-
1
-
-
0018729076
-
Analysis of freeway traffic time-series data by using Box-Jenkins techniques
-
Ahmed M., Cook A. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Record 1979, 722:1-9.
-
(1979)
Transportation Research Record
, vol.722
, pp. 1-9
-
-
Ahmed, M.1
Cook, A.2
-
3
-
-
42449156579
-
Generalized autoregressive conditional heteroskedasticity
-
Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 1986, 31(3):307-327.
-
(1986)
Journal of Econometrics
, vol.31
, Issue.3
, pp. 307-327
-
-
Bollerslev, T.1
-
4
-
-
84861893114
-
Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm
-
Chan K.Y., Dillon T.S., Singh J., Chang E. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm. IEEE Transactions on Intelligent Transportation Systems 2012, 13(2):644-654.
-
(2012)
IEEE Transactions on Intelligent Transportation Systems
, vol.13
, Issue.2
, pp. 644-654
-
-
Chan, K.Y.1
Dillon, T.S.2
Singh, J.3
Chang, E.4
-
5
-
-
84862782234
-
The retrieval of intra-day trend and its influence on traffic prediction
-
Chen C., et al. The retrieval of intra-day trend and its influence on traffic prediction. Transportation Research Part C 2012, 22:103-118.
-
(2012)
Transportation Research Part C
, vol.22
, pp. 103-118
-
-
Chen, C.1
-
7
-
-
0028406835
-
Traffic-flow dynamics: a search for chaos
-
Dendrinos D.S. Traffic-flow dynamics: a search for chaos. Chaos, Solitons & Fractals 1994, 4(4):605-617.
-
(1994)
Chaos, Solitons & Fractals
, vol.4
, Issue.4
, pp. 605-617
-
-
Dendrinos, D.S.1
-
10
-
-
85015436578
-
Autoregressive conditional heteroscedasticity integreated moving average time series models
-
Engle R. Autoregressive conditional heteroscedasticity integreated moving average time series models. Econometrica 1982, 50(4):987-1008.
-
(1982)
Econometrica
, vol.50
, Issue.4
, pp. 987-1008
-
-
Engle, R.1
-
11
-
-
85029832654
-
-
n.d. The R Foundation for Statistical Computing. <> (accessed 30.01.13).
-
Gentleman, R., Ihaka, R., n.d. The R Foundation for Statistical Computing. <> (accessed 30.01.13). http://www.r-project.org/.
-
-
-
Gentleman, R.1
Ihaka, R.2
-
12
-
-
85029843285
-
-
Rugarch: Univariate GARCH Models, R Package version 1.2-7.
-
Ghalanos, A., 2013. Rugarch: Univariate GARCH Models, R Package version 1.2-7.
-
(2013)
-
-
Ghalanos, A.1
-
13
-
-
84993601065
-
On the relation between the expected 15 value and the volatility of the nominal excess return on stocks
-
Glosten L.R., Jagannathan R., Runkle D.E. On the relation between the expected 15 value and the volatility of the nominal excess return on stocks. The Journal of 16 Finance 1993, 43:1779-1801.
-
(1993)
The Journal of 16 Finance
, vol.43
, pp. 1779-1801
-
-
Glosten, L.R.1
Jagannathan, R.2
Runkle, D.E.3
-
14
-
-
19644379708
-
A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?
-
Hansen P.R., Lunde A. A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?. Journal of Applied Econometrics 2005, 20(7):873-889.
-
(2005)
Journal of Applied Econometrics
, vol.20
, Issue.7
, pp. 873-889
-
-
Hansen, P.R.1
Lunde, A.2
-
15
-
-
3242704391
-
Wavelet packet-autocorrelation function method for traffic flow pattern analysis
-
Jiang X., Adeli H. Wavelet packet-autocorrelation function method for traffic flow pattern analysis. Computer-Aided Civil and Infrastructure Engineering 2004, 19(5):324-337.
-
(2004)
Computer-Aided Civil and Infrastructure Engineering
, vol.19
, Issue.5
, pp. 324-337
-
-
Jiang, X.1
Adeli, H.2
-
16
-
-
26444571471
-
Dynamic wavelet neural network model for traffic flow forecasting
-
Jiang X., Adeli H. Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering 2005, 131(10):771-779.
-
(2005)
Journal of Transportation Engineering
, vol.131
, Issue.10
, pp. 771-779
-
-
Jiang, X.1
Adeli, H.2
-
18
-
-
67949085060
-
A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting
-
Huang S., Sadek A.W. A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting. Transportation Research Part C: Emerging Technologies 2009, 17(5):510-525.
-
(2009)
Transportation Research Part C: Emerging Technologies
, vol.17
, Issue.5
, pp. 510-525
-
-
Huang, S.1
Sadek, A.W.2
-
19
-
-
24944447184
-
An applicable short-term traffic flow forecasting method based on chaotic theory
-
Hu J., et al. An applicable short-term traffic flow forecasting method based on chaotic theory. Intelligent Transportation Systems 2003, 1(1):608-613.
-
(2003)
Intelligent Transportation Systems
, vol.1
, Issue.1
, pp. 608-613
-
-
Hu, J.1
-
20
-
-
0036848533
-
Performance evaluation of short-term-series traffic prediction model
-
Ishak S., Al-Deek H. Performance evaluation of short-term-series traffic prediction model. Journal of Transportation Engineering 2002, 128(6):90-498.
-
(2002)
Journal of Transportation Engineering
, vol.128
, Issue.6
, pp. 90-498
-
-
Ishak, S.1
Al-Deek, H.2
-
21
-
-
0021375695
-
Dynamic prediction of traffic volume through kalman filtering theory
-
Iwao O. Dynamic prediction of traffic volume through kalman filtering theory. Transportation Research Part C 1984, 1-11.
-
(1984)
Transportation Research Part C
, pp. 1-11
-
-
Iwao, O.1
-
24
-
-
79958092546
-
Prediction intervals to account for uncertainties in travel time prediction
-
Khosravi A., et al. Prediction intervals to account for uncertainties in travel time prediction. IEEE Transactions on Intelligent Transportation systems 2011, 12(2):537-547.
-
(2011)
IEEE Transactions on Intelligent Transportation systems
, vol.12
, Issue.2
, pp. 537-547
-
-
Khosravi, A.1
-
27
-
-
0016349498
-
The prediction of traffic flow volumes based on spectral analysis
-
Nicholson H., Swann C. The prediction of traffic flow volumes based on spectral analysis. Transportation Research 1974, 8(6):533-538.
-
(1974)
Transportation Research
, vol.8
, Issue.6
, pp. 533-538
-
-
Nicholson, H.1
Swann, C.2
-
30
-
-
0034774035
-
-
IEEE, Oakland, CA
-
Stathopoulos A., Karlaftis M.G. Spectral and Cross-Spectral Analysis of Urban Traffic Flows 2001, IEEE, Oakland, CA, pp. 820-825.
-
(2001)
Spectral and Cross-Spectral Analysis of Urban Traffic Flows
, pp. 820-825
-
-
Stathopoulos, A.1
Karlaftis, M.G.2
-
36
-
-
4444369422
-
Short-term traffic forecasting: overview of objectives and methods
-
Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transport Reviews 2004, 24(5):533-557.
-
(2004)
Transport Reviews
, vol.24
, Issue.5
, pp. 533-557
-
-
Vlahogianni, E.I.1
Golias, J.C.2
Karlaftis, M.G.3
-
37
-
-
33750338259
-
Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume
-
Vlahogianni E.I., Karlaftis M.G., Golias J.C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transportation Research Part C: Emerging Technologies 2006, 14(5):351-367.
-
(2006)
Transportation Research Part C: Emerging Technologies
, vol.14
, Issue.5
, pp. 351-367
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
Golias, J.C.3
-
39
-
-
0030298951
-
Combining Kohonen maps with Arima time series models to forecast traffic flow
-
Voort van der M., Dougherty M., Watson S. Combining Kohonen maps with Arima time series models to forecast traffic flow. Transportation Research, Part C: Emerging Technologies 1996, 4(5):307-318.
-
(1996)
Transportation Research, Part C: Emerging Technologies
, vol.4
, Issue.5
, pp. 307-318
-
-
Voort van der, M.1
Dougherty, M.2
Watson, S.3
-
40
-
-
84873704499
-
Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory
-
Wang J., Shi Q. Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory. Transportation Research Part C 2013, 27:219-232.
-
(2013)
Transportation Research Part C
, vol.27
, pp. 219-232
-
-
Wang, J.1
Shi, Q.2
-
41
-
-
80155154044
-
Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
-
Wei Y., Chen M.-C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transportation Research Part C 2012, 21:148-162.
-
(2012)
Transportation Research Part C
, vol.21
, pp. 148-162
-
-
Wei, Y.1
Chen, M.-C.2
-
42
-
-
0032207514
-
Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models
-
Williams B., Durvasula P., Brown D. Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transportation Research Board 1998, 1644:132-141.
-
(1998)
Transportation Research Board
, vol.1644
, pp. 132-141
-
-
Williams, B.1
Durvasula, P.2
Brown, D.3
-
45
-
-
33746860294
-
A Wavelet network model for short-term traffic volume forecasting
-
Xie Y., Zhang Y. A Wavelet network model for short-term traffic volume forecasting. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 2006, 10(3):141-150.
-
(2006)
Journal of Intelligent Transportation Systems: Technology, Planning, and Operations
, vol.10
, Issue.3
, pp. 141-150
-
-
Xie, Y.1
Zhang, Y.2
-
47
-
-
84902538243
-
-
Transportation Research Board, Washington DC
-
Zhang Y., Sun R., Haghani A., Zeng X. Univariate Volatility-Based Models for Improving Quality of Travel Time Reliability Forecasting 2013, Transportation Research Board, Washington DC.
-
(2013)
Univariate Volatility-Based Models for Improving Quality of Travel Time Reliability Forecasting
-
-
Zhang, Y.1
Sun, R.2
Haghani, A.3
Zeng, X.4
-
48
-
-
49249101709
-
Short-term traffic flow forecasting using fuzzy logic system methods
-
Zhang Y., Ye Z. Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation Systems 2008, 12(3):102-112.
-
(2008)
Journal of Intelligent Transportation Systems
, vol.12
, Issue.3
, pp. 102-112
-
-
Zhang, Y.1
Ye, Z.2
|