N.3
-
55
-
-
84930509254
-
olecular Mechanisms in Yeast Carbon Metabolism
-
Heidelberg: Springer
-
Piskur J, Compagno C (eds). Molecular Mechanisms in Yeast Carbon Metabolism. Heidelberg: Springer, 2014.
-
(2014)
-
-
Piskur, J.1
Compagno, C.2
-
56
-
-
28444460297
-
Global analysis of protein phosphorylation in yeast
-
Ptacek J, Devgan G, Michaud G, et al. Global analysis of protein phosphorylation in yeast. Nature 2005;438:679-84.
-
(2005)
Nature
, vol.438
, pp. 679-684
-
-
Ptacek, J.1
Devgan, G.2
Michaud, G.3
-
57
-
-
0030987084
-
Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p
-
Randez-Gil F, Bojunga N, Proft M, et al. Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 1997;17:2502-10.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 2502-2510
-
-
Randez-Gil, F.1
Bojunga, N.2
Proft, M.3
-
58
-
-
70349310032
-
Snf1 controls the activity of Adr1 through dephosphorylation of Ser230
-
Ratnakumar S, Kacherovsky N, Arms E, et al. Snf1 controls the activity of Adr1 through dephosphorylation of Ser230. Genetics 2009;182:735-45.
-
(2009)
Genetics
, vol.182
, pp. 735-745
-
-
Ratnakumar, S.1
Kacherovsky, N.2
Arms, E.3
-
59
-
-
77951245389
-
Snf1 dependence of peroxisomal gene expression is mediated by Adr1
-
Ratnakumar S, Young ET. Snf1 dependence of peroxisomal gene expression is mediated by Adr1. J Biol Chem 2010;285: 10703-14.
-
(2010)
J Biol Chem
, vol.285
, pp. 10703-10714
-
-
Ratnakumar, S.1
Young, E.T.2
-
60
-
-
84905449011
-
Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae
-
Rødkær SV, Færgeman NJ. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res 2014;14:683-96.
-
(2014)
FEMS Yeast Res
, vol.14
, pp. 683-696
-
-
Rødkær, S.V.1
Færgeman, N.J.2
-
62
-
-
1542605245
-
Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae
-
Roth S, Kumme J, Schüller H-J. Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr Genet 2004;45:121-8.
-
(2004)
Curr Genet
, vol.45
, pp. 121-128
-
-
Roth, S.1
Kumme, J.2
Schüller, H.-J.3
-
63
-
-
84892528004
-
Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast
-
Roy A, Jouandot II D, Cho KH, et al. Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast. Elsevier 2014;4:105-11.
-
(2014)
Elsevier
, vol.4
, pp. 105-111
-
-
Roy, A.1
Jouandot I.I, D.2
Cho, K.H.3
-
64
-
-
84877143524
-
Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1
-
Roy A, Shin YJ, Cho KH, et al. Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1. Mol Biol Cell 2013;24:1493-503.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 1493-1503
-
-
Roy, A.1
Shin, Y.J.2
Cho, K.H.3
-
65
-
-
38049174646
-
Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase
-
Rubenstein EM, McCartney RR, Zhang C, et al. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem 2008;283:222-30.
-
(2008)
J Biol Chem
, vol.283
, pp. 222-230
-
-
Rubenstein, E.M.1
McCartney, R.R.2
Zhang, C.3
-
66
-
-
0033974002
-
Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase
-
Sanz P, Alms GR, Haystead TA, et al. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 2000;20:1321-8.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 1321-1328
-
-
Sanz, P.1
Alms, G.R.2
Haystead, T.A.3
-
67
-
-
0033000330
-
Std1 and Mth1 proteins interact with the glucose sensors to control glucoseregulated gene expression in Saccharomyces cerevisiae
-
Schmidt MC, McCartney RR, Zhang X, et al. Std1 and Mth1 proteins interact with the glucose sensors to control glucoseregulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 1999;19:4561-71.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 4561-4571
-
-
Schmidt, M.C.1
McCartney, R.R.2
Zhang, X.3
-
68
-
-
0037774738
-
Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae
-
Schüller H-J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003;43:139-60.
-
(2003)
Curr Genet
, vol.43
, pp. 139-160
-
-
Schüller, H.-J.1
-
69
-
-
84903976212
-
Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1
-
Shi S, Chen Y, Siewers V, et al. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio 2014;5:e01130-14.
-
(2014)
mBio
, vol.5
, pp. e01130-e01214
-
-
Shi, S.1
Chen, Y.2
Siewers, V.3
-
70
-
-
58149092197
-
A chemical genomics study identifies Snf1 as a repressor of GCN4 translation
-
Shirra MK, McCartney RR, Zhang C, et al. A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J Biol Chem 2008;283:35889-98.
-
(2008)
J Biol Chem
, vol.283
, pp. 35889-35898
-
-
Shirra, M.K.1
McCartney, R.R.2
Zhang, C.3
-
71
-
-
0034898311
-
Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae
-
Shirra MK, Patton-Vogt J, Ulrich A, et al. Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 2001;21:5710-22.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 5710-5722
-
-
Shirra, M.K.1
Patton-Vogt, J.2
Ulrich, A.3
-
72
-
-
4744373127
-
Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways
-
Spielewoy N, Flick K, Kalashnikova TI, et al. Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways. Mol Cell Biol 2004;24:8994-9005.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8994-9005
-
-
Spielewoy, N.1
Flick, K.2
Kalashnikova, T.I.3
-
73
-
-
0041700137
-
Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
-
Sutherland CM, Hawley SA, McCartney RR, et al. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol 2003;13:1299-305.
-
(2003)
Curr Biol
, vol.13
, pp. 1299-1305
-
-
Sutherland, C.M.1
Hawley, S.A.2
McCartney, R.R.3
-
74
-
-
38049156447
-
A poised initiation complex is activated by SNF1
-
Tachibana C, Biddick R, Law GL, et al. A poised initiation complex is activated by SNF1. J Biol Chem 2007;282:37308-15.
-
(2007)
J Biol Chem
, vol.282
, pp. 37308-37315
-
-
Tachibana, C.1
Biddick, R.2
Law, G.L.3
-
75
-
-
14844338858
-
Combined global localization analysis and transcriptome data Identify genes that are directly coregulated by Adr1 and Cat8
-
Tachibana C, Yoo JY, Tagne JB, et al. Combined global localization analysis and transcriptome data Identify genes that are directly coregulated by Adr1 and Cat8. Mol Cell Biol 2005;25:2138-46.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 2138-2146
-
-
Tachibana, C.1
Yoo, J.Y.2
Tagne, J.B.3
-
76
-
-
85005808084
-
Zinc cluster protein Znf1, a novel transcription factor of nonfermentative metabolism in Saccharomyces cerevisiae
-
Tangsombatvichit P, Semkiv MV, Sibirny AA, et al. Zinc cluster protein Znf1, a novel transcription factor of nonfermentative metabolism in Saccharomyces cerevisiae. FEMS Yeast Res 2015;15:1-16.
-
(2015)
FEMS Yeast Res
, vol.15
, pp. 1-16
-
-
Tangsombatvichit, P.1
Semkiv, M.V.2
Sibirny, A.A.3
-
77
-
-
0028970369
-
Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein
-
Treitel MA, Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. P Natl Acad Sci USA 1995;92:3132-6.
-
(1995)
P Natl Acad Sci USA
, vol.92
, pp. 3132-3136
-
-
Treitel, M.A.1
Carlson, M.2
-
78
-
-
0028894928
-
REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae
-
Tu J, Carlson M. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J 1995;14:5939-46.
-
(1995)
EMBO J
, vol.14
, pp. 5939-5946
-
-
Tu, J.1
Carlson, M.2
-
79
-
-
74549132460
-
Transcriptional regulation of nonfermentable carbon utilization in budding yeast
-
Turcotte B, Liang XB, Robert F, et al. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res 2010;10:2-13.
-
(2010)
FEMS Yeast Res
, vol.10
, pp. 2-13
-
-
Turcotte, B.1
Liang, X.B.2
Robert, F.3
-
80
-
-
73149091660
-
Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator
-
Usaite R, Jewett MC, Oliveira AP, et al. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 2009;5:1-12.
-
(2009)
Mol Syst Biol
, vol.5
, pp. 1-12
-
-
Usaite, R.1
Jewett, M.C.2
Oliveira, A.P.3
-
81
-
-
0036500258
-
Hyperacetylation of chromatin at the ADH2 promoter allows Adr1 to bind in repressed conditions
-
Verdone L, Wu J, Van Riper K, et al. Hyperacetylation of chromatin at the ADH2 promoter allows Adr1 to bind in repressed conditions. EMBO J 2002;21:1101-11.
-
(2002)
EMBO J
, vol.21
, pp. 1101-1111
-
-
Verdone, L.1
Wu, J.2
Van Riper, K.3
-
82
-
-
0035338114
-
Subcellular localization of the Snf1 kinase is regulated by specific ß subunits and a novel glucose signaling mechanism
-
Vincent O, Townley R, Kuchin S, et al. Subcellular localization of the Snf1 kinase is regulated by specific ß subunits and a novel glucose signaling mechanism. Gene Dev 2001;15:1104-14.
-
(2001)
Gene Dev
, vol.15
, pp. 1104-1114
-
-
Vincent, O.1
Townley, R.2
Kuchin, S.3
-
83
-
-
0034875093
-
Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae
-
Walther K, Schüller HJ. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Microbiol Read Engl 2001;147:2037-44.
-
(2001)
Microbiol Read Engl
, vol.147
, pp. 2037-2044
-
-
Walther, K.1
Schüller, H.J.2
-
85
-
-
0033373342
-
Concurrent knockout of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae
-
Wieczorke R, Krampe S, Weierstall T, et al. Concurrent knockout of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 1999;464:123-8.
-
(1999)
FEBS Lett
, vol.464
, pp. 123-128
-
-
Wieczorke, R.1
Krampe, S.2
Weierstall, T.3
-
86
-
-
0028070457
-
Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo
-
Woods A, Munday MR, Scott J, et al. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 1994;269:19509-19515.
-
(1994)
J Biol Chem
, vol.269
, pp. 19509-19515
-
-
Woods, A.1
Munday, M.R.2
Scott, J.3
-
87
-
-
0038506725
-
Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8
-
Young ET, Dombek KM, Tachibana C, et al. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 2003;278:26146-58.
-
(2003)
J Biol Chem
, vol.278
, pp. 26146-26158
-
-
Young, E.T.1
Dombek, K.M.2
Tachibana, C.3
-
88
-
-
0037064084
-
Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation
-
Young ET, Kacherovsky N, Van Riper K. Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J Biol Chem 2002;277:38095-103.
-
(2002)
J Biol Chem
, vol.277
, pp. 38095-38103
-
-
Young, E.T.1
Kacherovsky, N.2
Van Riper, K.3
-
89
-
-
84865218513
-
The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae
-
Young ET, Zhang C, Shokat KM, et al. The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J Biol Chem 2012;287: 29021-34.
-
(2012)
J Biol Chem
, vol.287
, pp. 29021-29034
-
-
Young, E.T.1
Zhang, C.2
Shokat, K.M.3
-
90
-
-
60749127330
-
Glucose regulates transcription in yeast through a network of signaling pathways
-
Zaman S, Lippman SI, Schneper L, et al. Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 2009;5:245.
-
(2009)
Mol Syst Biol
, vol.5
, pp. 245
-
-
Zaman, S.1
Lippman, S.I.2
Schneper, L.3
-
91
-
-
77954373691
-
The ß-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis
-
Zhang J, Olsson L, Nielsen J. The ß-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis. Mol Microbiol 2010;77: 371-83.
-
(2010)
Mol Microbiol
, vol.77
, pp. 371-383
-
-
Zhang, J.1
Olsson, L.2
Nielsen, J.3
-
92
-
-
80855128291
-
Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae
-
Zhang J, Vaga S, Chumnanpuen P, et al. Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 2011;7:545.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 545
-
-
Zhang, J.1
Vaga, S.2
Chumnanpuen, P.3
|