-
1
-
-
84897136542
-
Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment
-
Ahmed M.M., Abdel-Aty M. Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment. Transp. Res. Rec.: J. Transp. Res. Board 2013, 2386:26-34.
-
(2013)
Transp. Res. Rec.: J. Transp. Res. Board
, vol.2386
, pp. 26-34
-
-
Ahmed, M.M.1
Abdel-Aty, M.2
-
3
-
-
0001492549
-
Shape quantization and recognition with randomized trees
-
Amit Y., Geman D. Shape quantization and recognition with randomized trees. Neural Comput. 1997, 9:1545-1588.
-
(1997)
Neural Comput.
, vol.9
, pp. 1545-1588
-
-
Amit, Y.1
Geman, D.2
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
85015516104
-
Travel time prediction using empirical mode decomposition and gray theory example of National Central University Bus in Taiwan
-
Chen H.K., Wu C.J. Travel time prediction using empirical mode decomposition and gray theory example of National Central University Bus in Taiwan. Transp. Res. Rec. 2012, 11-19.
-
(2012)
Transp. Res. Rec.
, pp. 11-19
-
-
Chen, H.K.1
Wu, C.J.2
-
9
-
-
84870491506
-
Phase diagram analysis based on a temporal-spatial queueing model
-
Chen X., Li L., Li Z. Phase diagram analysis based on a temporal-spatial queueing model. Intell. Transp. Syst. IEEE Trans. 2012, 13:1705-1716.
-
(2012)
Intell. Transp. Syst. IEEE Trans.
, vol.13
, pp. 1705-1716
-
-
Chen, X.1
Li, L.2
Li, Z.3
-
11
-
-
84888287177
-
Factor complexity of crash occurrence: an empirical demonstration using boosted regression trees
-
Chung Y.-S. Factor complexity of crash occurrence: an empirical demonstration using boosted regression trees. Accid. Anal. Prev. 2013, 61:107-118.
-
(2013)
Accid. Anal. Prev.
, vol.61
, pp. 107-118
-
-
Chung, Y.-S.1
-
14
-
-
80052718938
-
A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
-
Fei X., Lu C.C., Liu K. A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transp. Res. Part C - Emerg. Technol. 2011, 19:1306-1318.
-
(2011)
Transp. Res. Part C - Emerg. Technol.
, vol.19
, pp. 1306-1318
-
-
Fei, X.1
Lu, C.C.2
Liu, K.3
-
15
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 1189-1232.
-
(2001)
Ann. Stat.
, pp. 1189-1232
-
-
Friedman, J.H.1
-
16
-
-
0037186544
-
Stochastic gradient boosting
-
Friedman J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38:367-378.
-
(2002)
Comput. Stat. Data Anal.
, vol.38
, pp. 367-378
-
-
Friedman, J.H.1
-
17
-
-
79951746147
-
Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow
-
Hamner, B., 2010. Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow. In: Data Mining Workshops (ICDMW), 2010 IEEE International Conference on IEEE, 1357-1359.
-
(2010)
Data Mining Workshops (ICDMW), 2010 IEEE International Conference on IEEE
, pp. 1357-1359
-
-
Hamner, B.1
-
18
-
-
0003684449
-
-
Springer
-
Hastie T., Tibshirani R., Friedman J., Hastie T., Friedman J., Tibshirani R. The Elements of Statistical Learning 2009, Springer.
-
(2009)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Hastie, T.4
Friedman, J.5
Tibshirani, R.6
-
19
-
-
85057943047
-
Random decision forests. Document Analysis and Recognition
-
1995. IEEE.
-
Ho, T. K. Random decision forests. Document Analysis and Recognition, 1995, Proceedings of the Third International Conference on, 1995. IEEE, 278-282.
-
(1995)
Proceedings of the Third International Conference on
, pp. 278-282
-
-
Ho, T.K.1
-
20
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho T.K. The random subspace method for constructing decision forests. Pattern Anal. Mach. Intelligence, IEEE Trans. 1998, 20:832-844.
-
(1998)
Pattern Anal. Mach. Intelligence, IEEE Trans.
, vol.20
, pp. 832-844
-
-
Ho, T.K.1
-
21
-
-
79956119798
-
Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
-
Hong W.-C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107.
-
(2011)
Neurocomputing
, vol.74
, pp. 2096-2107
-
-
Hong, W.-C.1
-
24
-
-
67349277727
-
Memory properties and fractional integration in transportation time-series
-
Karlaftis M.G., Vlahogianni E.I. Memory properties and fractional integration in transportation time-series. Transp. Res. Part C: Emerg. Technol. 2009, 17:444-453.
-
(2009)
Transp. Res. Part C: Emerg. Technol.
, vol.17
, pp. 444-453
-
-
Karlaftis, M.G.1
Vlahogianni, E.I.2
-
26
-
-
78650344208
-
The Bellkor Solution to the Netflix Grand Prize
-
Koren, Y., 2009. The Bellkor Solution to the Netflix Grand Prize. Netflix Prize Documentation.
-
(2009)
Netflix Prize Documentation.
-
-
Koren, Y.1
-
27
-
-
85015522913
-
-
Laboratory, T.C.F.A.T.T. Available: . http://www.cattlab.umd.edu/?portfolio=ritis.
-
-
-
-
28
-
-
84861323365
-
Traffic flow prediction using Adaboost algorithm with random forests as a weak learner
-
Leshem G., Ritov Y.A. Traffic flow prediction using Adaboost algorithm with random forests as a weak learner. Int. J. Intelligent Technol. 2007, 2.
-
(2007)
Int. J. Intelligent Technol.
, vol.2
-
-
Leshem, G.1
Ritov, Y.A.2
-
29
-
-
84883756128
-
Freeway travel-time estimation based on temporal-spatial queueing model
-
Li L., Chen X., Li Z., Zhang L. Freeway travel-time estimation based on temporal-spatial queueing model. Intelligent Transp. Syst. IEEE Trans. 2013, 14:1536-1541.
-
(2013)
Intelligent Transp. Syst. IEEE Trans.
, vol.14
, pp. 1536-1541
-
-
Li, L.1
Chen, X.2
Li, Z.3
Zhang, L.4
-
30
-
-
84880340417
-
Efficient missing data imputing for traffic flow by considering temporal and spatial dependence
-
Li L., Li Y., Li Z. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transp. Res. Part C: Emerg. Technol. 2013, 34:108-120.
-
(2013)
Transp. Res. Part C: Emerg. Technol.
, vol.34
, pp. 108-120
-
-
Li, L.1
Li, Y.2
Li, Z.3
-
32
-
-
79952736659
-
Real-time road traffic prediction with spatio-temporal correlations
-
Min W., Wynter L. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C: Emerg. Technol. 2011, 19:606-616.
-
(2011)
Transp. Res. Part C: Emerg. Technol.
, vol.19
, pp. 606-616
-
-
Min, W.1
Wynter, L.2
-
34
-
-
0025448521
-
The strength of weak learnability
-
Schapire R.E. The strength of weak learnability. Mach. Learn. 1990, 5:197-227.
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
35
-
-
0031472064
-
Traffic flow forecasting: comparison of modeling approaches
-
Smith B., Demetsky M. Traffic flow forecasting: comparison of modeling approaches. J. Transp. Eng. 1997, 123:261-266.
-
(1997)
J. Transp. Eng.
, vol.123
, pp. 261-266
-
-
Smith, B.1
Demetsky, M.2
-
39
-
-
33646762818
-
Accurate freeway travel time prediction with state-space neural networks under missing data
-
van Lint J., Hoogendoorn S., van Zuylen H.J. Accurate freeway travel time prediction with state-space neural networks under missing data. Transp. Res. Part C: Emerg. Technol. 2005, 13:347-369.
-
(2005)
Transp. Res. Part C: Emerg. Technol.
, vol.13
, pp. 347-369
-
-
van Lint, J.1
Hoogendoorn, S.2
van Zuylen, H.J.3
-
41
-
-
84255178460
-
Prediction of weather impacted airport capacity using ensemble learning
-
2011. IEEE/AIAA 30th, 2011. IEEE, 2D6-1-2D6-11.
-
Wang, Y., 2011. Prediction of weather impacted airport capacity using ensemble learning. In: Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th, 2011. IEEE, 2D6-1-2D6-11.
-
(2011)
Digital Avionics Systems Conference (DASC)
-
-
Wang, Y.1
-
42
-
-
85015517552
-
Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory
-
Wang J., Shi Q. Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory. Transp. Res. Part C: Emerg. Technol. 2012.
-
(2012)
Transp. Res. Part C: Emerg. Technol.
-
-
Wang, J.1
Shi, Q.2
-
43
-
-
80155154044
-
Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
-
Wei Y., Chen M.-C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C: Emerg. Technol. 2012, 21:148-162.
-
(2012)
Transp. Res. Part C: Emerg. Technol.
, vol.21
, pp. 148-162
-
-
Wei, Y.1
Chen, M.-C.2
-
44
-
-
0032207514
-
Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models
-
Williams B., Durvasula P., Brown D. Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transp. Res. Rec.: J. Transp. Res. Board 1998, 1644:132-141.
-
(1998)
Transp. Res. Rec.: J. Transp. Res. Board
, vol.1644
, pp. 132-141
-
-
Williams, B.1
Durvasula, P.2
Brown, D.3
-
48
-
-
84889844841
-
Univariate volatility-based models for improving quality of travel time reliability forecasting
-
Zhang Y., Sun R., Haghani A., Zeng X. Univariate volatility-based models for improving quality of travel time reliability forecasting. Transp. Res. Rec.: J. Transp. Res. Board 2013, 2365:73-81.
-
(2013)
Transp. Res. Rec.: J. Transp. Res. Board
, vol.2365
, pp. 73-81
-
-
Zhang, Y.1
Sun, R.2
Haghani, A.3
Zeng, X.4
-
49
-
-
85015511587
-
A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model
-
Zhang Y., Zhang Y., Haghani A. A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model. Transp. Res. Part C: Emerg. Technol. 2013.
-
(2013)
Transp. Res. Part C: Emerg. Technol.
-
-
Zhang, Y.1
Zhang, Y.2
Haghani, A.3
|