-
1
-
-
35848961683
-
Cell–matrix adhesion
-
[1] Berrier, A.L., Yamada, K.M., Cell–matrix adhesion. J. Cell. Physiol. 213:3 (2007), 565–573.
-
(2007)
J. Cell. Physiol.
, vol.213
, Issue.3
, pp. 565-573
-
-
Berrier, A.L.1
Yamada, K.M.2
-
2
-
-
78049361778
-
Mechanical integration of actin and adhesion dynamics in cell migration
-
[2] Gardel, M.L., et al. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol., 26, 2010, 315.
-
(2010)
Annu. Rev. Cell Dev. Biol.
, vol.26
, pp. 315
-
-
Gardel, M.L.1
-
3
-
-
44449087047
-
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
-
[3] Neuman, K.C., Nagy, A., Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:6 (2008), 491–505.
-
(2008)
Nat. Methods
, vol.5
, Issue.6
, pp. 491-505
-
-
Neuman, K.C.1
Nagy, A.2
-
4
-
-
0035941075
-
Taking cell-matrix adhesions to the third dimension
-
[4] Cukierman, E., et al. Taking cell-matrix adhesions to the third dimension. Science 294:5547 (2001), 1708–1712.
-
(2001)
Science
, vol.294
, Issue.5547
, pp. 1708-1712
-
-
Cukierman, E.1
-
5
-
-
33746593689
-
Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis
-
[5] Zaman, M.H., et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. 103:29 (2006), 10889–10894.
-
(2006)
Proc. Natl. Acad. Sci.
, vol.103
, Issue.29
, pp. 10889-10894
-
-
Zaman, M.H.1
-
6
-
-
79960334368
-
High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells
-
[6] Berginski, M.E., et al. High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PloS One, 6(7), 2011, e22025.
-
(2011)
PloS One
, vol.6
, Issue.7
, pp. e22025
-
-
Berginski, M.E.1
-
7
-
-
3042799330
-
Focal adhesion regulation of cell behavior
-
[7] Wozniak, M.A., et al. Focal adhesion regulation of cell behavior. Biochim. Et. Biophys. Acta-Mol. Cell Res. 1692:2–3 (2004), 103–119.
-
(2004)
Biochim. Et. Biophys. Acta-Mol. Cell Res.
, vol.1692
, Issue.2-3
, pp. 103-119
-
-
Wozniak, M.A.1
-
8
-
-
80053298724
-
Molecular architecture and function of matrix adhesions
-
[8] Geiger, B., Yamada, K.M., Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol., 3(5), 2011, a005033.
-
(2011)
Cold Spring Harb. Perspect. Biol.
, vol.3
, Issue.5
, pp. a005033
-
-
Geiger, B.1
Yamada, K.M.2
-
9
-
-
0344465841
-
Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells
-
[9] Zaidel-Bar, R., et al. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116:22 (2003), 4605–4613.
-
(2003)
J. Cell Sci.
, vol.116
, Issue.22
, pp. 4605-4613
-
-
Zaidel-Bar, R.1
-
10
-
-
1542380678
-
Periodic lamellipodial contractions correlate with rearward actin waves
-
[10] Giannone, G., et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116:3 (2004), 431–443.
-
(2004)
Cell
, vol.116
, Issue.3
, pp. 431-443
-
-
Giannone, G.1
-
11
-
-
52449089651
-
Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow
-
(e3234–e3234)
-
[11] Alexandrova, A.Y., et al. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PloS One, 3(9), 2008 (e3234–e3234).
-
(2008)
PloS One
, vol.3
, Issue.9
-
-
Alexandrova, A.Y.1
-
12
-
-
33846672361
-
Lamellipodial actin mechanically links myosin activity with adhesion-site formation
-
[12] Giannone, G., et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:3 (2007), 561–575.
-
(2007)
Cell
, vol.128
, Issue.3
, pp. 561-575
-
-
Giannone, G.1
-
13
-
-
0035858878
-
Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts
-
[13] Beningo, K.A., et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153:4 (2001), 881–888.
-
(2001)
J. Cell Biol.
, vol.153
, Issue.4
, pp. 881-888
-
-
Beningo, K.A.1
-
14
-
-
3042723613
-
Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading
-
[14] Zimerman, B., Volberg, T., Geiger, B., Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil. Cytoskelet. 58:3 (2004), 143–159.
-
(2004)
Cell Motil. Cytoskelet.
, vol.58
, Issue.3
, pp. 143-159
-
-
Zimerman, B.1
Volberg, T.2
Geiger, B.3
-
15
-
-
33846781373
-
A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions
-
[15] Zaidel-Bar, R., et al. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J. Cell Sci. 120:1 (2007), 137–148.
-
(2007)
J. Cell Sci.
, vol.120
, Issue.1
, pp. 137-148
-
-
Zaidel-Bar, R.1
-
16
-
-
33645234372
-
Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer
-
[16] Ballestrem, C., et al. Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J. Cell Sci. 119:5 (2006), 866–875.
-
(2006)
J. Cell Sci.
, vol.119
, Issue.5
, pp. 866-875
-
-
Ballestrem, C.1
-
17
-
-
0034611008
-
Integrin dynamics and matrix assembly tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis
-
[17] Pankov, R., et al. Integrin dynamics and matrix assembly tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. J. Cell Biol. 148:5 (2000), 1075–1090.
-
(2000)
J. Cell Biol.
, vol.148
, Issue.5
, pp. 1075-1090
-
-
Pankov, R.1
-
18
-
-
0033790713
-
Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts
-
[18] Zamir, E., et al. Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nat. Cell Biol. 2:4 (2000), 191–196.
-
(2000)
Nat. Cell Biol.
, vol.2
, Issue.4
, pp. 191-196
-
-
Zamir, E.1
-
19
-
-
21044433334
-
Podosomes at a glance
-
[19] Linder, S., Kopp, P., Podosomes at a glance. J. Cell Sci. 118:Pt 10 (2005), 2079–2082.
-
(2005)
J. Cell Sci.
, vol.118
, pp. 2079-2082
-
-
Linder, S.1
Kopp, P.2
-
20
-
-
41549161073
-
Assembly and biological role of podosomes and invadopodia
-
[20] Gimona, M., et al. Assembly and biological role of podosomes and invadopodia. Curr. Opin. Cell Biol. 20:2 (2008), 235–241.
-
(2008)
Curr. Opin. Cell Biol.
, vol.20
, Issue.2
, pp. 235-241
-
-
Gimona, M.1
-
21
-
-
77955685476
-
Podosomes and Invadopodia: Related structures with Common Protein Components that May Promote Breast Cancer Cellular Invasion
-
[21] Flynn, D.C., et al. Podosomes and Invadopodia: Related structures with Common Protein Components that May Promote Breast Cancer Cellular Invasion. Breast Cancer (Auckl) 2 (2008), 17–29.
-
(2008)
Breast Cancer (Auckl)
, vol.2
, pp. 17-29
-
-
Flynn, D.C.1
-
22
-
-
0022448122
-
Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin
-
[22] Tamkun, J.W., et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:2 (1986), 271–282.
-
(1986)
Cell
, vol.46
, Issue.2
, pp. 271-282
-
-
Tamkun, J.W.1
-
23
-
-
0022502048
-
Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp–specific adhesion receptors
-
[23] Pytela, R., et al. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp–specific adhesion receptors. Science 231:4745 (1986), 1559–1562.
-
(1986)
Science
, vol.231
, Issue.4745
, pp. 1559-1562
-
-
Pytela, R.1
-
24
-
-
0037145037
-
Integrins: bidirectional, allosteric signaling machines
-
[24] Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell 110:6 (2002), 673–687.
-
(2002)
Cell
, vol.110
, Issue.6
, pp. 673-687
-
-
Hynes, R.O.1
-
25
-
-
0029887318
-
Structural requirements for alpha 1 beta 1 and alpha 2 beta 1 integrin mediated cell adhesion to collagen V
-
[25] Ruggiero, F., et al. Structural requirements for alpha 1 beta 1 and alpha 2 beta 1 integrin mediated cell adhesion to collagen V. J. Cell Sci. 109 (1996), 1865–1874.
-
(1996)
J. Cell Sci.
, vol.109
, pp. 1865-1874
-
-
Ruggiero, F.1
-
26
-
-
0033520330
-
cDNA cloning and chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain-containing, beta(1)-associated integrin alpha-chain present in muscle tissues
-
[26] Velling, T., et al. cDNA cloning and chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain-containing, beta(1)-associated integrin alpha-chain present in muscle tissues. J. Biol. Chem. 274:36 (1999), 25735–25742.
-
(1999)
J. Biol. Chem.
, vol.274
, Issue.36
, pp. 25735-25742
-
-
Velling, T.1
-
27
-
-
0032493643
-
Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes
-
[27] Camper, L., Hellman, U., Lundgren-Akerlund, E., Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes. J. Biol. Chem. 273:32 (1998), 20383–20389.
-
(1998)
J. Biol. Chem.
, vol.273
, Issue.32
, pp. 20383-20389
-
-
Camper, L.1
Hellman, U.2
Lundgren-Akerlund, E.3
-
28
-
-
0033562972
-
An IKLLI-containing peptide derived from the laminin alpha1 chain mediating heparin-binding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin alpha3beta1 and heparan sulphate proteoglycan
-
[28] Tashiro, K., et al. An IKLLI-containing peptide derived from the laminin alpha1 chain mediating heparin-binding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin alpha3beta1 and heparan sulphate proteoglycan. Biochem J. 340:Pt 1 (1999), 119–126.
-
(1999)
Biochem J.
, vol.340
, pp. 119-126
-
-
Tashiro, K.1
-
29
-
-
33645380797
-
Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha 3 beta 1, alpha 6 beta 1, alpha 7 beta 1 and alpha 6 beta 4 integrins
-
[29] Nishiuchi, R., et al. Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha 3 beta 1, alpha 6 beta 1, alpha 7 beta 1 and alpha 6 beta 4 integrins. Matrix Biol. 25:3 (2006), 189–197.
-
(2006)
Matrix Biol.
, vol.25
, Issue.3
, pp. 189-197
-
-
Nishiuchi, R.1
-
30
-
-
0035724579
-
Function and interactions of integrins
-
[30] van der Flier, A., Sonnenberg, A., Function and interactions of integrins. Cell Tissue Res 305:3 (2001), 285–298.
-
(2001)
Cell Tissue Res
, vol.305
, Issue.3
, pp. 285-298
-
-
van der Flier, A.1
Sonnenberg, A.2
-
31
-
-
78049427279
-
Assembly of fibronectin extracellular matrix
-
[31] Singh, P., Carraher, C., Schwarzbauer, J.E., Assembly of fibronectin extracellular matrix. Annu Rev. Cell Dev. Biol. 26 (2010), 397–419.
-
(2010)
Annu Rev. Cell Dev. Biol.
, vol.26
, pp. 397-419
-
-
Singh, P.1
Carraher, C.2
Schwarzbauer, J.E.3
-
32
-
-
76349099822
-
Structure of an integrin with an alphaI domain, complement receptor type 4
-
[32] Xie, C., et al. Structure of an integrin with an alphaI domain, complement receptor type 4. EMBO J. 29:3 (2010), 666–679.
-
(2010)
EMBO J.
, vol.29
, Issue.3
, pp. 666-679
-
-
Xie, C.1
-
33
-
-
0034698147
-
Ligand binding to integrins
-
[33] Plow, E.F., et al. Ligand binding to integrins. J. Biol. Chem. 275:29 (2000), 21785–21788.
-
(2000)
J. Biol. Chem.
, vol.275
, Issue.29
, pp. 21785-21788
-
-
Plow, E.F.1
-
34
-
-
80054084623
-
Stretching actin filaments within cells enhances their affinity for the myosin II motor domain
-
[34] Uyeda, T.Q., et al. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS One, 6(10), 2011, e26200.
-
(2011)
PLoS One
, vol.6
, Issue.10
, pp. e26200
-
-
Uyeda, T.Q.1
-
35
-
-
66149128873
-
The tail of integrins, talin, and kindlins
-
[35] Moser, M., et al. The tail of integrins, talin, and kindlins. Science 324:5929 (2009), 895–899.
-
(2009)
Science
, vol.324
, Issue.5929
, pp. 895-899
-
-
Moser, M.1
-
36
-
-
61549126013
-
Mechanical distortion of single actin filaments induced by external force: detection by fluorescence imaging
-
[36] Shimozawa, T., Ishiwata, S., Mechanical distortion of single actin filaments induced by external force: detection by fluorescence imaging. Biophys. J. 96:3 (2009), 1036–1044.
-
(2009)
Biophys. J.
, vol.96
, Issue.3
, pp. 1036-1044
-
-
Shimozawa, T.1
Ishiwata, S.2
-
37
-
-
80054079832
-
Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament
-
[37] Hayakawa, K., Tatsumi, H., Sokabe, M., Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195:5 (2011), 721–727.
-
(2011)
J. Cell Biol.
, vol.195
, Issue.5
, pp. 721-727
-
-
Hayakawa, K.1
Tatsumi, H.2
Sokabe, M.3
-
38
-
-
79551672889
-
Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy
-
[38] Watanabe-Nakayama, T., et al. Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy. Biophys. J. 100:3 (2011), 564–572.
-
(2011)
Biophys. J.
, vol.100
, Issue.3
, pp. 564-572
-
-
Watanabe-Nakayama, T.1
-
39
-
-
84880278787
-
Cyclic hardening in bundled actin networks
-
[39] Schmoller, K.M., et al. Cyclic hardening in bundled actin networks. Nat. Commun., 1, 2010, 134.
-
(2010)
Nat. Commun.
, vol.1
, pp. 134
-
-
Schmoller, K.M.1
-
40
-
-
79953293637
-
Zyxin emerges as a key player in the mechanotransduction at cell adhesive structures
-
[40] Hirata, H., Tatsumi, H., Sokabe, M., Zyxin emerges as a key player in the mechanotransduction at cell adhesive structures. Commun. Integr. Biol. 1:2 (2008), 192–195.
-
(2008)
Commun. Integr. Biol.
, vol.1
, Issue.2
, pp. 192-195
-
-
Hirata, H.1
Tatsumi, H.2
Sokabe, M.3
-
41
-
-
0033531927
-
An alpha-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment
-
[41] Reinhard, M., et al. An alpha-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment. J. Biol. Chem. 274:19 (1999), 13410–13418.
-
(1999)
J. Biol. Chem.
, vol.274
, Issue.19
, pp. 13410-13418
-
-
Reinhard, M.1
-
42
-
-
0033731119
-
Integrin cytoplasmic domain-binding proteins
-
[42] Liu, S., Calderwood, D.A., Ginsberg, M.H., Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 113:20 (2000), 3563–3571.
-
(2000)
J. Cell Sci.
, vol.113
, Issue.20
, pp. 3563-3571
-
-
Liu, S.1
Calderwood, D.A.2
Ginsberg, M.H.3
-
43
-
-
0037031906
-
Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling
-
[43] Takagi, J., et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:5 (2002), 599–611.
-
(2002)
Cell
, vol.110
, Issue.5
, pp. 599-611
-
-
Takagi, J.1
-
44
-
-
8544259562
-
Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics
-
[44] Xiao, T., et al. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:7013 (2004), 59–67.
-
(2004)
Nature
, vol.432
, Issue.7013
, pp. 59-67
-
-
Xiao, T.1
-
45
-
-
34247891506
-
Structural basis of integrin regulation and signaling
-
[45] Luo, B.-H., Carman, C.V., Springer, T.A., Structural basis of integrin regulation and signaling. Annu. Rev. Immunol., 25, 2007, 619.
-
(2007)
Annu. Rev. Immunol.
, vol.25
, pp. 619
-
-
Luo, B.-H.1
Carman, C.V.2
Springer, T.A.3
-
46
-
-
84857688656
-
Integrin inside-out signaling and the immunological synapse
-
[46] Springer, T.A., Dustin, M.L., Integrin inside-out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24:1 (2012), 107–115.
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, Issue.1
, pp. 107-115
-
-
Springer, T.A.1
Dustin, M.L.2
-
47
-
-
84869223932
-
Ideal, catch, and slip bonds in cadherin adhesion
-
[47] Rakshit, S., et al. Ideal, catch, and slip bonds in cadherin adhesion. Proc. Natl. Acad. Sci. USA 109:46 (2012), 18815–18820.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.46
, pp. 18815-18820
-
-
Rakshit, S.1
-
48
-
-
0030448942
-
Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules
-
[48] Pierres, A., et al. Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules. Proc. Natl. Acad. Sci. USA 93:26 (1996), 15114–15118.
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, Issue.26
, pp. 15114-15118
-
-
Pierres, A.1
-
49
-
-
0027172919
-
Mechanotransduction across the cell surface and through the cytoskeleton
-
[49] Wang, N., Butler, J.P., Ingber, D.E., Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:5111 (1993), 1124–1127.
-
(1993)
Science
, vol.260
, Issue.5111
, pp. 1124-1127
-
-
Wang, N.1
Butler, J.P.2
Ingber, D.E.3
-
50
-
-
0030994017
-
Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages
-
[50] Choquet, D., Felsenfeld, D.P., Sheetz, M.P., Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:1 (1997), 39–48.
-
(1997)
Cell
, vol.88
, Issue.1
, pp. 39-48
-
-
Choquet, D.1
Felsenfeld, D.P.2
Sheetz, M.P.3
-
51
-
-
0344912596
-
Cell locomotion and focal adhesions are regulated by substrate flexibility
-
[51] Pelham, R.J. Jr., Wang, Y., Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:25 (1997), 13661–13665.
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, Issue.25
, pp. 13661-13665
-
-
Pelham, R.J.1
Wang, Y.2
-
52
-
-
79957889032
-
The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins
-
[52] Guilluy, C., et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat. Cell Biol. 13:6 (2011), 722–727.
-
(2011)
Nat. Cell Biol.
, vol.13
, Issue.6
, pp. 722-727
-
-
Guilluy, C.1
-
53
-
-
84862598504
-
Talin activates integrins by altering the topology of the β transmembrane domain
-
[53] Kim, C., et al. Talin activates integrins by altering the topology of the β transmembrane domain. J. Cell Biol. 197:5 (2012), 605–611.
-
(2012)
J. Cell Biol.
, vol.197
, Issue.5
, pp. 605-611
-
-
Kim, C.1
-
54
-
-
0030834853
-
Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations
-
[54] Isralewitz, B., Izrailev, S., Schulten, K., Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J. 73:6 (1997), 2972–2979.
-
(1997)
Biophys. J.
, vol.73
, Issue.6
, pp. 2972-2979
-
-
Isralewitz, B.1
Izrailev, S.2
Schulten, K.3
-
55
-
-
0030987036
-
Molecular dynamics study of unbinding of the avidin-biotin complex
-
[55] Izrailev, S., et al. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72:4 (1997), 1568–1581.
-
(1997)
Biophys. J.
, vol.72
, Issue.4
, pp. 1568-1581
-
-
Izrailev, S.1
-
56
-
-
0031041820
-
Photoproducts of bacteriorhodopsin mutants: a molecular dynamics study
-
[56] Humphrey, W., Bamberg, E., Schulten, K., Photoproducts of bacteriorhodopsin mutants: a molecular dynamics study. Biophys. J. 72:3 (1997), 1347–1356.
-
(1997)
Biophys. J.
, vol.72
, Issue.3
, pp. 1347-1356
-
-
Humphrey, W.1
Bamberg, E.2
Schulten, K.3
-
57
-
-
77958158403
-
Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow
-
[57] Wayman, A.M., et al. Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow. Biophys. J. 99:4 (2010), 1166–1174.
-
(2010)
Biophys. J.
, vol.99
, Issue.4
, pp. 1166-1174
-
-
Wayman, A.M.1
-
58
-
-
84898467976
-
Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
-
[58] Yao, M., et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep., 4, 2014, 4610.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4610
-
-
Yao, M.1
-
59
-
-
34249103354
-
Magnetic tweezers measurement of the bond lifetime-force behavior of the IgG-protein A specific molecular interaction
-
[59] Shang, H., Lee, G.U., Magnetic tweezers measurement of the bond lifetime-force behavior of the IgG-protein A specific molecular interaction. J. Am. Chem. Soc. 129:20 (2007), 6640–6646.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.20
, pp. 6640-6646
-
-
Shang, H.1
Lee, G.U.2
-
60
-
-
84869127061
-
Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells
-
[60] Chen, W., et al. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol. 199:3 (2012), 497–512.
-
(2012)
J. Cell Biol.
, vol.199
, Issue.3
, pp. 497-512
-
-
Chen, W.1
-
61
-
-
45549098614
-
FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation
-
[61] Yakovenko, O., et al. FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J. Biol. Chem. 283:17 (2008), 11596–11605.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.17
, pp. 11596-11605
-
-
Yakovenko, O.1
-
62
-
-
75749154495
-
Recreation of the terminal events in physiological integrin activation
-
[62] Ye, F., et al. Recreation of the terminal events in physiological integrin activation. J. Cell Biol. 188:1 (2010), 157–173.
-
(2010)
J. Cell Biol.
, vol.188
, Issue.1
, pp. 157-173
-
-
Ye, F.1
-
63
-
-
84868019676
-
Integrin bi-directional signaling across the plasma membrane
-
[63] Hu, P., Luo, B.H., Integrin bi-directional signaling across the plasma membrane. J. Cell. Physiol. 228:2 (2013), 306–312.
-
(2013)
J. Cell. Physiol.
, vol.228
, Issue.2
, pp. 306-312
-
-
Hu, P.1
Luo, B.H.2
-
64
-
-
84863900703
-
Integrin structure, activation, and interactions
-
[64] Campbell, I.D., Humphries, M.J., Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol., 3(3), 2011.
-
(2011)
Cold Spring Harb. Perspect. Biol.
, vol.3
, Issue.3
-
-
Campbell, I.D.1
Humphries, M.J.2
-
65
-
-
84880801392
-
Talins and kindlins: partners in integrin-mediated adhesion
-
[65] Calderwood, D.A., Campbell, I.D., Critchley, D.R., Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14:8 (2013), 503–517.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, Issue.8
, pp. 503-517
-
-
Calderwood, D.A.1
Campbell, I.D.2
Critchley, D.R.3
-
66
-
-
84897665004
-
Talin and kindlin: the one-two punch in integrin activation
-
[66] Ye, F., Snider, A.K., Ginsberg, M.H., Talin and kindlin: the one-two punch in integrin activation. Front. Med. 8:1 (2014), 6–16.
-
(2014)
Front. Med.
, vol.8
, Issue.1
, pp. 6-16
-
-
Ye, F.1
Snider, A.K.2
Ginsberg, M.H.3
-
67
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
[67] Hollister, S.J., Porous scaffold design for tissue engineering. Nat. Mater. 4:7 (2005), 518–524.
-
(2005)
Nat. Mater.
, vol.4
, Issue.7
, pp. 518-524
-
-
Hollister, S.J.1
-
68
-
-
84994191505
-
Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects
-
Cytotechnology,.
-
[68] I. Bruzauskaite, et al., Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects, Cytotechnology, 2015.
-
(2015)
-
-
Bruzauskaite, I.1
-
69
-
-
84994100396
-
Mechanosensing via cell-matrix adhesions in 3D microenvironments
-
Exp Cell Res,.
-
[69] A.D. Doyle, K.M. Yamada, Mechanosensing via cell-matrix adhesions in 3D microenvironments, Exp Cell Res, 2015.
-
(2015)
-
-
Doyle, A.D.1
Yamada, K.M.2
-
70
-
-
76549134964
-
Microfluidic tools for cell biological research
-
[70] Velve-Casquillas, G., et al. Microfluidic tools for cell biological research. Nano Today 5:1 (2010), 28–47.
-
(2010)
Nano Today
, vol.5
, Issue.1
, pp. 28-47
-
-
Velve-Casquillas, G.1
-
71
-
-
84906794588
-
Direct observation of alpha-actinin tension and recruitment at focal adhesions during contact growth
-
[71] Ye, N., et al. Direct observation of alpha-actinin tension and recruitment at focal adhesions during contact growth. Exp. Cell Res. 327:1 (2014), 57–67.
-
(2014)
Exp. Cell Res.
, vol.327
, Issue.1
, pp. 57-67
-
-
Ye, N.1
-
72
-
-
84870381713
-
Dynamic force sensing of filamin revealed in single-molecule experiments
-
[72] Rognoni, L., et al. Dynamic force sensing of filamin revealed in single-molecule experiments. Proc. Natl. Acad. Sci. USA 109:48 (2012), 19679–19684.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.48
, pp. 19679-19684
-
-
Rognoni, L.1
-
73
-
-
74049126062
-
New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering
-
[73] Saltel, F., et al. New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering. J. Cell Biol. 187:5 (2009), 715–731.
-
(2009)
J. Cell Biol.
, vol.187
, Issue.5
, pp. 715-731
-
-
Saltel, F.1
-
74
-
-
54249108158
-
Differences in regulation of Drosophila and vertebrate integrin affinity by talin
-
[74] Helsten, T.L., et al. Differences in regulation of Drosophila and vertebrate integrin affinity by talin. Mol. Biol. Cell 19:8 (2008), 3589–3598.
-
(2008)
Mol. Biol. Cell
, vol.19
, Issue.8
, pp. 3589-3598
-
-
Helsten, T.L.1
-
75
-
-
76249113509
-
Integrin alphaIIbbeta3 activation in Chinese hamster ovary cells and platelets increases clustering rather than affinity
-
[75] Bunch, T.A., Integrin alphaIIbbeta3 activation in Chinese hamster ovary cells and platelets increases clustering rather than affinity. J. Biol. Chem. 285:3 (2010), 1841–1849.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.3
, pp. 1841-1849
-
-
Bunch, T.A.1
-
76
-
-
77949862490
-
The final steps of integrin activation: the end game
-
[76] Shattil, S.J., Kim, C., Ginsberg, M.H., The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11:4 (2010), 288–300.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, Issue.4
, pp. 288-300
-
-
Shattil, S.J.1
Kim, C.2
Ginsberg, M.H.3
-
77
-
-
58149332708
-
Cooperativity in adhesion cluster formation during initial cell adhesion
-
[77] Selhuber-Unkel, C., et al. Cooperativity in adhesion cluster formation during initial cell adhesion. Biophys. J. 95:11 (2008), 5424–5431.
-
(2008)
Biophys. J.
, vol.95
, Issue.11
, pp. 5424-5431
-
-
Selhuber-Unkel, C.1
-
78
-
-
70349496205
-
Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction
-
[78] Roca-Cusachs, P., et al. Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proc. Natl. Acad. Sci. USA 106:38 (2009), 16245–16250.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, Issue.38
, pp. 16245-16250
-
-
Roca-Cusachs, P.1
-
79
-
-
0035002155
-
Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates
-
[79] Balaban, N.Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:5 (2001), 466–472.
-
(2001)
Nat. Cell Biol.
, vol.3
, Issue.5
, pp. 466-472
-
-
Balaban, N.Q.1
-
80
-
-
84884243072
-
Molecular tension sensors report forces generated by single integrin molecules in living cells
-
[80] Morimatsu, M., et al. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13:9 (2013), 3985–3989.
-
(2013)
Nano Lett.
, vol.13
, Issue.9
, pp. 3985-3989
-
-
Morimatsu, M.1
-
81
-
-
84877946982
-
Defining single molecular forces required to activate integrin and notch signaling
-
[81] Wang, X., Ha, T., Defining single molecular forces required to activate integrin and notch signaling. Science 340:6135 (2013), 991–994.
-
(2013)
Science
, vol.340
, Issue.6135
, pp. 991-994
-
-
Wang, X.1
Ha, T.2
-
82
-
-
77954486800
-
Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics
-
[82] Grashoff, C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:7303 (2010), 263–266.
-
(2010)
Nature
, vol.466
, Issue.7303
, pp. 263-266
-
-
Grashoff, C.1
-
83
-
-
0041461882
-
Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin
-
[83] Jiang, G., et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:6946 (2003), 334–337.
-
(2003)
Nature
, vol.424
, Issue.6946
, pp. 334-337
-
-
Jiang, G.1
-
84
-
-
0033802766
-
Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis
-
[84] Thoumine, O., et al. Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29:6 (2000), 398–408.
-
(2000)
Eur. Biophys. J.
, vol.29
, Issue.6
, pp. 398-408
-
-
Thoumine, O.1
-
85
-
-
0020805412
-
A new protein of adhesion plaques and ruffling membranes
-
[85] Burridge, K., Connell, L., A new protein of adhesion plaques and ruffling membranes. J. Cell Biol. 97:2 (1983), 359–367.
-
(1983)
J. Cell Biol.
, vol.97
, Issue.2
, pp. 359-367
-
-
Burridge, K.1
Connell, L.2
-
86
-
-
0021214312
-
An Interaction between Vinculin and Talin
-
[86] Burridge, K., Mangeat, P., An Interaction between Vinculin and Talin. Nature 308:5961 (1984), 744–746.
-
(1984)
Nature
, vol.308
, Issue.5961
, pp. 744-746
-
-
Burridge, K.1
Mangeat, P.2
-
87
-
-
0033213922
-
The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation
-
[87] Calderwood, D.A., et al. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274:40 (1999), 28071–28074.
-
(1999)
J. Biol. Chem.
, vol.274
, Issue.40
, pp. 28071-28074
-
-
Calderwood, D.A.1
-
88
-
-
0037077282
-
The phosphotyrosine binding-like domain of talin activates integrins
-
[88] Calderwood, D.A., et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277:24 (2002), 21749–21758.
-
(2002)
J. Biol. Chem.
, vol.277
, Issue.24
, pp. 21749-21758
-
-
Calderwood, D.A.1
-
89
-
-
4143083987
-
Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle
-
[89] Papagrigoriou, E., et al. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J. 23:15 (2004), 2942–2951.
-
(2004)
EMBO J.
, vol.23
, Issue.15
, pp. 2942-2951
-
-
Papagrigoriou, E.1
-
90
-
-
11844301327
-
A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head
-
[90] Fillingham, I., et al. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 13:1 (2005), 65–74.
-
(2005)
Structure
, vol.13
, Issue.1
, pp. 65-74
-
-
Fillingham, I.1
-
91
-
-
67649395972
-
Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions
-
[91] Himmel, M., et al. Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions. J. Biol. Chem. 284:20 (2009), 13832–13842.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.20
, pp. 13832-13842
-
-
Himmel, M.1
-
92
-
-
34249705346
-
Force-induced activation of talin and its possible role in focal adhesion mechanotransduction
-
[92] Lee, S.E., Kamm, R.D., Mofrad, M.R., Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40:9 (2007), 2096–2106.
-
(2007)
J. Biomech.
, vol.40
, Issue.9
, pp. 2096-2106
-
-
Lee, S.E.1
Kamm, R.D.2
Mofrad, M.R.3
-
93
-
-
40149107045
-
How force might activate talin's vinculin binding sites: smd reveals a structural mechanism
-
[93] Hytonen, V.P., Vogel, V., How force might activate talin's vinculin binding sites: smd reveals a structural mechanism. PLoS Comput. Biol., 4(2), 2008, e24.
-
(2008)
PLoS Comput. Biol.
, vol.4
, Issue.2
, pp. e24
-
-
Hytonen, V.P.1
Vogel, V.2
-
94
-
-
27744527513
-
Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod
-
[94] Gingras, A.R., et al. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280:44 (2005), 37217–37224.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.44
, pp. 37217-37224
-
-
Gingras, A.R.1
-
95
-
-
59149094538
-
Stretching single talin rod molecules activates vinculin binding
-
[95] del Rio, A., et al. Stretching single talin rod molecules activates vinculin binding. Science 323:5914 (2009), 638–641.
-
(2009)
Science
, vol.323
, Issue.5914
, pp. 638-641
-
-
del Rio, A.1
-
96
-
-
0141865705
-
Talin binding to integrin beta tails: a final common step in integrin activation
-
[96] Tadokoro, S., et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science 302:5642 (2003), 103–106.
-
(2003)
Science
, vol.302
, Issue.5642
, pp. 103-106
-
-
Tadokoro, S.1
-
97
-
-
0037031551
-
A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face
-
[97] Vinogradova, O., et al. A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 110:5 (2002), 587–597.
-
(2002)
Cell
, vol.110
, Issue.5
, pp. 587-597
-
-
Vinogradova, O.1
-
98
-
-
70450222316
-
The structure of an integrin/talin complex reveals the basis of inside-out signal transduction
-
[98] Anthis, N.J., et al. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 28:22 (2009), 3623–3632.
-
(2009)
EMBO J.
, vol.28
, Issue.22
, pp. 3623-3632
-
-
Anthis, N.J.1
-
99
-
-
0018692430
-
A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells
-
[99] Geiger, B., A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:1 (1979), 193–205.
-
(1979)
Cell
, vol.18
, Issue.1
, pp. 193-205
-
-
Geiger, B.1
-
100
-
-
0020082249
-
High-affinity interaction of vinculin with actin filaments in vitro
-
[100] Wilkins, J.A., Lin, S., High-affinity interaction of vinculin with actin filaments in vitro. Cell 28:1 (1982), 83–90.
-
(1982)
Cell
, vol.28
, Issue.1
, pp. 83-90
-
-
Wilkins, J.A.1
Lin, S.2
-
101
-
-
0037049555
-
Recruitment of the Arp2/3 complex to vinculin coupling membrane protrusion to matrix adhesion
-
[101] DeMali, K.A., Barlow, C.A., Burridge, K., Recruitment of the Arp2/3 complex to vinculin coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159:5 (2002), 881–891.
-
(2002)
J. Cell Biol.
, vol.159
, Issue.5
, pp. 881-891
-
-
DeMali, K.A.1
Barlow, C.A.2
Burridge, K.3
-
102
-
-
0018905464
-
Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin
-
[102] Burridge, K., Feramisco, J.R., Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell 19:3 (1980), 587–595.
-
(1980)
Cell
, vol.19
, Issue.3
, pp. 587-595
-
-
Burridge, K.1
Feramisco, J.R.2
-
103
-
-
0019973479
-
Structural aspects of vinculin-actin interactions
-
[103] Isenberg, G., Leonard, K., Jockusch, B.M., Structural aspects of vinculin-actin interactions. J. Mol. Biol. 158:2 (1982), 231–249.
-
(1982)
J. Mol. Biol.
, vol.158
, Issue.2
, pp. 231-249
-
-
Isenberg, G.1
Leonard, K.2
Jockusch, B.M.3
-
104
-
-
0024205182
-
cDNA-derived sequence of chicken embryo vinculin
-
[104] Coutu, M.D., Craig, S.W., cDNA-derived sequence of chicken embryo vinculin. Proc. Natl. Acad. Sci. 85:22 (1988), 8535–8539.
-
(1988)
Proc. Natl. Acad. Sci.
, vol.85
, Issue.22
, pp. 8535-8539
-
-
Coutu, M.D.1
Craig, S.W.2
-
105
-
-
0027399847
-
Molecular shape of vinculin in aqueous solution
-
[105] Eimer, W., et al. Molecular shape of vinculin in aqueous solution. J. Mol. Biol. 229:1 (1993), 146–152.
-
(1993)
J. Mol. Biol.
, vol.229
, Issue.1
, pp. 146-152
-
-
Eimer, W.1
-
106
-
-
0022419401
-
Electron microscopy of rotary shadowed vinculin and vinculin complexes
-
[106] Milam, L.M., Electron microscopy of rotary shadowed vinculin and vinculin complexes. J. Mol. Biol. 184:3 (1985), 543–545.
-
(1985)
J. Mol. Biol.
, vol.184
, Issue.3
, pp. 543-545
-
-
Milam, L.M.1
-
107
-
-
3242875461
-
Structural basis for vinculin activation at sites of cell adhesion
-
[107] Bakolitsa, C., et al. Structural basis for vinculin activation at sites of cell adhesion. Nature 430:6999 (2004), 583–586.
-
(2004)
Nature
, vol.430
, Issue.6999
, pp. 583-586
-
-
Bakolitsa, C.1
-
108
-
-
3142526378
-
Crystal structure of human vinculin
-
[108] Borgon, R.A., et al. Crystal structure of human vinculin. Structure 12:7 (2004), 1189–1197.
-
(2004)
Structure
, vol.12
, Issue.7
, pp. 1189-1197
-
-
Borgon, R.A.1
-
109
-
-
84994073097
-
An interaction between vinculin and talin
-
[109] K. Burridge, P. Mangeat, An interaction between vinculin and talin, 1984.
-
(1984)
-
-
Burridge, K.1
Mangeat, P.2
-
110
-
-
0031436412
-
Vinculin is associated with the E-cadherin adhesion complex
-
[110] Hazan, R.B., et al. Vinculin is associated with the E-cadherin adhesion complex. J. Biol. Chem. 272:51 (1997), 32448–32453.
-
(1997)
J. Biol. Chem.
, vol.272
, Issue.51
, pp. 32448-32453
-
-
Hazan, R.B.1
-
111
-
-
0030994387
-
Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin
-
[111] Van Nhieu, G.T., Ben-Ze'ev, A., Sansonetti, P., Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16:10 (1997), 2717–2729.
-
(1997)
EMBO J.
, vol.16
, Issue.10
, pp. 2717-2729
-
-
Van Nhieu, G.T.1
Ben-Ze'ev, A.2
Sansonetti, P.3
-
112
-
-
0032482254
-
Vinculin is part of the cadherin–catenin junctional complex: complex formation between α-catenin and vinculin
-
[112] Weiss, E.E., et al. Vinculin is part of the cadherin–catenin junctional complex: complex formation between α-catenin and vinculin. J. Cell Biol. 141:3 (1998), 755–764.
-
(1998)
J. Cell Biol.
, vol.141
, Issue.3
, pp. 755-764
-
-
Weiss, E.E.1
-
113
-
-
0025008074
-
Paxillin: a new vinculin-binding protein present in focal adhesions
-
[113] Turner, C.E., Glenney, J.R., Burridge, K., Paxillin: a new vinculin-binding protein present in focal adhesions. J. Cell Biol. 111:3 (1990), 1059–1068.
-
(1990)
J. Cell Biol.
, vol.111
, Issue.3
, pp. 1059-1068
-
-
Turner, C.E.1
Glenney, J.R.2
Burridge, K.3
-
114
-
-
0028324634
-
Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin
-
[114] Wood, C., et al. Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin. J. Cell Sci. 107:2 (1994), 709–717.
-
(1994)
J. Cell Sci.
, vol.107
, Issue.2
, pp. 709-717
-
-
Wood, C.1
-
115
-
-
84994151551
-
F-actin binding site masked by the intramolecular association of vinculin head and tail domains
-
[115] R.P. Johnson, S.W. Craig, F-actin binding site masked by the intramolecular association of vinculin head and tail domains, 1995.
-
(1995)
-
-
Johnson, R.P.1
Craig, S.W.2
-
116
-
-
0029009673
-
The carboxy-terminal tail domain of vinculin contains a cryptic binding site for acidic phospholipids
-
[116] Johnson, R.P., Craig, S.W., The carboxy-terminal tail domain of vinculin contains a cryptic binding site for acidic phospholipids. Biochem. Biophys. Res. Commun. 210:1 (1995), 159–164.
-
(1995)
Biochem. Biophys. Res. Commun.
, vol.210
, Issue.1
, pp. 159-164
-
-
Johnson, R.P.1
Craig, S.W.2
-
117
-
-
0028318397
-
An intramolecular association between the head and tail domains of vinculin modulates talin binding
-
[117] Johnson, R.P., Craig, S.W., An intramolecular association between the head and tail domains of vinculin modulates talin binding. J. Biol. Chem. 269:17 (1994), 12611–12619.
-
(1994)
J. Biol. Chem.
, vol.269
, Issue.17
, pp. 12611-12619
-
-
Johnson, R.P.1
Craig, S.W.2
-
118
-
-
0028836195
-
F-actin binding site masked by the intramolecular association of vinculin head and tail domains
-
[118] Johnson, R.P., Craig, S.W., F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373 (1995), 261–264.
-
(1995)
Nature
, vol.373
, pp. 261-264
-
-
Johnson, R.P.1
Craig, S.W.2
-
119
-
-
0035853706
-
Interaction of the N-and C-terminal Domains of Vinculin CHARACTERIZATION AND MAPPING STUDIES
-
[119] Miller, G.J., Dunn, S.D., Ball, E.H., Interaction of the N-and C-terminal Domains of Vinculin CHARACTERIZATION AND MAPPING STUDIES. J. Biol. Chem. 276:15 (2001), 11729–11734.
-
(2001)
J. Biol. Chem.
, vol.276
, Issue.15
, pp. 11729-11734
-
-
Miller, G.J.1
Dunn, S.D.2
Ball, E.H.3
-
120
-
-
0027943345
-
Intramolecular interactions in vinculin control α-actinin binding to the vinculin head
-
[120] Kroemker, M., et al. Intramolecular interactions in vinculin control α-actinin binding to the vinculin head. FEBS Lett. 355:3 (1994), 259–262.
-
(1994)
FEBS Lett.
, vol.355
, Issue.3
, pp. 259-262
-
-
Kroemker, M.1
-
121
-
-
0032559997
-
The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4, 5-bisphosphate
-
[121] Hüttelmaier, S., et al. The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4, 5-bisphosphate. Curr. Biol. 8:9 (1998), 479–488.
-
(1998)
Curr. Biol.
, vol.8
, Issue.9
, pp. 479-488
-
-
Hüttelmaier, S.1
-
122
-
-
33846030511
-
Coincidence of actin filaments and talin is required to activate vinculin
-
[122] Chen, H., Choudhury, D.M., Craig, S.W., Coincidence of actin filaments and talin is required to activate vinculin. J. Biol. Chem. 281:52 (2006), 40389–40398.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.52
, pp. 40389-40398
-
-
Chen, H.1
Choudhury, D.M.2
Craig, S.W.3
-
123
-
-
20444492339
-
Two distinct head-tail interfaces cooperate to suppress activation of vinculin by talin
-
[123] Cohen, D.M., et al. Two distinct head-tail interfaces cooperate to suppress activation of vinculin by talin. J. Biol. Chem. 280:17 (2005), 17109–17117.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.17
, pp. 17109-17117
-
-
Cohen, D.M.1
-
124
-
-
0347717894
-
Vinculin activation by talin through helical bundle conversion
-
[124] Izard, T., et al. Vinculin activation by talin through helical bundle conversion. Nature 427:6970 (2004), 171–175.
-
(2004)
Nature
, vol.427
, Issue.6970
, pp. 171-175
-
-
Izard, T.1
-
125
-
-
33644852058
-
Actin and myosin as transcription factors
-
[125] Grummt, I., Actin and myosin as transcription factors. Curr. Opin. Genet. Dev. 16:2 (2006), 191–196.
-
(2006)
Curr. Opin. Genet. Dev.
, vol.16
, Issue.2
, pp. 191-196
-
-
Grummt, I.1
-
126
-
-
79955859521
-
Actin structure and function
-
[126] Dominguez, R., Holmes, K.C., Actin structure and function. Annu. Rev. Biophys., 40, 2011, 169.
-
(2011)
Annu. Rev. Biophys.
, vol.40
, pp. 169
-
-
Dominguez, R.1
Holmes, K.C.2
-
127
-
-
84875515145
-
Actin depolymerization under force is governed by lysine 113: glutamic acid 195-mediated catch-slip bonds
-
[127] Lee, C.-y, et al. Actin depolymerization under force is governed by lysine 113: glutamic acid 195-mediated catch-slip bonds. Proc. Natl. Acad. Sci. 110:13 (2013), 5022–5027.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, Issue.13
, pp. 5022-5027
-
-
Lee, C.-Y.1
-
128
-
-
0034896467
-
Thermodynamics and kinetics of actin filament nucleation
-
[128] Sept, D., McCammon, J.A., Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81:2 (2001), 667–674.
-
(2001)
Biophys. J.
, vol.81
, Issue.2
, pp. 667-674
-
-
Sept, D.1
McCammon, J.A.2
-
129
-
-
70849098888
-
Actin, a central player in cell shape and movement
-
[129] Pollard, T.D., Cooper, J.A., Actin, a central player in cell shape and movement. Science 326:5957 (2009), 1208–1212.
-
(2009)
Science
, vol.326
, Issue.5957
, pp. 1208-1212
-
-
Pollard, T.D.1
Cooper, J.A.2
-
130
-
-
0033895234
-
Molecular mechanisms controlling actin filament dynamics in nonmuscle cells
-
[130] Pollard, T.D., Blanchoin, L., Mullins, R.D., Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29 (2000), 545–576.
-
(2000)
Annu. Rev. Biophys. Biomol. Struct.
, vol.29
, pp. 545-576
-
-
Pollard, T.D.1
Blanchoin, L.2
Mullins, R.D.3
-
131
-
-
79956119811
-
Effect of tensile force on the mechanical behavior of actin filaments
-
[131] Matsushita, S., et al. Effect of tensile force on the mechanical behavior of actin filaments. J. Biomech. 44:9 (2011), 1776–1781.
-
(2011)
J. Biomech.
, vol.44
, Issue.9
, pp. 1776-1781
-
-
Matsushita, S.1
-
132
-
-
0031939935
-
The role of actin-binding protein 280 in integrin-dependent mechanoprotection
-
[132] Glogauer, M., et al. The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J. Biol. Chem. 273:3 (1998), 1689–1698.
-
(1998)
J. Biol. Chem.
, vol.273
, Issue.3
, pp. 1689-1698
-
-
Glogauer, M.1
-
133
-
-
0037175402
-
The relationship between force and focal complex development
-
[133] Galbraith, C.G., Yamada, K.M., Sheetz, M.P., The relationship between force and focal complex development. J. Cell Biol. 159:4 (2002), 695–705.
-
(2002)
J. Cell Biol.
, vol.159
, Issue.4
, pp. 695-705
-
-
Galbraith, C.G.1
Yamada, K.M.2
Sheetz, M.P.3
-
134
-
-
0242361579
-
Talin1 is critical for force-dependent reinforcement of initial integrin–cytoskeleton bonds but not tyrosine kinase activation
-
[134] Giannone, G., et al. Talin1 is critical for force-dependent reinforcement of initial integrin–cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 163:2 (2003), 409–419.
-
(2003)
J. Cell Biol.
, vol.163
, Issue.2
, pp. 409-419
-
-
Giannone, G.1
-
135
-
-
24644433853
-
Focal adhesions as mechanosensors: a physical mechanism
-
[135] Shemesh, T., et al. Focal adhesions as mechanosensors: a physical mechanism. Proc. Natl. Acad. Sci. USA 102:35 (2005), 12383–12388.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, Issue.35
, pp. 12383-12388
-
-
Shemesh, T.1
-
136
-
-
4344596239
-
Cell mechanosensitivity controls the anisotropy of focal adhesions
-
[136] Nicolas, A., Geiger, B., Safran, S.A., Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc. Natl. Acad. Sci. USA 101:34 (2004), 12520–12525.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.34
, pp. 12520-12525
-
-
Nicolas, A.1
Geiger, B.2
Safran, S.A.3
-
137
-
-
33646183674
-
Force-induced adsorption and anisotropic growth of focal adhesions
-
[137] Besser, A., Safran, S.A., Force-induced adsorption and anisotropic growth of focal adhesions. Biophys. J. 90:10 (2006), 3469–3484.
-
(2006)
Biophys. J.
, vol.90
, Issue.10
, pp. 3469-3484
-
-
Besser, A.1
Safran, S.A.2
-
138
-
-
0035844869
-
Focal contacts as mechanosensors externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism
-
[138] Riveline, D., et al. Focal contacts as mechanosensors externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism. J. Cell Biol. 153:6 (2001), 1175–1186.
-
(2001)
J. Cell Biol.
, vol.153
, Issue.6
, pp. 1175-1186
-
-
Riveline, D.1
-
139
-
-
0035002155
-
Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates
-
[139] Balaban, N.Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:5 (2001), 466–472.
-
(2001)
Nat. Cell Biol.
, vol.3
, Issue.5
, pp. 466-472
-
-
Balaban, N.Q.1
-
140
-
-
0037175402
-
The relationship between force and focal complex development
-
[140] Galbraith, C.G., Yamada, K.M., Sheetz, M.P., The relationship between force and focal complex development. J. Cell Biol. 159:4 (2002), 695–705.
-
(2002)
J. Cell Biol.
, vol.159
, Issue.4
, pp. 695-705
-
-
Galbraith, C.G.1
Yamada, K.M.2
Sheetz, M.P.3
-
141
-
-
46149093439
-
Structural basis for the autoinhibition of talin in regulating integrin activation
-
[141] Goksoy, E., et al. Structural basis for the autoinhibition of talin in regulating integrin activation. Mol. Cell 31:1 (2008), 124–133.
-
(2008)
Mol. Cell
, vol.31
, Issue.1
, pp. 124-133
-
-
Goksoy, E.1
-
142
-
-
78149245953
-
Forcing switch from short-to intermediate-and long-lived states of the αA domain generates LFA-1/ICAM-1 catch bonds
-
[142] Chen, W., Lou, J., Zhu, C., Forcing switch from short-to intermediate-and long-lived states of the αA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285:46 (2010), 35967–35978.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.46
, pp. 35967-35978
-
-
Chen, W.1
Lou, J.2
Zhu, C.3
-
143
-
-
0023917132
-
The reaction-limited kinetics of membrane-to-surface adhesion and detachment
-
[143] Dembo, M., et al. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B: Biol. Sci. 234:1274 (1988), 55–83.
-
(1988)
Proc. R. Soc. Lond. B: Biol. Sci.
, vol.234
, Issue.1274
, pp. 55-83
-
-
Dembo, M.1
-
144
-
-
67649598285
-
Demonstration of catch bonds between an integrin and its ligand
-
[144] Kong, F., et al. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185:7 (2009), 1275–1284.
-
(2009)
J. Cell Biol.
, vol.185
, Issue.7
, pp. 1275-1284
-
-
Kong, F.1
-
145
-
-
84923372800
-
Dynamic catch of a Thy-1–α5β1+ syndecan-4 trimolecular complex
-
[145] Fiore, V.F., et al. Dynamic catch of a Thy-1–α5β1+ syndecan-4 trimolecular complex. Nat. Commun., 5, 2014.
-
(2014)
Nat. Commun.
, vol.5
-
-
Fiore, V.F.1
-
146
-
-
84925207036
-
A lupus-associated mac-1 variant has defects in integrin allostery and interaction with ligands under force
-
[146] Rosetti, F., et al. A lupus-associated mac-1 variant has defects in integrin allostery and interaction with ligands under force. Cell Rep. 10:10 (2015), 1655–1664.
-
(2015)
Cell Rep.
, vol.10
, Issue.10
, pp. 1655-1664
-
-
Rosetti, F.1
-
147
-
-
0037653696
-
Direct observation of catch bonds involving cell-adhesion molecules
-
[147] Marshall, B.T., et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:6936 (2003), 190–193.
-
(2003)
Nature
, vol.423
, Issue.6936
, pp. 190-193
-
-
Marshall, B.T.1
-
148
-
-
0346457092
-
Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan
-
[148] Sarangapani, K.K., et al. Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J. Biol. Chem. 279:3 (2004), 2291–2298.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.3
, pp. 2291-2298
-
-
Sarangapani, K.K.1
-
149
-
-
77958158403
-
Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow
-
[149] Wayman, A.M., et al. Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow. Biophys. J. 99:4 (2010), 1166–1174.
-
(2010)
Biophys. J.
, vol.99
, Issue.4
, pp. 1166-1174
-
-
Wayman, A.M.1
-
150
-
-
84869223932
-
Ideal, catch, and slip bonds in cadherin adhesion
-
[150] Rakshit, S., et al. Ideal, catch, and slip bonds in cadherin adhesion. Proc. Natl. Acad. Sci. 109:46 (2012), 18815–18820.
-
(2012)
Proc. Natl. Acad. Sci.
, vol.109
, Issue.46
, pp. 18815-18820
-
-
Rakshit, S.1
-
151
-
-
84909592568
-
The minimal cadherin-catenin complex binds to actin filaments under force
-
[151] Buckley, C.D., et al. The minimal cadherin-catenin complex binds to actin filaments under force. Science, 346(6209), 2014, 1254211.
-
(2014)
Science
, vol.346
, Issue.6209
, pp. 1254211
-
-
Buckley, C.D.1
-
152
-
-
84901929348
-
Resolving the molecular mechanism of cadherin catch bond formation
-
[152] Manibog, K., et al. Resolving the molecular mechanism of cadherin catch bond formation. Nat. Commun., 5, 2014.
-
(2014)
Nat. Commun.
, vol.5
-
-
Manibog, K.1
-
153
-
-
33749031014
-
Flow-enhanced adhesion regulated by a selectin interdomain hinge
-
[153] Lou, J., et al. Flow-enhanced adhesion regulated by a selectin interdomain hinge. J. Cell Biol. 174:7 (2006), 1107–1117.
-
(2006)
J. Cell Biol.
, vol.174
, Issue.7
, pp. 1107-1117
-
-
Lou, J.1
-
154
-
-
33847780609
-
A structure-based sliding-rebinding mechanism for catch bonds
-
[154] Lou, J., Zhu, C., A structure-based sliding-rebinding mechanism for catch bonds. Biophys. J. 92:5 (2007), 1471–1485.
-
(2007)
Biophys. J.
, vol.92
, Issue.5
, pp. 1471-1485
-
-
Lou, J.1
Zhu, C.2
-
155
-
-
58549108194
-
Structural basis for selectin mechanochemistry
-
[155] Springer, T.A., Structural basis for selectin mechanochemistry. Proc. Natl. Acad. Sci. 106:1 (2009), 91–96.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, Issue.1
, pp. 91-96
-
-
Springer, T.A.1
-
156
-
-
58549112954
-
Transmission of allostery through the lectin domain in selectin-mediated cell adhesion
-
[156] Waldron, T.T., Springer, T.A., Transmission of allostery through the lectin domain in selectin-mediated cell adhesion. Proc. Natl. Acad. Sci. 106:1 (2009), 85–90.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, Issue.1
, pp. 85-90
-
-
Waldron, T.T.1
Springer, T.A.2
-
157
-
-
3843151375
-
Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond
-
[157] Evans, E., et al. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl. Acad. Sci. USA 101:31 (2004), 11281–11286.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.31
, pp. 11281-11286
-
-
Evans, E.1
-
158
-
-
24144484705
-
The two-pathway model for the catch-slip transition in biological adhesion
-
[158] Pereverzev, Y.V., et al. The two-pathway model for the catch-slip transition in biological adhesion. Biophys. J. 89:3 (2005), 1446–1454.
-
(2005)
Biophys. J.
, vol.89
, Issue.3
, pp. 1446-1454
-
-
Pereverzev, Y.V.1
-
159
-
-
84875803668
-
Cyclic mechanical reinforcement of integrin-ligand interactions
-
[159] Kong, F., et al. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol. Cell 49:6 (2013), 1060–1068.
-
(2013)
Mol. Cell
, vol.49
, Issue.6
, pp. 1060-1068
-
-
Kong, F.1
-
160
-
-
84859270118
-
Classification of scaffold-hopping approaches
-
[160] Sun, H., Tawa, G., Wallqvist, A., Classification of scaffold-hopping approaches. Drug Discov. Today 17:7–8 (2012), 310–324.
-
(2012)
Drug Discov. Today
, vol.17
, Issue.7-8
, pp. 310-324
-
-
Sun, H.1
Tawa, G.2
Wallqvist, A.3
-
161
-
-
79952129858
-
Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices
-
[161] Hakkinen, K.M., et al. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17:5–6 (2011), 713–724.
-
(2011)
Tissue Eng. Part A
, vol.17
, Issue.5-6
, pp. 713-724
-
-
Hakkinen, K.M.1
-
162
-
-
65449189726
-
Super-resolution video microscopy of live cells by structured illumination
-
[162] Kner, P., et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6:5 (2009), 339–342.
-
(2009)
Nat. Methods
, vol.6
, Issue.5
, pp. 339-342
-
-
Kner, P.1
-
163
-
-
67649922591
-
Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy
-
[163] Greenfield, D., et al. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol., 7(6), 2009, e1000137.
-
(2009)
PLoS Biol.
, vol.7
, Issue.6
, pp. e1000137
-
-
Greenfield, D.1
-
164
-
-
84921851331
-
Construction, imaging, and analysis of FRET-based tension sensors in living cells
-
[164] LaCroix, A.S., et al. Construction, imaging, and analysis of FRET-based tension sensors in living cells. Methods Cell Biol. 125 (2015), 161–186.
-
(2015)
Methods Cell Biol.
, vol.125
, pp. 161-186
-
-
LaCroix, A.S.1
-
165
-
-
84907251322
-
Combining single-molecule manipulation and single-molecule detection
-
[165] Cordova, J.C., et al. Combining single-molecule manipulation and single-molecule detection. Curr. Opin. Struct. Biol. 28 (2014), 142–148.
-
(2014)
Curr. Opin. Struct. Biol.
, vol.28
, pp. 142-148
-
-
Cordova, J.C.1
|