메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages 308-324

A gradient boosting method to improve travel time prediction

Author keywords

Ensemble learning; Gradient boosting regression tree; Machine learning; Random forest; Short term forecasting; Travel time

Indexed keywords

ADAPTIVE BOOSTING; DECISION TREES; FORECASTING; LEARNING SYSTEMS; MACHINE LEARNING; RANDOM FORESTS; TIME VARYING CONTROL SYSTEMS; TRAFFIC CONTROL; TRAVEL TIME;

EID: 84940461628     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2015.02.019     Document Type: Article
Times cited : (617)

References (50)
  • 1
    • 84897136542 scopus 로고    scopus 로고
    • Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment
    • Ahmed M.M., Abdel-Aty M. Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment. Transp. Res. Rec.: J. Transp. Res. Board 2013, 2386:26-34.
    • (2013) Transp. Res. Rec.: J. Transp. Res. Board , vol.2386 , pp. 26-34
    • Ahmed, M.M.1    Abdel-Aty, M.2
  • 3
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit Y., Geman D. Shape quantization and recognition with randomized trees. Neural Comput. 1997, 9:1545-1588.
    • (1997) Neural Comput. , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 85015516104 scopus 로고    scopus 로고
    • Travel time prediction using empirical mode decomposition and gray theory example of National Central University Bus in Taiwan
    • Chen H.K., Wu C.J. Travel time prediction using empirical mode decomposition and gray theory example of National Central University Bus in Taiwan. Transp. Res. Rec. 2012, 11-19.
    • (2012) Transp. Res. Rec. , pp. 11-19
    • Chen, H.K.1    Wu, C.J.2
  • 9
    • 84870491506 scopus 로고    scopus 로고
    • Phase diagram analysis based on a temporal-spatial queueing model
    • Chen X., Li L., Li Z. Phase diagram analysis based on a temporal-spatial queueing model. Intell. Transp. Syst. IEEE Trans. 2012, 13:1705-1716.
    • (2012) Intell. Transp. Syst. IEEE Trans. , vol.13 , pp. 1705-1716
    • Chen, X.1    Li, L.2    Li, Z.3
  • 11
    • 84888287177 scopus 로고    scopus 로고
    • Factor complexity of crash occurrence: an empirical demonstration using boosted regression trees
    • Chung Y.-S. Factor complexity of crash occurrence: an empirical demonstration using boosted regression trees. Accid. Anal. Prev. 2013, 61:107-118.
    • (2013) Accid. Anal. Prev. , vol.61 , pp. 107-118
    • Chung, Y.-S.1
  • 12
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77:802-813.
    • (2008) J. Anim. Ecol. , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 14
    • 80052718938 scopus 로고    scopus 로고
    • A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
    • Fei X., Lu C.C., Liu K. A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transp. Res. Part C - Emerg. Technol. 2011, 19:1306-1318.
    • (2011) Transp. Res. Part C - Emerg. Technol. , vol.19 , pp. 1306-1318
    • Fei, X.1    Lu, C.C.2    Liu, K.3
  • 15
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 1189-1232.
    • (2001) Ann. Stat. , pp. 1189-1232
    • Friedman, J.H.1
  • 16
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38:367-378.
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 17
    • 79951746147 scopus 로고    scopus 로고
    • Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow
    • Hamner, B., 2010. Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow. In: Data Mining Workshops (ICDMW), 2010 IEEE International Conference on IEEE, 1357-1359.
    • (2010) Data Mining Workshops (ICDMW), 2010 IEEE International Conference on IEEE , pp. 1357-1359
    • Hamner, B.1
  • 19
    • 85057943047 scopus 로고
    • Random decision forests. Document Analysis and Recognition
    • 1995. IEEE.
    • Ho, T. K. Random decision forests. Document Analysis and Recognition, 1995, Proceedings of the Third International Conference on, 1995. IEEE, 278-282.
    • (1995) Proceedings of the Third International Conference on , pp. 278-282
    • Ho, T.K.1
  • 20
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. Pattern Anal. Mach. Intelligence, IEEE Trans. 1998, 20:832-844.
    • (1998) Pattern Anal. Mach. Intelligence, IEEE Trans. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 21
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.-C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107.
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.-C.1
  • 23
    • 12344314263 scopus 로고    scopus 로고
    • Space-time modeling of traffic flow
    • Kamarianakis Y., Prastacos P. Space-time modeling of traffic flow. Comput. Geosci. 2005, 31:119-133.
    • (2005) Comput. Geosci. , vol.31 , pp. 119-133
    • Kamarianakis, Y.1    Prastacos, P.2
  • 24
    • 67349277727 scopus 로고    scopus 로고
    • Memory properties and fractional integration in transportation time-series
    • Karlaftis M.G., Vlahogianni E.I. Memory properties and fractional integration in transportation time-series. Transp. Res. Part C: Emerg. Technol. 2009, 17:444-453.
    • (2009) Transp. Res. Part C: Emerg. Technol. , vol.17 , pp. 444-453
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 26
    • 78650344208 scopus 로고    scopus 로고
    • The Bellkor Solution to the Netflix Grand Prize
    • Koren, Y., 2009. The Bellkor Solution to the Netflix Grand Prize. Netflix Prize Documentation.
    • (2009) Netflix Prize Documentation.
    • Koren, Y.1
  • 27
    • 85015522913 scopus 로고    scopus 로고
    • Laboratory, T.C.F.A.T.T. Available: . http://www.cattlab.umd.edu/?portfolio=ritis.
  • 28
    • 84861323365 scopus 로고    scopus 로고
    • Traffic flow prediction using Adaboost algorithm with random forests as a weak learner
    • Leshem G., Ritov Y.A. Traffic flow prediction using Adaboost algorithm with random forests as a weak learner. Int. J. Intelligent Technol. 2007, 2.
    • (2007) Int. J. Intelligent Technol. , vol.2
    • Leshem, G.1    Ritov, Y.A.2
  • 29
    • 84883756128 scopus 로고    scopus 로고
    • Freeway travel-time estimation based on temporal-spatial queueing model
    • Li L., Chen X., Li Z., Zhang L. Freeway travel-time estimation based on temporal-spatial queueing model. Intelligent Transp. Syst. IEEE Trans. 2013, 14:1536-1541.
    • (2013) Intelligent Transp. Syst. IEEE Trans. , vol.14 , pp. 1536-1541
    • Li, L.1    Chen, X.2    Li, Z.3    Zhang, L.4
  • 30
    • 84880340417 scopus 로고    scopus 로고
    • Efficient missing data imputing for traffic flow by considering temporal and spatial dependence
    • Li L., Li Y., Li Z. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transp. Res. Part C: Emerg. Technol. 2013, 34:108-120.
    • (2013) Transp. Res. Part C: Emerg. Technol. , vol.34 , pp. 108-120
    • Li, L.1    Li, Y.2    Li, Z.3
  • 32
    • 79952736659 scopus 로고    scopus 로고
    • Real-time road traffic prediction with spatio-temporal correlations
    • Min W., Wynter L. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C: Emerg. Technol. 2011, 19:606-616.
    • (2011) Transp. Res. Part C: Emerg. Technol. , vol.19 , pp. 606-616
    • Min, W.1    Wynter, L.2
  • 34
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Mach. Learn. 1990, 5:197-227.
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 35
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: comparison of modeling approaches
    • Smith B., Demetsky M. Traffic flow forecasting: comparison of modeling approaches. J. Transp. Eng. 1997, 123:261-266.
    • (1997) J. Transp. Eng. , vol.123 , pp. 261-266
    • Smith, B.1    Demetsky, M.2
  • 37
  • 39
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • van Lint J., Hoogendoorn S., van Zuylen H.J. Accurate freeway travel time prediction with state-space neural networks under missing data. Transp. Res. Part C: Emerg. Technol. 2005, 13:347-369.
    • (2005) Transp. Res. Part C: Emerg. Technol. , vol.13 , pp. 347-369
    • van Lint, J.1    Hoogendoorn, S.2    van Zuylen, H.J.3
  • 41
    • 84255178460 scopus 로고    scopus 로고
    • Prediction of weather impacted airport capacity using ensemble learning
    • 2011. IEEE/AIAA 30th, 2011. IEEE, 2D6-1-2D6-11.
    • Wang, Y., 2011. Prediction of weather impacted airport capacity using ensemble learning. In: Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th, 2011. IEEE, 2D6-1-2D6-11.
    • (2011) Digital Avionics Systems Conference (DASC)
    • Wang, Y.1
  • 42
    • 85015517552 scopus 로고    scopus 로고
    • Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory
    • Wang J., Shi Q. Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory. Transp. Res. Part C: Emerg. Technol. 2012.
    • (2012) Transp. Res. Part C: Emerg. Technol.
    • Wang, J.1    Shi, Q.2
  • 43
    • 80155154044 scopus 로고    scopus 로고
    • Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    • Wei Y., Chen M.-C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C: Emerg. Technol. 2012, 21:148-162.
    • (2012) Transp. Res. Part C: Emerg. Technol. , vol.21 , pp. 148-162
    • Wei, Y.1    Chen, M.-C.2
  • 44
    • 0032207514 scopus 로고    scopus 로고
    • Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models
    • Williams B., Durvasula P., Brown D. Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transp. Res. Rec.: J. Transp. Res. Board 1998, 1644:132-141.
    • (1998) Transp. Res. Rec.: J. Transp. Res. Board , vol.1644 , pp. 132-141
    • Williams, B.1    Durvasula, P.2    Brown, D.3
  • 48
    • 84889844841 scopus 로고    scopus 로고
    • Univariate volatility-based models for improving quality of travel time reliability forecasting
    • Zhang Y., Sun R., Haghani A., Zeng X. Univariate volatility-based models for improving quality of travel time reliability forecasting. Transp. Res. Rec.: J. Transp. Res. Board 2013, 2365:73-81.
    • (2013) Transp. Res. Rec.: J. Transp. Res. Board , vol.2365 , pp. 73-81
    • Zhang, Y.1    Sun, R.2    Haghani, A.3    Zeng, X.4
  • 49
    • 85015511587 scopus 로고    scopus 로고
    • A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model
    • Zhang Y., Zhang Y., Haghani A. A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model. Transp. Res. Part C: Emerg. Technol. 2013.
    • (2013) Transp. Res. Part C: Emerg. Technol.
    • Zhang, Y.1    Zhang, Y.2    Haghani, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.