메뉴 건너뛰기




Volumn 5, Issue 11, 2016, Pages

Urban link travel time prediction based on a gradient boosting method considering spatiotemporal correlations

Author keywords

Big data; Spatiotemporal correlations; Spatiotemporal gradient boosted regression tree model; Urban link travel time prediction

Indexed keywords


EID: 84994111944     PISSN: None     EISSN: 22209964     Source Type: Journal    
DOI: 10.3390/ijgi5110201     Document Type: Article
Times cited : (58)

References (55)
  • 1
    • 61449118957 scopus 로고    scopus 로고
    • Feasibility of using taxi dispatch system as probes for collecting traffic information
    • [CrossRef]
    • Liu, K.; Yamamoto, T.; Morikawa, T. Feasibility of using taxi dispatch system as probes for collecting traffic information. J. Intell. Transp. Syst. Technol. Plan. Oper. 2009, 13, 16-27. [CrossRef]
    • (2009) J. Intell. Transp. Syst. Technol. Plan. Oper , vol.13 , pp. 16-27
    • Liu, K.1    Yamamoto, T.2    Morikawa, T.3
  • 4
    • 84879018433 scopus 로고    scopus 로고
    • Real-time map matching algorithm based on low-sampling-rate probe vehicle data
    • Yao, E.J.; Zuo, T. Real-time map matching algorithm based on low-sampling-rate probe vehicle data. Beijing J. Beijing Univ. Technol. 2012, 39, 909-913.
    • (2012) Beijing J. Beijing Univ. Technol , vol.39 , pp. 909-913
    • Yao, E.J.1    Zuo, T.2
  • 7
    • 79952736659 scopus 로고    scopus 로고
    • Real-time road traffic prediction with spatio-temporal correlations
    • [CrossRef]
    • Min,W.;Wynter, L. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C Emerg. Technol. 2011, 19, 606-616. [CrossRef]
    • (2011) Transp. Res. Part C Emerg. Technol , Issue.19 , pp. 606-616
    • Min, W.1    Wynter, L.2
  • 8
    • 80052718938 scopus 로고    scopus 로고
    • A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
    • [CrossRef]
    • Fei, X.; Lu, C.C.; Liu, K. A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transp. Res. Part C Emerg. Technol. 2011, 19, 1306-1318. [CrossRef]
    • (2011) Transp. Res. Part C Emerg. Technol , vol.19 , pp. 1306-1318
    • Fei, X.1    Lu, C.C.2    Liu, K.3
  • 9
    • 84880340417 scopus 로고    scopus 로고
    • Efficient missing data imputing for traffic flow by considering temporal and spatial dependence
    • [CrossRef]
    • Li, L.; Li, Y.; Li, Z. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transp. Res. Part C Emerg. Technol. 2013, 34, 108-120. [CrossRef]
    • (2013) Transp. Res. Part C Emerg. Technol , vol.34 , pp. 108-120
    • Li, L.1    Li, Y.2    Li, Z.3
  • 10
    • 78651311179 scopus 로고    scopus 로고
    • Freeway travel time ground truth data collection using bluetooth sensors
    • [CrossRef]
    • Haghani, A.; Hamedi, M.; Sadabadi, K.F. Freeway travel time ground truth data collection using bluetooth sensors. J. Transp. Res. Board 2010, 2160, 60-68. [CrossRef]
    • (2010) J. Transp. Res. Board , vol.2160 , pp. 60-68
    • Haghani, A.1    Hamedi, M.2    Sadabadi, K.F.3
  • 11
    • 0032207514 scopus 로고    scopus 로고
    • Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models
    • [CrossRef]
    • Williams, B.; Durvasula, P.; Brown, D. Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models. Transp. Res. Rec. J. Transp. Res. Board 1998, 1644, 132-141. [CrossRef]
    • (1998) Transp. Res. Rec. J. Transp. Res. Board , vol.1644 , pp. 132-141
    • Williams, B.1    Durvasula, P.2    Brown, D.3
  • 12
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • [CrossRef]
    • Smith, B.; Demetsky, M. Traffic flow forecasting: Comparison of modeling approaches. J. Transp. Eng. 1997, 123, 261-266. [CrossRef]
    • (1997) J. Transp. Eng , vol.123 , pp. 261-266
    • Smith, B.1    Demetsky, M.2
  • 13
    • 84873704499 scopus 로고    scopus 로고
    • Short-term traffic speed forecasting hybrid model based on Chaos-wavelet analysis-support vector machine theory
    • [CrossRef]
    • Wang, J.; Shi, Q. Short-term traffic speed forecasting hybrid model based on Chaos-wavelet analysis-support vector machine theory. Transp. Res. Part C Emerg. Technol. 2012, 27, 219-232. [CrossRef]
    • (2012) Transp. Res. Part C Emerg. Technol , vol.27 , pp. 219-232
    • Wang, J.1    Shi, Q.2
  • 14
    • 80155154044 scopus 로고    scopus 로고
    • Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    • [CrossRef]
    • Wei, Y.; Chen, M.C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C Emerg. Technol. 2012, 21, 148-162. [CrossRef]
    • (2012) Transp. Res. Part C Emerg. Technol , vol.21 , pp. 148-162
    • Wei, Y.1    Chen, M.C.2
  • 15
    • 84883756128 scopus 로고    scopus 로고
    • Freeway travel-time estimation based on temporal-spatial queueing model
    • [CrossRef]
    • Li, L.; Chen, X.; Li, Z.; Zhang, L. Freeway travel-time estimation based on temporal-spatial queueing model. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1536-1541. [CrossRef]
    • (2013) IEEE Trans. Intell. Transp. Syst , vol.14 , pp. 1536-1541
    • Li, L.1    Chen, X.2    Li, Z.3    Zhang, L.4
  • 16
    • 84902550168 scopus 로고    scopus 로고
    • A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model
    • [CrossRef]
    • Zhang, Y.; Zhang, Y.; Haghani, A. A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model. Transp. Res. Part C Emerg. Technol. 2014, 43, 65-78. [CrossRef]
    • (2014) Transp. Res. Part C Emerg. Technol , vol.43 , pp. 65-78
    • Zhang, Y.1    Zhang, Y.2    Haghani, A.3
  • 18
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • [CrossRef]
    • Hong, W.C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74, 2096-2107. [CrossRef]
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.C.1
  • 19
    • 67949102009 scopus 로고    scopus 로고
    • Bayesian committee of neural networks to predict travel times with confidence intervals
    • [CrossRef]
    • Van Hinsbergen, C.; Van Lint, J.; Van Zuylen, H. Bayesian committee of neural networks to predict travel times with confidence intervals. Transp. Res. Part C Emerg. Technol. 2009, 17, 498-509. [CrossRef]
    • (2009) Transp. Res. Part C Emerg. Technol , vol.17 , pp. 498-509
    • Van Hinsbergen, C.1    Van Lint, J.2    Van Zuylen, H.3
  • 20
  • 23
    • 79951746147 scopus 로고    scopus 로고
    • Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow
    • Sydney, Australia, 14-17 December
    • Hamner, B. Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow. In Proceedings of the ICDMW 2010, Sydney, Australia, 14-17 December 2010.
    • (2010) Proceedings of the ICDMW 2010
    • Hamner, B.1
  • 24
    • 84255178460 scopus 로고    scopus 로고
    • Prediction of weather impacted airport capacity using ensemble learning
    • Sacramento, CA, USA, 25-29 September
    • Wang, Y. Prediction of weather impacted airport capacity using ensemble learning. In Proceedings of the Digital Avionics Systems Conference (DASC) 2011, Sacramento, CA, USA, 25-29 September 2011.
    • (2011) Proceedings of the Digital Avionics Systems Conference (DASC) 2011
    • Wang, Y.1
  • 25
    • 84897136542 scopus 로고    scopus 로고
    • Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment
    • [CrossRef]
    • Ahmed, M.M.; Abdel-Aty, M. Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment. Transp. Res. Rec. J. Transp. Res. Board 2013, 2386, 26-34. [CrossRef]
    • (2013) Transp. Res. Rec. J. Transp. Res. Board , vol.2386 , pp. 26-34
    • Ahmed, M.M.1    Abdel-Aty, M.2
  • 26
    • 84888287177 scopus 로고    scopus 로고
    • Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees
    • [CrossRef] [PubMed]
    • Chung, Y.S. Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees. Accid. Anal. Prev. 2013, 61, 107-118. [CrossRef] [PubMed]
    • (2013) Accid. Anal. Prev , vol.61 , pp. 107-118
    • Chung, Y.S.1
  • 27
    • 84940461628 scopus 로고    scopus 로고
    • A gradient boosting method to improve travel time prediction
    • [CrossRef]
    • Zhang, Y.; Haghani, A. A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol. 2015. [CrossRef]
    • (2015) Transp. Res. Part C Emerg. Technol
    • Zhang, Y.1    Haghani, A.2
  • 28
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • [CrossRef]
    • Polikar, R. Ensemble based systems in decision making. IEEE Circ. Syst. Mag. 2006, 6, 21-45. [CrossRef]
    • (2006) IEEE Circ. Syst. Mag , vol.6 , pp. 21-45
    • Polikar, R.1
  • 30
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests
    • [CrossRef] [PubMed]
    • Strobl, C.; Malley, J.; Tutz, G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Method. 2009, 14, 323-348. [CrossRef] [PubMed]
    • (2009) Psychol. Method , vol.14 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 32
    • 33744584654 scopus 로고
    • Induction of decision trees
    • [CrossRef]
    • Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81-106. [CrossRef]
    • (1986) Mach. Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 33
    • 33750841084 scopus 로고    scopus 로고
    • A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem
    • [CrossRef]
    • Ruiz, R.; Stützle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Operat. Res. 2007, 177, 2033-2049. [CrossRef]
    • (2007) Eur. J. Operat. Res , vol.177 , pp. 2033-2049
    • Ruiz, R.1    Stützle, T.2
  • 34
    • 80555137399 scopus 로고    scopus 로고
    • Statistics Department University of California at Berkeley: Berkeley, CA, USA
    • Breiman, L. Arcing the Edge. Technical Report 486; Statistics Department, University of California at Berkeley: Berkeley, CA, USA, 1997.
    • (1997) Arcing the Edge. Technical Report 486
    • Breiman, L.1
  • 35
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • [CrossRef]
    • Friedman, J.H. Greedy function approximation: A gradient boosting machine. Annal. Stat. 2001, 1189-1232. [CrossRef]
    • (2001) Annal. Stat , pp. 1189-1232
    • Friedman, J.H.1
  • 36
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • [CrossRef]
    • Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367-378. [CrossRef]
    • (2002) Comput. Stat. Data Anal , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 37
    • 0000034034 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent in function space
    • Denver, CO, USA, 29 November-4 December
    • Mason, L.; Baxter, J.; Bartlett, P.L.; Frean, M. Boosting algorithms as gradient descent in function space. In Proceedings of the NIPS 1999, Denver, CO, USA, 29 November-4 December 1999.
    • (1999) Proceedings of the NIPS 1999
    • Mason, L.1    Baxter, J.2    Bartlett, P.L.3    Frean, M.4
  • 38
    • 84892667860 scopus 로고    scopus 로고
    • Gradient boosting machines a tutorial
    • [CrossRef] [PubMed]
    • Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013. [CrossRef] [PubMed]
    • (2013) Front. Neurorobot
    • Natekin, A.1    Knoll, A.2
  • 39
    • 0001546571 scopus 로고
    • On the distribution of the correlation coefficient in small samples. Appendix II to the papers of" Student" and RA Fisher
    • Soper, H.E.; Young, A.W.; Cave, B.M.; Lee, A.; Pearson, K. On the distribution of the correlation coefficient in small samples. Appendix II to the papers of" Student" and RA Fisher. Biometrika 1917, 11, 328-413.
    • (1917) Biometrika , vol.11 , pp. 328-413
    • Soper, H.E.1    Young, A.W.2    Cave, B.M.3    Lee, A.4    Pearson, K.5
  • 41
    • 84921438905 scopus 로고    scopus 로고
    • A review of travel time estimation and forecasting for advanced traveller information systems
    • [CrossRef]
    • Mori, U.; Mendiburu, A.; Álvarez, M.; Lozano, J.A. A review of travel time estimation and forecasting for advanced traveller information systems. Transp. A Transp. Sci. 2015, 11, 119-157. [CrossRef]
    • (2015) Transp. A Transp. Sci , vol.11 , pp. 119-157
    • Mori, U.1    Mendiburu, A.2    Álvarez, M.3    Lozano, J.A.4
  • 42
    • 84861849465 scopus 로고    scopus 로고
    • Matching raw GPS measurements on a navigable map without computing a global position
    • [CrossRef]
    • Fouque, C.; Bonnifait, P. Matching raw GPS measurements on a navigable map without computing a global position. IEEE Trans. Intell. Transp. Syst. 2012, 13, 887-898. [CrossRef]
    • (2012) IEEE Trans. Intell. Transp. Syst , vol.13 , pp. 887-898
    • Fouque, C.1    Bonnifait, P.2
  • 43
    • 84888032041 scopus 로고    scopus 로고
    • Map-matching algorithm for large-scale low-frequency floating car data
    • [CrossRef]
    • Chen, B.Y.; Yuan, H.; Li, Q.; Lam, W.H.; Shaw, S.L.; Yan, K. Map-matching algorithm for large-scale low-frequency floating car data. Int. J. Geogr. Inf. Sci. 2014, 28, 22-38. [CrossRef]
    • (2014) Int. J. Geogr. Inf. Sci , vol.28 , pp. 22-38
    • Chen, B.Y.1    Yuan, H.2    Li, Q.3    Lam, W.H.4    Shaw, S.L.5    Yan, K.6
  • 45
    • 84872542186 scopus 로고    scopus 로고
    • Automated matching urban road networks using probabilistic relaxation
    • Zhang, Y.; Yang, B.; Luan, X. Automated matching urban road networks using probabilistic relaxation. Acta Geod. Catogr. Sin. 2012, 41, 933-939.
    • (2012) Acta Geod. Catogr. Sin , vol.41 , pp. 933-939
    • Zhang, Y.1    Yang, B.2    Luan, X.3
  • 46
    • 84880968547 scopus 로고    scopus 로고
    • Flowing car data map-matching based on constrained shortest path algorithm
    • Li, Q.; Hu, B.; Yue, Y. Flowing car data map-matching based on constrained shortest path algorithm. Geomat. Inf. Sci. Wuhan Univ. 2013, 7, 805-808.
    • (2013) Geomat. Inf. Sci. Wuhan Univ , vol.7 , pp. 805-808
    • Li, Q.1    Hu, B.2    Yue, Y.3
  • 47
    • 77954876995 scopus 로고    scopus 로고
    • Individual vehicle travel-time estimation based on GPS data and analysis of vehicle running characteristics
    • (in Chinese)
    • Yu, D.X.; Gao, X.Y.; Yang, Z.S. Individual vehicle travel-time estimation based on GPS data and analysis of vehicle running characteristics. J. Jilin Univ. 2010, 40, 965-970. (in Chinese)
    • (2010) J. Jilin Univ , vol.40 , pp. 965-970
    • Yu, D.X.1    Gao, X.Y.2    Yang, Z.S.3
  • 48
    • 84994162011 scopus 로고    scopus 로고
    • Estimation of average link travel time using fuzzy C-mean
    • Dong, H.; Wu, F. Estimation of average link travel time using fuzzy C-mean. Bull. Sci. Technol. 2011, 27, 426-430.
    • (2011) Bull. Sci. Technol , vol.27 , pp. 426-430
    • Dong, H.1    Wu, F.2
  • 49
    • 70749083092 scopus 로고    scopus 로고
    • Comparison of link travel-time estimation methods based on GPS equipped floating car
    • (in Chinese)
    • Jiang, G.; Chang, A.; Zhang, W. Comparison of link travel-time estimation methods based on GPS equipped floating car. J. Jilin Univ. 2009, 39, 182-186. (in Chinese)
    • (2009) J. Jilin Univ , vol.39 , pp. 182-186
    • Jiang, G.1    Chang, A.2    Zhang, W.3
  • 50
    • 84866937714 scopus 로고    scopus 로고
    • Understanding intra-urban trip patterns from taxi trajectory data
    • [CrossRef]
    • Liu, Y.; Kang, C.; Gao, S.; Xiao, Y.; Tian, Y. Understanding intra-urban trip patterns from taxi trajectory data. J. Geogr. Syst. 2012, 14, 463-483. [CrossRef]
    • (2012) J. Geogr. Syst , vol.14 , pp. 463-483
    • Liu, Y.1    Kang, C.2    Gao, S.3    Xiao, Y.4    Tian, Y.5
  • 51
    • 84922600337 scopus 로고    scopus 로고
    • Revealing travel patterns and city structure with taxi trip data
    • [CrossRef]
    • Liu, X.; Gong, L.; Gong, Y.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2013, 43, 78-90. [CrossRef]
    • (2013) J. Transp. Geogr , vol.43 , pp. 78-90
    • Liu, X.1    Gong, L.2    Gong, Y.3    Liu, Y.4
  • 52
    • 85008957536 scopus 로고    scopus 로고
    • Analyzing urban human mobility patterns through a thematic model at a finer scale
    • [CrossRef]
    • Zhang, F.; Zhu, X.; Guo,W.; Ye, X.; Hu, T.; Huang, L. Analyzing urban human mobility patterns through a thematic model at a finer scale. ISPRS Int. J. Geo-Inf. 2016. [CrossRef]
    • (2016) ISPRS Int. J. Geo-Inf
    • Zhang, F.1    Zhu, X.2    Guo, W.3    Ye, X.4    Hu, T.5    Huang, L.6
  • 53
    • 84983146127 scopus 로고    scopus 로고
    • What about people in pedestrian navigation?
    • [CrossRef]
    • Fang, Z.; Li, Q.; Shaw, S.L. What about people in pedestrian navigation? Geo-spat. Inf. Sci. 2015, 18, 135-150. [CrossRef]
    • (2015) Geo-spat. Inf. Sci , vol.18 , pp. 135-150
    • Fang, Z.1    Li, Q.2    Shaw, S.L.3
  • 54
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [CrossRef]
    • Breiman, L. Random forests. Machine Learn. 2001, 45, 5-32. [CrossRef]
    • (2001) Machine Learn , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.