메뉴 건너뛰기




Volumn 349, Issue 1, 2016, Pages 85-94

Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion

Author keywords

Actin; Cell matrix adhesion; Force regulation; Integrin; Mechanotransduction; Talin; Vinculin

Indexed keywords

ACTIN; ACTIN BINDING PROTEIN; F ACTIN; INTEGRIN; TALIN; VINCULIN;

EID: 84994157644     PISSN: 00144827     EISSN: 10902422     Source Type: Journal    
DOI: 10.1016/j.yexcr.2016.10.001     Document Type: Review
Times cited : (64)

References (165)
  • 1
    • 35848961683 scopus 로고    scopus 로고
    • Cell–matrix adhesion
    • [1] Berrier, A.L., Yamada, K.M., Cell–matrix adhesion. J. Cell. Physiol. 213:3 (2007), 565–573.
    • (2007) J. Cell. Physiol. , vol.213 , Issue.3 , pp. 565-573
    • Berrier, A.L.1    Yamada, K.M.2
  • 2
    • 78049361778 scopus 로고    scopus 로고
    • Mechanical integration of actin and adhesion dynamics in cell migration
    • [2] Gardel, M.L., et al. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol., 26, 2010, 315.
    • (2010) Annu. Rev. Cell Dev. Biol. , vol.26 , pp. 315
    • Gardel, M.L.1
  • 3
    • 44449087047 scopus 로고    scopus 로고
    • Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
    • [3] Neuman, K.C., Nagy, A., Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:6 (2008), 491–505.
    • (2008) Nat. Methods , vol.5 , Issue.6 , pp. 491-505
    • Neuman, K.C.1    Nagy, A.2
  • 4
    • 0035941075 scopus 로고    scopus 로고
    • Taking cell-matrix adhesions to the third dimension
    • [4] Cukierman, E., et al. Taking cell-matrix adhesions to the third dimension. Science 294:5547 (2001), 1708–1712.
    • (2001) Science , vol.294 , Issue.5547 , pp. 1708-1712
    • Cukierman, E.1
  • 5
    • 33746593689 scopus 로고    scopus 로고
    • Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis
    • [5] Zaman, M.H., et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. 103:29 (2006), 10889–10894.
    • (2006) Proc. Natl. Acad. Sci. , vol.103 , Issue.29 , pp. 10889-10894
    • Zaman, M.H.1
  • 6
    • 79960334368 scopus 로고    scopus 로고
    • High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells
    • [6] Berginski, M.E., et al. High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PloS One, 6(7), 2011, e22025.
    • (2011) PloS One , vol.6 , Issue.7 , pp. e22025
    • Berginski, M.E.1
  • 7
    • 3042799330 scopus 로고    scopus 로고
    • Focal adhesion regulation of cell behavior
    • [7] Wozniak, M.A., et al. Focal adhesion regulation of cell behavior. Biochim. Et. Biophys. Acta-Mol. Cell Res. 1692:2–3 (2004), 103–119.
    • (2004) Biochim. Et. Biophys. Acta-Mol. Cell Res. , vol.1692 , Issue.2-3 , pp. 103-119
    • Wozniak, M.A.1
  • 8
    • 80053298724 scopus 로고    scopus 로고
    • Molecular architecture and function of matrix adhesions
    • [8] Geiger, B., Yamada, K.M., Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol., 3(5), 2011, a005033.
    • (2011) Cold Spring Harb. Perspect. Biol. , vol.3 , Issue.5 , pp. a005033
    • Geiger, B.1    Yamada, K.M.2
  • 9
    • 0344465841 scopus 로고    scopus 로고
    • Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells
    • [9] Zaidel-Bar, R., et al. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116:22 (2003), 4605–4613.
    • (2003) J. Cell Sci. , vol.116 , Issue.22 , pp. 4605-4613
    • Zaidel-Bar, R.1
  • 10
    • 1542380678 scopus 로고    scopus 로고
    • Periodic lamellipodial contractions correlate with rearward actin waves
    • [10] Giannone, G., et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116:3 (2004), 431–443.
    • (2004) Cell , vol.116 , Issue.3 , pp. 431-443
    • Giannone, G.1
  • 11
    • 52449089651 scopus 로고    scopus 로고
    • Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow
    • (e3234–e3234)
    • [11] Alexandrova, A.Y., et al. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PloS One, 3(9), 2008 (e3234–e3234).
    • (2008) PloS One , vol.3 , Issue.9
    • Alexandrova, A.Y.1
  • 12
    • 33846672361 scopus 로고    scopus 로고
    • Lamellipodial actin mechanically links myosin activity with adhesion-site formation
    • [12] Giannone, G., et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:3 (2007), 561–575.
    • (2007) Cell , vol.128 , Issue.3 , pp. 561-575
    • Giannone, G.1
  • 13
    • 0035858878 scopus 로고    scopus 로고
    • Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts
    • [13] Beningo, K.A., et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153:4 (2001), 881–888.
    • (2001) J. Cell Biol. , vol.153 , Issue.4 , pp. 881-888
    • Beningo, K.A.1
  • 14
    • 3042723613 scopus 로고    scopus 로고
    • Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading
    • [14] Zimerman, B., Volberg, T., Geiger, B., Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil. Cytoskelet. 58:3 (2004), 143–159.
    • (2004) Cell Motil. Cytoskelet. , vol.58 , Issue.3 , pp. 143-159
    • Zimerman, B.1    Volberg, T.2    Geiger, B.3
  • 15
    • 33846781373 scopus 로고    scopus 로고
    • A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions
    • [15] Zaidel-Bar, R., et al. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J. Cell Sci. 120:1 (2007), 137–148.
    • (2007) J. Cell Sci. , vol.120 , Issue.1 , pp. 137-148
    • Zaidel-Bar, R.1
  • 16
    • 33645234372 scopus 로고    scopus 로고
    • Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer
    • [16] Ballestrem, C., et al. Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J. Cell Sci. 119:5 (2006), 866–875.
    • (2006) J. Cell Sci. , vol.119 , Issue.5 , pp. 866-875
    • Ballestrem, C.1
  • 17
    • 0034611008 scopus 로고    scopus 로고
    • Integrin dynamics and matrix assembly tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis
    • [17] Pankov, R., et al. Integrin dynamics and matrix assembly tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. J. Cell Biol. 148:5 (2000), 1075–1090.
    • (2000) J. Cell Biol. , vol.148 , Issue.5 , pp. 1075-1090
    • Pankov, R.1
  • 18
    • 0033790713 scopus 로고    scopus 로고
    • Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts
    • [18] Zamir, E., et al. Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nat. Cell Biol. 2:4 (2000), 191–196.
    • (2000) Nat. Cell Biol. , vol.2 , Issue.4 , pp. 191-196
    • Zamir, E.1
  • 19
    • 21044433334 scopus 로고    scopus 로고
    • Podosomes at a glance
    • [19] Linder, S., Kopp, P., Podosomes at a glance. J. Cell Sci. 118:Pt 10 (2005), 2079–2082.
    • (2005) J. Cell Sci. , vol.118 , pp. 2079-2082
    • Linder, S.1    Kopp, P.2
  • 20
    • 41549161073 scopus 로고    scopus 로고
    • Assembly and biological role of podosomes and invadopodia
    • [20] Gimona, M., et al. Assembly and biological role of podosomes and invadopodia. Curr. Opin. Cell Biol. 20:2 (2008), 235–241.
    • (2008) Curr. Opin. Cell Biol. , vol.20 , Issue.2 , pp. 235-241
    • Gimona, M.1
  • 21
    • 77955685476 scopus 로고    scopus 로고
    • Podosomes and Invadopodia: Related structures with Common Protein Components that May Promote Breast Cancer Cellular Invasion
    • [21] Flynn, D.C., et al. Podosomes and Invadopodia: Related structures with Common Protein Components that May Promote Breast Cancer Cellular Invasion. Breast Cancer (Auckl) 2 (2008), 17–29.
    • (2008) Breast Cancer (Auckl) , vol.2 , pp. 17-29
    • Flynn, D.C.1
  • 22
    • 0022448122 scopus 로고
    • Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin
    • [22] Tamkun, J.W., et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:2 (1986), 271–282.
    • (1986) Cell , vol.46 , Issue.2 , pp. 271-282
    • Tamkun, J.W.1
  • 23
    • 0022502048 scopus 로고
    • Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp–specific adhesion receptors
    • [23] Pytela, R., et al. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp–specific adhesion receptors. Science 231:4745 (1986), 1559–1562.
    • (1986) Science , vol.231 , Issue.4745 , pp. 1559-1562
    • Pytela, R.1
  • 24
    • 0037145037 scopus 로고    scopus 로고
    • Integrins: bidirectional, allosteric signaling machines
    • [24] Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell 110:6 (2002), 673–687.
    • (2002) Cell , vol.110 , Issue.6 , pp. 673-687
    • Hynes, R.O.1
  • 25
    • 0029887318 scopus 로고    scopus 로고
    • Structural requirements for alpha 1 beta 1 and alpha 2 beta 1 integrin mediated cell adhesion to collagen V
    • [25] Ruggiero, F., et al. Structural requirements for alpha 1 beta 1 and alpha 2 beta 1 integrin mediated cell adhesion to collagen V. J. Cell Sci. 109 (1996), 1865–1874.
    • (1996) J. Cell Sci. , vol.109 , pp. 1865-1874
    • Ruggiero, F.1
  • 26
    • 0033520330 scopus 로고    scopus 로고
    • cDNA cloning and chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain-containing, beta(1)-associated integrin alpha-chain present in muscle tissues
    • [26] Velling, T., et al. cDNA cloning and chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain-containing, beta(1)-associated integrin alpha-chain present in muscle tissues. J. Biol. Chem. 274:36 (1999), 25735–25742.
    • (1999) J. Biol. Chem. , vol.274 , Issue.36 , pp. 25735-25742
    • Velling, T.1
  • 27
    • 0032493643 scopus 로고    scopus 로고
    • Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes
    • [27] Camper, L., Hellman, U., Lundgren-Akerlund, E., Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes. J. Biol. Chem. 273:32 (1998), 20383–20389.
    • (1998) J. Biol. Chem. , vol.273 , Issue.32 , pp. 20383-20389
    • Camper, L.1    Hellman, U.2    Lundgren-Akerlund, E.3
  • 28
    • 0033562972 scopus 로고    scopus 로고
    • An IKLLI-containing peptide derived from the laminin alpha1 chain mediating heparin-binding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin alpha3beta1 and heparan sulphate proteoglycan
    • [28] Tashiro, K., et al. An IKLLI-containing peptide derived from the laminin alpha1 chain mediating heparin-binding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin alpha3beta1 and heparan sulphate proteoglycan. Biochem J. 340:Pt 1 (1999), 119–126.
    • (1999) Biochem J. , vol.340 , pp. 119-126
    • Tashiro, K.1
  • 29
    • 33645380797 scopus 로고    scopus 로고
    • Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha 3 beta 1, alpha 6 beta 1, alpha 7 beta 1 and alpha 6 beta 4 integrins
    • [29] Nishiuchi, R., et al. Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha 3 beta 1, alpha 6 beta 1, alpha 7 beta 1 and alpha 6 beta 4 integrins. Matrix Biol. 25:3 (2006), 189–197.
    • (2006) Matrix Biol. , vol.25 , Issue.3 , pp. 189-197
    • Nishiuchi, R.1
  • 30
    • 0035724579 scopus 로고    scopus 로고
    • Function and interactions of integrins
    • [30] van der Flier, A., Sonnenberg, A., Function and interactions of integrins. Cell Tissue Res 305:3 (2001), 285–298.
    • (2001) Cell Tissue Res , vol.305 , Issue.3 , pp. 285-298
    • van der Flier, A.1    Sonnenberg, A.2
  • 32
    • 76349099822 scopus 로고    scopus 로고
    • Structure of an integrin with an alphaI domain, complement receptor type 4
    • [32] Xie, C., et al. Structure of an integrin with an alphaI domain, complement receptor type 4. EMBO J. 29:3 (2010), 666–679.
    • (2010) EMBO J. , vol.29 , Issue.3 , pp. 666-679
    • Xie, C.1
  • 33
    • 0034698147 scopus 로고    scopus 로고
    • Ligand binding to integrins
    • [33] Plow, E.F., et al. Ligand binding to integrins. J. Biol. Chem. 275:29 (2000), 21785–21788.
    • (2000) J. Biol. Chem. , vol.275 , Issue.29 , pp. 21785-21788
    • Plow, E.F.1
  • 34
    • 80054084623 scopus 로고    scopus 로고
    • Stretching actin filaments within cells enhances their affinity for the myosin II motor domain
    • [34] Uyeda, T.Q., et al. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS One, 6(10), 2011, e26200.
    • (2011) PLoS One , vol.6 , Issue.10 , pp. e26200
    • Uyeda, T.Q.1
  • 35
    • 66149128873 scopus 로고    scopus 로고
    • The tail of integrins, talin, and kindlins
    • [35] Moser, M., et al. The tail of integrins, talin, and kindlins. Science 324:5929 (2009), 895–899.
    • (2009) Science , vol.324 , Issue.5929 , pp. 895-899
    • Moser, M.1
  • 36
    • 61549126013 scopus 로고    scopus 로고
    • Mechanical distortion of single actin filaments induced by external force: detection by fluorescence imaging
    • [36] Shimozawa, T., Ishiwata, S., Mechanical distortion of single actin filaments induced by external force: detection by fluorescence imaging. Biophys. J. 96:3 (2009), 1036–1044.
    • (2009) Biophys. J. , vol.96 , Issue.3 , pp. 1036-1044
    • Shimozawa, T.1    Ishiwata, S.2
  • 37
    • 80054079832 scopus 로고    scopus 로고
    • Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament
    • [37] Hayakawa, K., Tatsumi, H., Sokabe, M., Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195:5 (2011), 721–727.
    • (2011) J. Cell Biol. , vol.195 , Issue.5 , pp. 721-727
    • Hayakawa, K.1    Tatsumi, H.2    Sokabe, M.3
  • 38
    • 79551672889 scopus 로고    scopus 로고
    • Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy
    • [38] Watanabe-Nakayama, T., et al. Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy. Biophys. J. 100:3 (2011), 564–572.
    • (2011) Biophys. J. , vol.100 , Issue.3 , pp. 564-572
    • Watanabe-Nakayama, T.1
  • 39
    • 84880278787 scopus 로고    scopus 로고
    • Cyclic hardening in bundled actin networks
    • [39] Schmoller, K.M., et al. Cyclic hardening in bundled actin networks. Nat. Commun., 1, 2010, 134.
    • (2010) Nat. Commun. , vol.1 , pp. 134
    • Schmoller, K.M.1
  • 40
    • 79953293637 scopus 로고    scopus 로고
    • Zyxin emerges as a key player in the mechanotransduction at cell adhesive structures
    • [40] Hirata, H., Tatsumi, H., Sokabe, M., Zyxin emerges as a key player in the mechanotransduction at cell adhesive structures. Commun. Integr. Biol. 1:2 (2008), 192–195.
    • (2008) Commun. Integr. Biol. , vol.1 , Issue.2 , pp. 192-195
    • Hirata, H.1    Tatsumi, H.2    Sokabe, M.3
  • 41
    • 0033531927 scopus 로고    scopus 로고
    • An alpha-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment
    • [41] Reinhard, M., et al. An alpha-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment. J. Biol. Chem. 274:19 (1999), 13410–13418.
    • (1999) J. Biol. Chem. , vol.274 , Issue.19 , pp. 13410-13418
    • Reinhard, M.1
  • 42
    • 0033731119 scopus 로고    scopus 로고
    • Integrin cytoplasmic domain-binding proteins
    • [42] Liu, S., Calderwood, D.A., Ginsberg, M.H., Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 113:20 (2000), 3563–3571.
    • (2000) J. Cell Sci. , vol.113 , Issue.20 , pp. 3563-3571
    • Liu, S.1    Calderwood, D.A.2    Ginsberg, M.H.3
  • 43
    • 0037031906 scopus 로고    scopus 로고
    • Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling
    • [43] Takagi, J., et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:5 (2002), 599–611.
    • (2002) Cell , vol.110 , Issue.5 , pp. 599-611
    • Takagi, J.1
  • 44
    • 8544259562 scopus 로고    scopus 로고
    • Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics
    • [44] Xiao, T., et al. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:7013 (2004), 59–67.
    • (2004) Nature , vol.432 , Issue.7013 , pp. 59-67
    • Xiao, T.1
  • 45
    • 34247891506 scopus 로고    scopus 로고
    • Structural basis of integrin regulation and signaling
    • [45] Luo, B.-H., Carman, C.V., Springer, T.A., Structural basis of integrin regulation and signaling. Annu. Rev. Immunol., 25, 2007, 619.
    • (2007) Annu. Rev. Immunol. , vol.25 , pp. 619
    • Luo, B.-H.1    Carman, C.V.2    Springer, T.A.3
  • 46
    • 84857688656 scopus 로고    scopus 로고
    • Integrin inside-out signaling and the immunological synapse
    • [46] Springer, T.A., Dustin, M.L., Integrin inside-out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24:1 (2012), 107–115.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , Issue.1 , pp. 107-115
    • Springer, T.A.1    Dustin, M.L.2
  • 47
    • 84869223932 scopus 로고    scopus 로고
    • Ideal, catch, and slip bonds in cadherin adhesion
    • [47] Rakshit, S., et al. Ideal, catch, and slip bonds in cadherin adhesion. Proc. Natl. Acad. Sci. USA 109:46 (2012), 18815–18820.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , Issue.46 , pp. 18815-18820
    • Rakshit, S.1
  • 48
    • 0030448942 scopus 로고    scopus 로고
    • Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules
    • [48] Pierres, A., et al. Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules. Proc. Natl. Acad. Sci. USA 93:26 (1996), 15114–15118.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , Issue.26 , pp. 15114-15118
    • Pierres, A.1
  • 49
    • 0027172919 scopus 로고
    • Mechanotransduction across the cell surface and through the cytoskeleton
    • [49] Wang, N., Butler, J.P., Ingber, D.E., Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:5111 (1993), 1124–1127.
    • (1993) Science , vol.260 , Issue.5111 , pp. 1124-1127
    • Wang, N.1    Butler, J.P.2    Ingber, D.E.3
  • 50
    • 0030994017 scopus 로고    scopus 로고
    • Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages
    • [50] Choquet, D., Felsenfeld, D.P., Sheetz, M.P., Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:1 (1997), 39–48.
    • (1997) Cell , vol.88 , Issue.1 , pp. 39-48
    • Choquet, D.1    Felsenfeld, D.P.2    Sheetz, M.P.3
  • 51
    • 0344912596 scopus 로고    scopus 로고
    • Cell locomotion and focal adhesions are regulated by substrate flexibility
    • [51] Pelham, R.J. Jr., Wang, Y., Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:25 (1997), 13661–13665.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , Issue.25 , pp. 13661-13665
    • Pelham, R.J.1    Wang, Y.2
  • 52
    • 79957889032 scopus 로고    scopus 로고
    • The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins
    • [52] Guilluy, C., et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat. Cell Biol. 13:6 (2011), 722–727.
    • (2011) Nat. Cell Biol. , vol.13 , Issue.6 , pp. 722-727
    • Guilluy, C.1
  • 53
    • 84862598504 scopus 로고    scopus 로고
    • Talin activates integrins by altering the topology of the β transmembrane domain
    • [53] Kim, C., et al. Talin activates integrins by altering the topology of the β transmembrane domain. J. Cell Biol. 197:5 (2012), 605–611.
    • (2012) J. Cell Biol. , vol.197 , Issue.5 , pp. 605-611
    • Kim, C.1
  • 54
    • 0030834853 scopus 로고    scopus 로고
    • Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations
    • [54] Isralewitz, B., Izrailev, S., Schulten, K., Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J. 73:6 (1997), 2972–2979.
    • (1997) Biophys. J. , vol.73 , Issue.6 , pp. 2972-2979
    • Isralewitz, B.1    Izrailev, S.2    Schulten, K.3
  • 55
    • 0030987036 scopus 로고    scopus 로고
    • Molecular dynamics study of unbinding of the avidin-biotin complex
    • [55] Izrailev, S., et al. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72:4 (1997), 1568–1581.
    • (1997) Biophys. J. , vol.72 , Issue.4 , pp. 1568-1581
    • Izrailev, S.1
  • 56
    • 0031041820 scopus 로고    scopus 로고
    • Photoproducts of bacteriorhodopsin mutants: a molecular dynamics study
    • [56] Humphrey, W., Bamberg, E., Schulten, K., Photoproducts of bacteriorhodopsin mutants: a molecular dynamics study. Biophys. J. 72:3 (1997), 1347–1356.
    • (1997) Biophys. J. , vol.72 , Issue.3 , pp. 1347-1356
    • Humphrey, W.1    Bamberg, E.2    Schulten, K.3
  • 57
    • 77958158403 scopus 로고    scopus 로고
    • Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow
    • [57] Wayman, A.M., et al. Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow. Biophys. J. 99:4 (2010), 1166–1174.
    • (2010) Biophys. J. , vol.99 , Issue.4 , pp. 1166-1174
    • Wayman, A.M.1
  • 58
    • 84898467976 scopus 로고    scopus 로고
    • Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
    • [58] Yao, M., et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep., 4, 2014, 4610.
    • (2014) Sci. Rep. , vol.4 , pp. 4610
    • Yao, M.1
  • 59
    • 34249103354 scopus 로고    scopus 로고
    • Magnetic tweezers measurement of the bond lifetime-force behavior of the IgG-protein A specific molecular interaction
    • [59] Shang, H., Lee, G.U., Magnetic tweezers measurement of the bond lifetime-force behavior of the IgG-protein A specific molecular interaction. J. Am. Chem. Soc. 129:20 (2007), 6640–6646.
    • (2007) J. Am. Chem. Soc. , vol.129 , Issue.20 , pp. 6640-6646
    • Shang, H.1    Lee, G.U.2
  • 60
    • 84869127061 scopus 로고    scopus 로고
    • Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells
    • [60] Chen, W., et al. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol. 199:3 (2012), 497–512.
    • (2012) J. Cell Biol. , vol.199 , Issue.3 , pp. 497-512
    • Chen, W.1
  • 61
    • 45549098614 scopus 로고    scopus 로고
    • FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation
    • [61] Yakovenko, O., et al. FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J. Biol. Chem. 283:17 (2008), 11596–11605.
    • (2008) J. Biol. Chem. , vol.283 , Issue.17 , pp. 11596-11605
    • Yakovenko, O.1
  • 62
    • 75749154495 scopus 로고    scopus 로고
    • Recreation of the terminal events in physiological integrin activation
    • [62] Ye, F., et al. Recreation of the terminal events in physiological integrin activation. J. Cell Biol. 188:1 (2010), 157–173.
    • (2010) J. Cell Biol. , vol.188 , Issue.1 , pp. 157-173
    • Ye, F.1
  • 63
    • 84868019676 scopus 로고    scopus 로고
    • Integrin bi-directional signaling across the plasma membrane
    • [63] Hu, P., Luo, B.H., Integrin bi-directional signaling across the plasma membrane. J. Cell. Physiol. 228:2 (2013), 306–312.
    • (2013) J. Cell. Physiol. , vol.228 , Issue.2 , pp. 306-312
    • Hu, P.1    Luo, B.H.2
  • 65
  • 66
    • 84897665004 scopus 로고    scopus 로고
    • Talin and kindlin: the one-two punch in integrin activation
    • [66] Ye, F., Snider, A.K., Ginsberg, M.H., Talin and kindlin: the one-two punch in integrin activation. Front. Med. 8:1 (2014), 6–16.
    • (2014) Front. Med. , vol.8 , Issue.1 , pp. 6-16
    • Ye, F.1    Snider, A.K.2    Ginsberg, M.H.3
  • 67
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • [67] Hollister, S.J., Porous scaffold design for tissue engineering. Nat. Mater. 4:7 (2005), 518–524.
    • (2005) Nat. Mater. , vol.4 , Issue.7 , pp. 518-524
    • Hollister, S.J.1
  • 68
    • 84994191505 scopus 로고    scopus 로고
    • Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects
    • Cytotechnology,.
    • [68] I. Bruzauskaite, et al., Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects, Cytotechnology, 2015.
    • (2015)
    • Bruzauskaite, I.1
  • 69
    • 84994100396 scopus 로고    scopus 로고
    • Mechanosensing via cell-matrix adhesions in 3D microenvironments
    • Exp Cell Res,.
    • [69] A.D. Doyle, K.M. Yamada, Mechanosensing via cell-matrix adhesions in 3D microenvironments, Exp Cell Res, 2015.
    • (2015)
    • Doyle, A.D.1    Yamada, K.M.2
  • 70
    • 76549134964 scopus 로고    scopus 로고
    • Microfluidic tools for cell biological research
    • [70] Velve-Casquillas, G., et al. Microfluidic tools for cell biological research. Nano Today 5:1 (2010), 28–47.
    • (2010) Nano Today , vol.5 , Issue.1 , pp. 28-47
    • Velve-Casquillas, G.1
  • 71
    • 84906794588 scopus 로고    scopus 로고
    • Direct observation of alpha-actinin tension and recruitment at focal adhesions during contact growth
    • [71] Ye, N., et al. Direct observation of alpha-actinin tension and recruitment at focal adhesions during contact growth. Exp. Cell Res. 327:1 (2014), 57–67.
    • (2014) Exp. Cell Res. , vol.327 , Issue.1 , pp. 57-67
    • Ye, N.1
  • 72
    • 84870381713 scopus 로고    scopus 로고
    • Dynamic force sensing of filamin revealed in single-molecule experiments
    • [72] Rognoni, L., et al. Dynamic force sensing of filamin revealed in single-molecule experiments. Proc. Natl. Acad. Sci. USA 109:48 (2012), 19679–19684.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , Issue.48 , pp. 19679-19684
    • Rognoni, L.1
  • 73
    • 74049126062 scopus 로고    scopus 로고
    • New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering
    • [73] Saltel, F., et al. New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering. J. Cell Biol. 187:5 (2009), 715–731.
    • (2009) J. Cell Biol. , vol.187 , Issue.5 , pp. 715-731
    • Saltel, F.1
  • 74
    • 54249108158 scopus 로고    scopus 로고
    • Differences in regulation of Drosophila and vertebrate integrin affinity by talin
    • [74] Helsten, T.L., et al. Differences in regulation of Drosophila and vertebrate integrin affinity by talin. Mol. Biol. Cell 19:8 (2008), 3589–3598.
    • (2008) Mol. Biol. Cell , vol.19 , Issue.8 , pp. 3589-3598
    • Helsten, T.L.1
  • 75
    • 76249113509 scopus 로고    scopus 로고
    • Integrin alphaIIbbeta3 activation in Chinese hamster ovary cells and platelets increases clustering rather than affinity
    • [75] Bunch, T.A., Integrin alphaIIbbeta3 activation in Chinese hamster ovary cells and platelets increases clustering rather than affinity. J. Biol. Chem. 285:3 (2010), 1841–1849.
    • (2010) J. Biol. Chem. , vol.285 , Issue.3 , pp. 1841-1849
    • Bunch, T.A.1
  • 76
    • 77949862490 scopus 로고    scopus 로고
    • The final steps of integrin activation: the end game
    • [76] Shattil, S.J., Kim, C., Ginsberg, M.H., The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11:4 (2010), 288–300.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , Issue.4 , pp. 288-300
    • Shattil, S.J.1    Kim, C.2    Ginsberg, M.H.3
  • 77
    • 58149332708 scopus 로고    scopus 로고
    • Cooperativity in adhesion cluster formation during initial cell adhesion
    • [77] Selhuber-Unkel, C., et al. Cooperativity in adhesion cluster formation during initial cell adhesion. Biophys. J. 95:11 (2008), 5424–5431.
    • (2008) Biophys. J. , vol.95 , Issue.11 , pp. 5424-5431
    • Selhuber-Unkel, C.1
  • 78
    • 70349496205 scopus 로고    scopus 로고
    • Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction
    • [78] Roca-Cusachs, P., et al. Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proc. Natl. Acad. Sci. USA 106:38 (2009), 16245–16250.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , Issue.38 , pp. 16245-16250
    • Roca-Cusachs, P.1
  • 79
    • 0035002155 scopus 로고    scopus 로고
    • Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates
    • [79] Balaban, N.Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:5 (2001), 466–472.
    • (2001) Nat. Cell Biol. , vol.3 , Issue.5 , pp. 466-472
    • Balaban, N.Q.1
  • 80
    • 84884243072 scopus 로고    scopus 로고
    • Molecular tension sensors report forces generated by single integrin molecules in living cells
    • [80] Morimatsu, M., et al. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13:9 (2013), 3985–3989.
    • (2013) Nano Lett. , vol.13 , Issue.9 , pp. 3985-3989
    • Morimatsu, M.1
  • 81
    • 84877946982 scopus 로고    scopus 로고
    • Defining single molecular forces required to activate integrin and notch signaling
    • [81] Wang, X., Ha, T., Defining single molecular forces required to activate integrin and notch signaling. Science 340:6135 (2013), 991–994.
    • (2013) Science , vol.340 , Issue.6135 , pp. 991-994
    • Wang, X.1    Ha, T.2
  • 82
    • 77954486800 scopus 로고    scopus 로고
    • Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics
    • [82] Grashoff, C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:7303 (2010), 263–266.
    • (2010) Nature , vol.466 , Issue.7303 , pp. 263-266
    • Grashoff, C.1
  • 83
    • 0041461882 scopus 로고    scopus 로고
    • Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin
    • [83] Jiang, G., et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:6946 (2003), 334–337.
    • (2003) Nature , vol.424 , Issue.6946 , pp. 334-337
    • Jiang, G.1
  • 84
    • 0033802766 scopus 로고    scopus 로고
    • Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis
    • [84] Thoumine, O., et al. Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29:6 (2000), 398–408.
    • (2000) Eur. Biophys. J. , vol.29 , Issue.6 , pp. 398-408
    • Thoumine, O.1
  • 85
    • 0020805412 scopus 로고
    • A new protein of adhesion plaques and ruffling membranes
    • [85] Burridge, K., Connell, L., A new protein of adhesion plaques and ruffling membranes. J. Cell Biol. 97:2 (1983), 359–367.
    • (1983) J. Cell Biol. , vol.97 , Issue.2 , pp. 359-367
    • Burridge, K.1    Connell, L.2
  • 86
    • 0021214312 scopus 로고
    • An Interaction between Vinculin and Talin
    • [86] Burridge, K., Mangeat, P., An Interaction between Vinculin and Talin. Nature 308:5961 (1984), 744–746.
    • (1984) Nature , vol.308 , Issue.5961 , pp. 744-746
    • Burridge, K.1    Mangeat, P.2
  • 87
    • 0033213922 scopus 로고    scopus 로고
    • The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation
    • [87] Calderwood, D.A., et al. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274:40 (1999), 28071–28074.
    • (1999) J. Biol. Chem. , vol.274 , Issue.40 , pp. 28071-28074
    • Calderwood, D.A.1
  • 88
    • 0037077282 scopus 로고    scopus 로고
    • The phosphotyrosine binding-like domain of talin activates integrins
    • [88] Calderwood, D.A., et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277:24 (2002), 21749–21758.
    • (2002) J. Biol. Chem. , vol.277 , Issue.24 , pp. 21749-21758
    • Calderwood, D.A.1
  • 89
    • 4143083987 scopus 로고    scopus 로고
    • Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle
    • [89] Papagrigoriou, E., et al. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J. 23:15 (2004), 2942–2951.
    • (2004) EMBO J. , vol.23 , Issue.15 , pp. 2942-2951
    • Papagrigoriou, E.1
  • 90
    • 11844301327 scopus 로고    scopus 로고
    • A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head
    • [90] Fillingham, I., et al. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 13:1 (2005), 65–74.
    • (2005) Structure , vol.13 , Issue.1 , pp. 65-74
    • Fillingham, I.1
  • 91
    • 67649395972 scopus 로고    scopus 로고
    • Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions
    • [91] Himmel, M., et al. Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions. J. Biol. Chem. 284:20 (2009), 13832–13842.
    • (2009) J. Biol. Chem. , vol.284 , Issue.20 , pp. 13832-13842
    • Himmel, M.1
  • 92
    • 34249705346 scopus 로고    scopus 로고
    • Force-induced activation of talin and its possible role in focal adhesion mechanotransduction
    • [92] Lee, S.E., Kamm, R.D., Mofrad, M.R., Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40:9 (2007), 2096–2106.
    • (2007) J. Biomech. , vol.40 , Issue.9 , pp. 2096-2106
    • Lee, S.E.1    Kamm, R.D.2    Mofrad, M.R.3
  • 93
    • 40149107045 scopus 로고    scopus 로고
    • How force might activate talin's vinculin binding sites: smd reveals a structural mechanism
    • [93] Hytonen, V.P., Vogel, V., How force might activate talin's vinculin binding sites: smd reveals a structural mechanism. PLoS Comput. Biol., 4(2), 2008, e24.
    • (2008) PLoS Comput. Biol. , vol.4 , Issue.2 , pp. e24
    • Hytonen, V.P.1    Vogel, V.2
  • 94
    • 27744527513 scopus 로고    scopus 로고
    • Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod
    • [94] Gingras, A.R., et al. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod. J. Biol. Chem. 280:44 (2005), 37217–37224.
    • (2005) J. Biol. Chem. , vol.280 , Issue.44 , pp. 37217-37224
    • Gingras, A.R.1
  • 95
    • 59149094538 scopus 로고    scopus 로고
    • Stretching single talin rod molecules activates vinculin binding
    • [95] del Rio, A., et al. Stretching single talin rod molecules activates vinculin binding. Science 323:5914 (2009), 638–641.
    • (2009) Science , vol.323 , Issue.5914 , pp. 638-641
    • del Rio, A.1
  • 96
    • 0141865705 scopus 로고    scopus 로고
    • Talin binding to integrin beta tails: a final common step in integrin activation
    • [96] Tadokoro, S., et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science 302:5642 (2003), 103–106.
    • (2003) Science , vol.302 , Issue.5642 , pp. 103-106
    • Tadokoro, S.1
  • 97
    • 0037031551 scopus 로고    scopus 로고
    • A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face
    • [97] Vinogradova, O., et al. A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 110:5 (2002), 587–597.
    • (2002) Cell , vol.110 , Issue.5 , pp. 587-597
    • Vinogradova, O.1
  • 98
    • 70450222316 scopus 로고    scopus 로고
    • The structure of an integrin/talin complex reveals the basis of inside-out signal transduction
    • [98] Anthis, N.J., et al. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 28:22 (2009), 3623–3632.
    • (2009) EMBO J. , vol.28 , Issue.22 , pp. 3623-3632
    • Anthis, N.J.1
  • 99
    • 0018692430 scopus 로고
    • A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells
    • [99] Geiger, B., A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:1 (1979), 193–205.
    • (1979) Cell , vol.18 , Issue.1 , pp. 193-205
    • Geiger, B.1
  • 100
    • 0020082249 scopus 로고
    • High-affinity interaction of vinculin with actin filaments in vitro
    • [100] Wilkins, J.A., Lin, S., High-affinity interaction of vinculin with actin filaments in vitro. Cell 28:1 (1982), 83–90.
    • (1982) Cell , vol.28 , Issue.1 , pp. 83-90
    • Wilkins, J.A.1    Lin, S.2
  • 101
    • 0037049555 scopus 로고    scopus 로고
    • Recruitment of the Arp2/3 complex to vinculin coupling membrane protrusion to matrix adhesion
    • [101] DeMali, K.A., Barlow, C.A., Burridge, K., Recruitment of the Arp2/3 complex to vinculin coupling membrane protrusion to matrix adhesion. J. Cell Biol. 159:5 (2002), 881–891.
    • (2002) J. Cell Biol. , vol.159 , Issue.5 , pp. 881-891
    • DeMali, K.A.1    Barlow, C.A.2    Burridge, K.3
  • 102
    • 0018905464 scopus 로고
    • Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin
    • [102] Burridge, K., Feramisco, J.R., Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell 19:3 (1980), 587–595.
    • (1980) Cell , vol.19 , Issue.3 , pp. 587-595
    • Burridge, K.1    Feramisco, J.R.2
  • 103
    • 0019973479 scopus 로고
    • Structural aspects of vinculin-actin interactions
    • [103] Isenberg, G., Leonard, K., Jockusch, B.M., Structural aspects of vinculin-actin interactions. J. Mol. Biol. 158:2 (1982), 231–249.
    • (1982) J. Mol. Biol. , vol.158 , Issue.2 , pp. 231-249
    • Isenberg, G.1    Leonard, K.2    Jockusch, B.M.3
  • 104
    • 0024205182 scopus 로고
    • cDNA-derived sequence of chicken embryo vinculin
    • [104] Coutu, M.D., Craig, S.W., cDNA-derived sequence of chicken embryo vinculin. Proc. Natl. Acad. Sci. 85:22 (1988), 8535–8539.
    • (1988) Proc. Natl. Acad. Sci. , vol.85 , Issue.22 , pp. 8535-8539
    • Coutu, M.D.1    Craig, S.W.2
  • 105
    • 0027399847 scopus 로고
    • Molecular shape of vinculin in aqueous solution
    • [105] Eimer, W., et al. Molecular shape of vinculin in aqueous solution. J. Mol. Biol. 229:1 (1993), 146–152.
    • (1993) J. Mol. Biol. , vol.229 , Issue.1 , pp. 146-152
    • Eimer, W.1
  • 106
    • 0022419401 scopus 로고
    • Electron microscopy of rotary shadowed vinculin and vinculin complexes
    • [106] Milam, L.M., Electron microscopy of rotary shadowed vinculin and vinculin complexes. J. Mol. Biol. 184:3 (1985), 543–545.
    • (1985) J. Mol. Biol. , vol.184 , Issue.3 , pp. 543-545
    • Milam, L.M.1
  • 107
    • 3242875461 scopus 로고    scopus 로고
    • Structural basis for vinculin activation at sites of cell adhesion
    • [107] Bakolitsa, C., et al. Structural basis for vinculin activation at sites of cell adhesion. Nature 430:6999 (2004), 583–586.
    • (2004) Nature , vol.430 , Issue.6999 , pp. 583-586
    • Bakolitsa, C.1
  • 108
    • 3142526378 scopus 로고    scopus 로고
    • Crystal structure of human vinculin
    • [108] Borgon, R.A., et al. Crystal structure of human vinculin. Structure 12:7 (2004), 1189–1197.
    • (2004) Structure , vol.12 , Issue.7 , pp. 1189-1197
    • Borgon, R.A.1
  • 109
    • 84994073097 scopus 로고
    • An interaction between vinculin and talin
    • [109] K. Burridge, P. Mangeat, An interaction between vinculin and talin, 1984.
    • (1984)
    • Burridge, K.1    Mangeat, P.2
  • 110
    • 0031436412 scopus 로고    scopus 로고
    • Vinculin is associated with the E-cadherin adhesion complex
    • [110] Hazan, R.B., et al. Vinculin is associated with the E-cadherin adhesion complex. J. Biol. Chem. 272:51 (1997), 32448–32453.
    • (1997) J. Biol. Chem. , vol.272 , Issue.51 , pp. 32448-32453
    • Hazan, R.B.1
  • 111
    • 0030994387 scopus 로고    scopus 로고
    • Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin
    • [111] Van Nhieu, G.T., Ben-Ze'ev, A., Sansonetti, P., Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16:10 (1997), 2717–2729.
    • (1997) EMBO J. , vol.16 , Issue.10 , pp. 2717-2729
    • Van Nhieu, G.T.1    Ben-Ze'ev, A.2    Sansonetti, P.3
  • 112
    • 0032482254 scopus 로고    scopus 로고
    • Vinculin is part of the cadherin–catenin junctional complex: complex formation between α-catenin and vinculin
    • [112] Weiss, E.E., et al. Vinculin is part of the cadherin–catenin junctional complex: complex formation between α-catenin and vinculin. J. Cell Biol. 141:3 (1998), 755–764.
    • (1998) J. Cell Biol. , vol.141 , Issue.3 , pp. 755-764
    • Weiss, E.E.1
  • 113
    • 0025008074 scopus 로고
    • Paxillin: a new vinculin-binding protein present in focal adhesions
    • [113] Turner, C.E., Glenney, J.R., Burridge, K., Paxillin: a new vinculin-binding protein present in focal adhesions. J. Cell Biol. 111:3 (1990), 1059–1068.
    • (1990) J. Cell Biol. , vol.111 , Issue.3 , pp. 1059-1068
    • Turner, C.E.1    Glenney, J.R.2    Burridge, K.3
  • 114
    • 0028324634 scopus 로고
    • Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin
    • [114] Wood, C., et al. Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin. J. Cell Sci. 107:2 (1994), 709–717.
    • (1994) J. Cell Sci. , vol.107 , Issue.2 , pp. 709-717
    • Wood, C.1
  • 115
    • 84994151551 scopus 로고
    • F-actin binding site masked by the intramolecular association of vinculin head and tail domains
    • [115] R.P. Johnson, S.W. Craig, F-actin binding site masked by the intramolecular association of vinculin head and tail domains, 1995.
    • (1995)
    • Johnson, R.P.1    Craig, S.W.2
  • 116
    • 0029009673 scopus 로고
    • The carboxy-terminal tail domain of vinculin contains a cryptic binding site for acidic phospholipids
    • [116] Johnson, R.P., Craig, S.W., The carboxy-terminal tail domain of vinculin contains a cryptic binding site for acidic phospholipids. Biochem. Biophys. Res. Commun. 210:1 (1995), 159–164.
    • (1995) Biochem. Biophys. Res. Commun. , vol.210 , Issue.1 , pp. 159-164
    • Johnson, R.P.1    Craig, S.W.2
  • 117
    • 0028318397 scopus 로고
    • An intramolecular association between the head and tail domains of vinculin modulates talin binding
    • [117] Johnson, R.P., Craig, S.W., An intramolecular association between the head and tail domains of vinculin modulates talin binding. J. Biol. Chem. 269:17 (1994), 12611–12619.
    • (1994) J. Biol. Chem. , vol.269 , Issue.17 , pp. 12611-12619
    • Johnson, R.P.1    Craig, S.W.2
  • 118
    • 0028836195 scopus 로고
    • F-actin binding site masked by the intramolecular association of vinculin head and tail domains
    • [118] Johnson, R.P., Craig, S.W., F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373 (1995), 261–264.
    • (1995) Nature , vol.373 , pp. 261-264
    • Johnson, R.P.1    Craig, S.W.2
  • 119
    • 0035853706 scopus 로고    scopus 로고
    • Interaction of the N-and C-terminal Domains of Vinculin CHARACTERIZATION AND MAPPING STUDIES
    • [119] Miller, G.J., Dunn, S.D., Ball, E.H., Interaction of the N-and C-terminal Domains of Vinculin CHARACTERIZATION AND MAPPING STUDIES. J. Biol. Chem. 276:15 (2001), 11729–11734.
    • (2001) J. Biol. Chem. , vol.276 , Issue.15 , pp. 11729-11734
    • Miller, G.J.1    Dunn, S.D.2    Ball, E.H.3
  • 120
    • 0027943345 scopus 로고
    • Intramolecular interactions in vinculin control α-actinin binding to the vinculin head
    • [120] Kroemker, M., et al. Intramolecular interactions in vinculin control α-actinin binding to the vinculin head. FEBS Lett. 355:3 (1994), 259–262.
    • (1994) FEBS Lett. , vol.355 , Issue.3 , pp. 259-262
    • Kroemker, M.1
  • 121
    • 0032559997 scopus 로고    scopus 로고
    • The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4, 5-bisphosphate
    • [121] Hüttelmaier, S., et al. The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4, 5-bisphosphate. Curr. Biol. 8:9 (1998), 479–488.
    • (1998) Curr. Biol. , vol.8 , Issue.9 , pp. 479-488
    • Hüttelmaier, S.1
  • 122
    • 33846030511 scopus 로고    scopus 로고
    • Coincidence of actin filaments and talin is required to activate vinculin
    • [122] Chen, H., Choudhury, D.M., Craig, S.W., Coincidence of actin filaments and talin is required to activate vinculin. J. Biol. Chem. 281:52 (2006), 40389–40398.
    • (2006) J. Biol. Chem. , vol.281 , Issue.52 , pp. 40389-40398
    • Chen, H.1    Choudhury, D.M.2    Craig, S.W.3
  • 123
    • 20444492339 scopus 로고    scopus 로고
    • Two distinct head-tail interfaces cooperate to suppress activation of vinculin by talin
    • [123] Cohen, D.M., et al. Two distinct head-tail interfaces cooperate to suppress activation of vinculin by talin. J. Biol. Chem. 280:17 (2005), 17109–17117.
    • (2005) J. Biol. Chem. , vol.280 , Issue.17 , pp. 17109-17117
    • Cohen, D.M.1
  • 124
    • 0347717894 scopus 로고    scopus 로고
    • Vinculin activation by talin through helical bundle conversion
    • [124] Izard, T., et al. Vinculin activation by talin through helical bundle conversion. Nature 427:6970 (2004), 171–175.
    • (2004) Nature , vol.427 , Issue.6970 , pp. 171-175
    • Izard, T.1
  • 125
    • 33644852058 scopus 로고    scopus 로고
    • Actin and myosin as transcription factors
    • [125] Grummt, I., Actin and myosin as transcription factors. Curr. Opin. Genet. Dev. 16:2 (2006), 191–196.
    • (2006) Curr. Opin. Genet. Dev. , vol.16 , Issue.2 , pp. 191-196
    • Grummt, I.1
  • 127
    • 84875515145 scopus 로고    scopus 로고
    • Actin depolymerization under force is governed by lysine 113: glutamic acid 195-mediated catch-slip bonds
    • [127] Lee, C.-y, et al. Actin depolymerization under force is governed by lysine 113: glutamic acid 195-mediated catch-slip bonds. Proc. Natl. Acad. Sci. 110:13 (2013), 5022–5027.
    • (2013) Proc. Natl. Acad. Sci. , vol.110 , Issue.13 , pp. 5022-5027
    • Lee, C.-Y.1
  • 128
    • 0034896467 scopus 로고    scopus 로고
    • Thermodynamics and kinetics of actin filament nucleation
    • [128] Sept, D., McCammon, J.A., Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81:2 (2001), 667–674.
    • (2001) Biophys. J. , vol.81 , Issue.2 , pp. 667-674
    • Sept, D.1    McCammon, J.A.2
  • 129
    • 70849098888 scopus 로고    scopus 로고
    • Actin, a central player in cell shape and movement
    • [129] Pollard, T.D., Cooper, J.A., Actin, a central player in cell shape and movement. Science 326:5957 (2009), 1208–1212.
    • (2009) Science , vol.326 , Issue.5957 , pp. 1208-1212
    • Pollard, T.D.1    Cooper, J.A.2
  • 130
    • 0033895234 scopus 로고    scopus 로고
    • Molecular mechanisms controlling actin filament dynamics in nonmuscle cells
    • [130] Pollard, T.D., Blanchoin, L., Mullins, R.D., Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29 (2000), 545–576.
    • (2000) Annu. Rev. Biophys. Biomol. Struct. , vol.29 , pp. 545-576
    • Pollard, T.D.1    Blanchoin, L.2    Mullins, R.D.3
  • 131
    • 79956119811 scopus 로고    scopus 로고
    • Effect of tensile force on the mechanical behavior of actin filaments
    • [131] Matsushita, S., et al. Effect of tensile force on the mechanical behavior of actin filaments. J. Biomech. 44:9 (2011), 1776–1781.
    • (2011) J. Biomech. , vol.44 , Issue.9 , pp. 1776-1781
    • Matsushita, S.1
  • 132
    • 0031939935 scopus 로고    scopus 로고
    • The role of actin-binding protein 280 in integrin-dependent mechanoprotection
    • [132] Glogauer, M., et al. The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J. Biol. Chem. 273:3 (1998), 1689–1698.
    • (1998) J. Biol. Chem. , vol.273 , Issue.3 , pp. 1689-1698
    • Glogauer, M.1
  • 133
    • 0037175402 scopus 로고    scopus 로고
    • The relationship between force and focal complex development
    • [133] Galbraith, C.G., Yamada, K.M., Sheetz, M.P., The relationship between force and focal complex development. J. Cell Biol. 159:4 (2002), 695–705.
    • (2002) J. Cell Biol. , vol.159 , Issue.4 , pp. 695-705
    • Galbraith, C.G.1    Yamada, K.M.2    Sheetz, M.P.3
  • 134
    • 0242361579 scopus 로고    scopus 로고
    • Talin1 is critical for force-dependent reinforcement of initial integrin–cytoskeleton bonds but not tyrosine kinase activation
    • [134] Giannone, G., et al. Talin1 is critical for force-dependent reinforcement of initial integrin–cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 163:2 (2003), 409–419.
    • (2003) J. Cell Biol. , vol.163 , Issue.2 , pp. 409-419
    • Giannone, G.1
  • 135
    • 24644433853 scopus 로고    scopus 로고
    • Focal adhesions as mechanosensors: a physical mechanism
    • [135] Shemesh, T., et al. Focal adhesions as mechanosensors: a physical mechanism. Proc. Natl. Acad. Sci. USA 102:35 (2005), 12383–12388.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.35 , pp. 12383-12388
    • Shemesh, T.1
  • 136
    • 4344596239 scopus 로고    scopus 로고
    • Cell mechanosensitivity controls the anisotropy of focal adhesions
    • [136] Nicolas, A., Geiger, B., Safran, S.A., Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc. Natl. Acad. Sci. USA 101:34 (2004), 12520–12525.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.34 , pp. 12520-12525
    • Nicolas, A.1    Geiger, B.2    Safran, S.A.3
  • 137
    • 33646183674 scopus 로고    scopus 로고
    • Force-induced adsorption and anisotropic growth of focal adhesions
    • [137] Besser, A., Safran, S.A., Force-induced adsorption and anisotropic growth of focal adhesions. Biophys. J. 90:10 (2006), 3469–3484.
    • (2006) Biophys. J. , vol.90 , Issue.10 , pp. 3469-3484
    • Besser, A.1    Safran, S.A.2
  • 138
    • 0035844869 scopus 로고    scopus 로고
    • Focal contacts as mechanosensors externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism
    • [138] Riveline, D., et al. Focal contacts as mechanosensors externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism. J. Cell Biol. 153:6 (2001), 1175–1186.
    • (2001) J. Cell Biol. , vol.153 , Issue.6 , pp. 1175-1186
    • Riveline, D.1
  • 139
    • 0035002155 scopus 로고    scopus 로고
    • Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates
    • [139] Balaban, N.Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:5 (2001), 466–472.
    • (2001) Nat. Cell Biol. , vol.3 , Issue.5 , pp. 466-472
    • Balaban, N.Q.1
  • 140
    • 0037175402 scopus 로고    scopus 로고
    • The relationship between force and focal complex development
    • [140] Galbraith, C.G., Yamada, K.M., Sheetz, M.P., The relationship between force and focal complex development. J. Cell Biol. 159:4 (2002), 695–705.
    • (2002) J. Cell Biol. , vol.159 , Issue.4 , pp. 695-705
    • Galbraith, C.G.1    Yamada, K.M.2    Sheetz, M.P.3
  • 141
    • 46149093439 scopus 로고    scopus 로고
    • Structural basis for the autoinhibition of talin in regulating integrin activation
    • [141] Goksoy, E., et al. Structural basis for the autoinhibition of talin in regulating integrin activation. Mol. Cell 31:1 (2008), 124–133.
    • (2008) Mol. Cell , vol.31 , Issue.1 , pp. 124-133
    • Goksoy, E.1
  • 142
    • 78149245953 scopus 로고    scopus 로고
    • Forcing switch from short-to intermediate-and long-lived states of the αA domain generates LFA-1/ICAM-1 catch bonds
    • [142] Chen, W., Lou, J., Zhu, C., Forcing switch from short-to intermediate-and long-lived states of the αA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285:46 (2010), 35967–35978.
    • (2010) J. Biol. Chem. , vol.285 , Issue.46 , pp. 35967-35978
    • Chen, W.1    Lou, J.2    Zhu, C.3
  • 143
    • 0023917132 scopus 로고
    • The reaction-limited kinetics of membrane-to-surface adhesion and detachment
    • [143] Dembo, M., et al. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B: Biol. Sci. 234:1274 (1988), 55–83.
    • (1988) Proc. R. Soc. Lond. B: Biol. Sci. , vol.234 , Issue.1274 , pp. 55-83
    • Dembo, M.1
  • 144
    • 67649598285 scopus 로고    scopus 로고
    • Demonstration of catch bonds between an integrin and its ligand
    • [144] Kong, F., et al. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185:7 (2009), 1275–1284.
    • (2009) J. Cell Biol. , vol.185 , Issue.7 , pp. 1275-1284
    • Kong, F.1
  • 145
    • 84923372800 scopus 로고    scopus 로고
    • Dynamic catch of a Thy-1–α5β1+ syndecan-4 trimolecular complex
    • [145] Fiore, V.F., et al. Dynamic catch of a Thy-1–α5β1+ syndecan-4 trimolecular complex. Nat. Commun., 5, 2014.
    • (2014) Nat. Commun. , vol.5
    • Fiore, V.F.1
  • 146
    • 84925207036 scopus 로고    scopus 로고
    • A lupus-associated mac-1 variant has defects in integrin allostery and interaction with ligands under force
    • [146] Rosetti, F., et al. A lupus-associated mac-1 variant has defects in integrin allostery and interaction with ligands under force. Cell Rep. 10:10 (2015), 1655–1664.
    • (2015) Cell Rep. , vol.10 , Issue.10 , pp. 1655-1664
    • Rosetti, F.1
  • 147
    • 0037653696 scopus 로고    scopus 로고
    • Direct observation of catch bonds involving cell-adhesion molecules
    • [147] Marshall, B.T., et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:6936 (2003), 190–193.
    • (2003) Nature , vol.423 , Issue.6936 , pp. 190-193
    • Marshall, B.T.1
  • 148
    • 0346457092 scopus 로고    scopus 로고
    • Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan
    • [148] Sarangapani, K.K., et al. Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J. Biol. Chem. 279:3 (2004), 2291–2298.
    • (2004) J. Biol. Chem. , vol.279 , Issue.3 , pp. 2291-2298
    • Sarangapani, K.K.1
  • 149
    • 77958158403 scopus 로고    scopus 로고
    • Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow
    • [149] Wayman, A.M., et al. Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow. Biophys. J. 99:4 (2010), 1166–1174.
    • (2010) Biophys. J. , vol.99 , Issue.4 , pp. 1166-1174
    • Wayman, A.M.1
  • 150
    • 84869223932 scopus 로고    scopus 로고
    • Ideal, catch, and slip bonds in cadherin adhesion
    • [150] Rakshit, S., et al. Ideal, catch, and slip bonds in cadherin adhesion. Proc. Natl. Acad. Sci. 109:46 (2012), 18815–18820.
    • (2012) Proc. Natl. Acad. Sci. , vol.109 , Issue.46 , pp. 18815-18820
    • Rakshit, S.1
  • 151
    • 84909592568 scopus 로고    scopus 로고
    • The minimal cadherin-catenin complex binds to actin filaments under force
    • [151] Buckley, C.D., et al. The minimal cadherin-catenin complex binds to actin filaments under force. Science, 346(6209), 2014, 1254211.
    • (2014) Science , vol.346 , Issue.6209 , pp. 1254211
    • Buckley, C.D.1
  • 152
    • 84901929348 scopus 로고    scopus 로고
    • Resolving the molecular mechanism of cadherin catch bond formation
    • [152] Manibog, K., et al. Resolving the molecular mechanism of cadherin catch bond formation. Nat. Commun., 5, 2014.
    • (2014) Nat. Commun. , vol.5
    • Manibog, K.1
  • 153
    • 33749031014 scopus 로고    scopus 로고
    • Flow-enhanced adhesion regulated by a selectin interdomain hinge
    • [153] Lou, J., et al. Flow-enhanced adhesion regulated by a selectin interdomain hinge. J. Cell Biol. 174:7 (2006), 1107–1117.
    • (2006) J. Cell Biol. , vol.174 , Issue.7 , pp. 1107-1117
    • Lou, J.1
  • 154
    • 33847780609 scopus 로고    scopus 로고
    • A structure-based sliding-rebinding mechanism for catch bonds
    • [154] Lou, J., Zhu, C., A structure-based sliding-rebinding mechanism for catch bonds. Biophys. J. 92:5 (2007), 1471–1485.
    • (2007) Biophys. J. , vol.92 , Issue.5 , pp. 1471-1485
    • Lou, J.1    Zhu, C.2
  • 155
    • 58549108194 scopus 로고    scopus 로고
    • Structural basis for selectin mechanochemistry
    • [155] Springer, T.A., Structural basis for selectin mechanochemistry. Proc. Natl. Acad. Sci. 106:1 (2009), 91–96.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , Issue.1 , pp. 91-96
    • Springer, T.A.1
  • 156
    • 58549112954 scopus 로고    scopus 로고
    • Transmission of allostery through the lectin domain in selectin-mediated cell adhesion
    • [156] Waldron, T.T., Springer, T.A., Transmission of allostery through the lectin domain in selectin-mediated cell adhesion. Proc. Natl. Acad. Sci. 106:1 (2009), 85–90.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , Issue.1 , pp. 85-90
    • Waldron, T.T.1    Springer, T.A.2
  • 157
    • 3843151375 scopus 로고    scopus 로고
    • Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond
    • [157] Evans, E., et al. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl. Acad. Sci. USA 101:31 (2004), 11281–11286.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.31 , pp. 11281-11286
    • Evans, E.1
  • 158
    • 24144484705 scopus 로고    scopus 로고
    • The two-pathway model for the catch-slip transition in biological adhesion
    • [158] Pereverzev, Y.V., et al. The two-pathway model for the catch-slip transition in biological adhesion. Biophys. J. 89:3 (2005), 1446–1454.
    • (2005) Biophys. J. , vol.89 , Issue.3 , pp. 1446-1454
    • Pereverzev, Y.V.1
  • 159
    • 84875803668 scopus 로고    scopus 로고
    • Cyclic mechanical reinforcement of integrin-ligand interactions
    • [159] Kong, F., et al. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol. Cell 49:6 (2013), 1060–1068.
    • (2013) Mol. Cell , vol.49 , Issue.6 , pp. 1060-1068
    • Kong, F.1
  • 160
    • 84859270118 scopus 로고    scopus 로고
    • Classification of scaffold-hopping approaches
    • [160] Sun, H., Tawa, G., Wallqvist, A., Classification of scaffold-hopping approaches. Drug Discov. Today 17:7–8 (2012), 310–324.
    • (2012) Drug Discov. Today , vol.17 , Issue.7-8 , pp. 310-324
    • Sun, H.1    Tawa, G.2    Wallqvist, A.3
  • 161
    • 79952129858 scopus 로고    scopus 로고
    • Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices
    • [161] Hakkinen, K.M., et al. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17:5–6 (2011), 713–724.
    • (2011) Tissue Eng. Part A , vol.17 , Issue.5-6 , pp. 713-724
    • Hakkinen, K.M.1
  • 162
    • 65449189726 scopus 로고    scopus 로고
    • Super-resolution video microscopy of live cells by structured illumination
    • [162] Kner, P., et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6:5 (2009), 339–342.
    • (2009) Nat. Methods , vol.6 , Issue.5 , pp. 339-342
    • Kner, P.1
  • 163
    • 67649922591 scopus 로고    scopus 로고
    • Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy
    • [163] Greenfield, D., et al. Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol., 7(6), 2009, e1000137.
    • (2009) PLoS Biol. , vol.7 , Issue.6 , pp. e1000137
    • Greenfield, D.1
  • 164
    • 84921851331 scopus 로고    scopus 로고
    • Construction, imaging, and analysis of FRET-based tension sensors in living cells
    • [164] LaCroix, A.S., et al. Construction, imaging, and analysis of FRET-based tension sensors in living cells. Methods Cell Biol. 125 (2015), 161–186.
    • (2015) Methods Cell Biol. , vol.125 , pp. 161-186
    • LaCroix, A.S.1
  • 165
    • 84907251322 scopus 로고    scopus 로고
    • Combining single-molecule manipulation and single-molecule detection
    • [165] Cordova, J.C., et al. Combining single-molecule manipulation and single-molecule detection. Curr. Opin. Struct. Biol. 28 (2014), 142–148.
    • (2014) Curr. Opin. Struct. Biol. , vol.28 , pp. 142-148
    • Cordova, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.