메뉴 건너뛰기




Volumn 21, Issue 1, 2012, Pages 148-162

Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks

Author keywords

Empirical mode decomposition; Forecasting; Neural networks; Short term metro passenger flow

Indexed keywords

BACKPROPAGATION; FORECASTING; SIGNAL PROCESSING;

EID: 80155154044     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2011.06.009     Document Type: Article
Times cited : (442)

References (71)
  • 1
    • 0018729076 scopus 로고
    • Analysis of freeway traffic time-series data by using Box-Jenkins techniques
    • Ahmed M.S., Cook A.R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Board Record 1979, 722:1-9.
    • (1979) Transportation Research Board Record , vol.722 , pp. 1-9
    • Ahmed, M.S.1    Cook, A.R.2
  • 2
    • 0022883610 scopus 로고
    • A review of models for the temporal distribution of peak traffic demand
    • Alfa A.S. A review of models for the temporal distribution of peak traffic demand. Transportation Research Part B 1986, 20(6):491-499.
    • (1986) Transportation Research Part B , vol.20 , Issue.6 , pp. 491-499
    • Alfa, A.S.1
  • 3
    • 58149472216 scopus 로고    scopus 로고
    • Design of experiments on neural network's training for nonlinear time series forecasting
    • Balestrassi P.P., Popova E., Paiva A.P., Marangon Lima J.W. Design of experiments on neural network's training for nonlinear time series forecasting. Neurocomputing 2009, 72(4-6):1160-1178.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1160-1178
    • Balestrassi, P.P.1    Popova, E.2    Paiva, A.P.3    Marangon Lima, J.W.4
  • 4
    • 0037409268 scopus 로고    scopus 로고
    • Origin-based algorithms for combined travel forecasting models
    • Bar-Gera H., Boyce D. Origin-based algorithms for combined travel forecasting models. Transportation Research Part B 2003, 37(5):405-422.
    • (2003) Transportation Research Part B , vol.37 , Issue.5 , pp. 405-422
    • Bar-Gera, H.1    Boyce, D.2
  • 5
    • 37049009937 scopus 로고    scopus 로고
    • ECG signal denoising and baseline wander correction based on the empirical mode decomposition
    • Blanco-Velasco M., Weng B., Barner K.E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine 2008, 38(1):1-13.
    • (2008) Computers in Biology and Medicine , vol.38 , Issue.1 , pp. 1-13
    • Blanco-Velasco, M.1    Weng, B.2    Barner, K.E.3
  • 8
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97(1-2):245-271.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 9
    • 56349122420 scopus 로고    scopus 로고
    • AADT prediction using support vector regression with data-dependent parameters
    • Castro-Neto M., Jeong Y.-S., Jeong M.-K., Lee D.H. AADT prediction using support vector regression with data-dependent parameters. Expert Systems with Applications 2009, 36(2):2979-2986.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2979-2986
    • Castro-Neto, M.1    Jeong, Y.-S.2    Jeong, M.-K.3    Lee, D.H.4
  • 10
    • 77956412434 scopus 로고    scopus 로고
    • Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan
    • Chen C.-F., Chang Y.-H., Chang Y.-W. Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica 2009, 5(2):125-140.
    • (2009) Transportmetrica , vol.5 , Issue.2 , pp. 125-140
    • Chen, C.-F.1    Chang, Y.-H.2    Chang, Y.-W.3
  • 11
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen H.B., Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting. Transportation Research Part C 2001, 9(5):319-336.
    • (2001) Transportation Research Part C , vol.9 , Issue.5 , pp. 319-336
    • Chen, H.B.1    Grant-Muller, S.2
  • 12
    • 79957512444 scopus 로고    scopus 로고
    • Exploring time variants for short-term passenger flow
    • Chen M.-C., Wei Y. Exploring time variants for short-term passenger flow. Journal of Transport Geography 2011, 19(4):488-498.
    • (2011) Journal of Transport Geography , vol.19 , Issue.4 , pp. 488-498
    • Chen, M.-C.1    Wei, Y.2
  • 13
    • 0037336276 scopus 로고    scopus 로고
    • Traffic prediction using multivariate nonparametric regression
    • Clark S. Traffic prediction using multivariate nonparametric regression. Journal of Transportation Engineering 2003, 129(2):161-168.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.2 , pp. 161-168
    • Clark, S.1
  • 14
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • DemŠar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006, 2:1-30.
    • (2006) Journal of Machine Learning Research , vol.2 , pp. 1-30
    • Demšar, J.1
  • 16
    • 0035372068 scopus 로고    scopus 로고
    • An object-oriented neural network approach to short-term traffic forecasting
    • Dia H. An object-oriented neural network approach to short-term traffic forecasting. European Journal of Operational Research 2001, 131:253-261.
    • (2001) European Journal of Operational Research , vol.131 , pp. 253-261
    • Dia, H.1
  • 17
    • 35448971374 scopus 로고    scopus 로고
    • Analysis of earthquake ground motions using an improved Hilbert-Huang transform
    • Dong Y., Li Y., Xiao M., Lai M. Analysis of earthquake ground motions using an improved Hilbert-Huang transform. Soil Dynamics and Earthquake Engineering 2008, 28(1):7-19.
    • (2008) Soil Dynamics and Earthquake Engineering , vol.28 , Issue.1 , pp. 7-19
    • Dong, Y.1    Li, Y.2    Xiao, M.3    Lai, M.4
  • 18
    • 0029485810 scopus 로고
    • A review of neural networks applied to transport
    • Dougherty M. A review of neural networks applied to transport. Transport Research Part C 1995, 3(4):247-260.
    • (1995) Transport Research Part C , vol.3 , Issue.4 , pp. 247-260
    • Dougherty, M.1
  • 19
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: a comparative study using the airline data
    • Faraway J., Chatfield C. Time series forecasting with neural networks: a comparative study using the airline data. Applied Statistics 1998, 47(2):231-250.
    • (1998) Applied Statistics , vol.47 , Issue.2 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 22
    • 0032599451 scopus 로고    scopus 로고
    • Time series prediction with genetic-algorithms designed neural networks: an empirical comparison with modern statistical models
    • Hansen J.V., McDoald J.B., Nelson R.D. Time series prediction with genetic-algorithms designed neural networks: an empirical comparison with modern statistical models. Journal of Computational Intelligence 1999, 15(3):171-183.
    • (1999) Journal of Computational Intelligence , vol.15 , Issue.3 , pp. 171-183
    • Hansen, J.V.1    McDoald, J.B.2    Nelson, R.D.3
  • 23
    • 85029879179 scopus 로고    scopus 로고
    • Highway Capacity Manual, 2000. Transportation Research Board, National Research Council, Washington, DC.
    • Highway Capacity Manual, 2000. Transportation Research Board, National Research Council, Washington, DC.
  • 27
    • 33749839773 scopus 로고    scopus 로고
    • A hybrid model for exchange rate prediction
    • Ince H., Trafalis T.B. A hybrid model for exchange rate prediction. Decision Support Systems 2006, 42(2):1054-1062.
    • (2006) Decision Support Systems , vol.42 , Issue.2 , pp. 1054-1062
    • Ince, H.1    Trafalis, T.B.2
  • 28
    • 43049175149 scopus 로고    scopus 로고
    • Studies of spectral properties of short genes using the wavelet subspace Hilbert-Huang transform (WSHHT)
    • Jiang R., Yan H. Studies of spectral properties of short genes using the wavelet subspace Hilbert-Huang transform (WSHHT). Physica A 2008, 387(16-17):4223-4247.
    • (2008) Physica A , vol.387 , Issue.16-17 , pp. 4223-4247
    • Jiang, R.1    Yan, H.2
  • 29
    • 0037401594 scopus 로고    scopus 로고
    • A passenger travel demand model for Copenhagen
    • Jovicic G., Hansen C.O. A passenger travel demand model for Copenhagen. Transportation Research Part A 2003, 37(4):333-349.
    • (2003) Transportation Research Part A , vol.37 , Issue.4 , pp. 333-349
    • Jovicic, G.1    Hansen, C.O.2
  • 30
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence 1997, 97(1-2):273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 32
    • 0033226152 scopus 로고    scopus 로고
    • Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting
    • Lee S., Fambro D.B. Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transportation Research Board 1999, 1678:179-188.
    • (1999) Transportation Research Board , vol.1678 , pp. 179-188
    • Lee, S.1    Fambro, D.B.2
  • 33
    • 33747785349 scopus 로고    scopus 로고
    • Short-term travel speed prediction models in car navigation systems
    • Lee S., Lee Y.-I., Cho B. Short-term travel speed prediction models in car navigation systems. Journal of Advanced Transportation 2006, 40(2):123-139.
    • (2006) Journal of Advanced Transportation , vol.40 , Issue.2 , pp. 123-139
    • Lee, S.1    Lee, Y.-I.2    Cho, B.3
  • 34
    • 18144397499 scopus 로고    scopus 로고
    • Empirical mode decomposition: a method for analyzing neural data
    • Liang H.L., Bressler S.L., Desimone R., Fries P. Empirical mode decomposition: a method for analyzing neural data. Neurocomputing 2005, (65-66):801-807.
    • (2005) Neurocomputing , Issue.65-66 , pp. 801-807
    • Liang, H.L.1    Bressler, S.L.2    Desimone, R.3    Fries, P.4
  • 35
    • 33745214881 scopus 로고    scopus 로고
    • Detection of harmonic signals from chaotic interference by empirical mode decomposition
    • Li H.G., Meng G. Detection of harmonic signals from chaotic interference by empirical mode decomposition. Chaos Solitons & Fractals 2006, 30(4):930-935.
    • (2006) Chaos Solitons & Fractals , vol.30 , Issue.4 , pp. 930-935
    • Li, H.G.1    Meng, G.2
  • 36
    • 35548932368 scopus 로고    scopus 로고
    • Time-frequency analysis of typhoon effects on a 79-storey tall building
    • Li Q.S., Wu J.R. Time-frequency analysis of typhoon effects on a 79-storey tall building. Journal of Wind Engineering and Industrial Aerodynamics 2007, 95(12):1648-1666.
    • (2007) Journal of Wind Engineering and Industrial Aerodynamics , vol.95 , Issue.12 , pp. 1648-1666
    • Li, Q.S.1    Wu, J.R.2
  • 37
    • 0036079138 scopus 로고    scopus 로고
    • Time series forecasts of international travel demand for Australia
    • Lim C., McAleer M. Time series forecasts of international travel demand for Australia. Tourism Management 2002, 23(4):389-396.
    • (2002) Tourism Management , vol.23 , Issue.4 , pp. 389-396
    • Lim, C.1    McAleer, M.2
  • 38
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modelling and Software 2000, 15(1):101-124.
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 42
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: comparison of modeling approaches
    • Smith B.L., Demetsky M.J. Traffic flow forecasting: comparison of modeling approaches. Journal of Transportation Engineering 1997, 123(4):261-266.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 43
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametric and nonparametric models for traffic flow forecasting
    • Smith B.L., Williams B.M., Keith Oswald R. Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C 2002, 10(4):303-321.
    • (2002) Transportation Research Part C , vol.10 , Issue.4 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Keith Oswald, R.3
  • 45
    • 0038630725 scopus 로고    scopus 로고
    • Comparison of four modeling techniques for short-term AADT forecasting in Hong Kong
    • Tang Y.F., Lam William H.K., Ng Pan L.P. Comparison of four modeling techniques for short-term AADT forecasting in Hong Kong. Journal of Transportation Engineering 2003, 129(3):271-277.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.3 , pp. 271-277
    • Tang, Y.F.1    Lam, W.H.K.2    Ng, P.L.P.3
  • 46
    • 56349087795 scopus 로고    scopus 로고
    • Neural network based temporal feature models for short-term railway passenger demand forecasting
    • Tsai T.-H., Lee C.-K., Wei C.-H. Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Systems with Applications 2009, 36(2):3728-3736.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3728-3736
    • Tsai, T.-H.1    Lee, C.-K.2    Wei, C.-H.3
  • 49
    • 47849099540 scopus 로고    scopus 로고
    • Support vector machine technique for the short term prediction of travel time
    • IEEE Intelligent Vehicles Symposium
    • Vanajaksi, L., Rilett, L.R., 2007. Support vector machine technique for the short term prediction of travel time. IEEE Intelligent Vehicles Symposium, pp. 600-605.
    • (2007) , pp. 600-605
    • Vanajaksi, L.1    Rilett, L.R.2
  • 50
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • Van Lint J.W.C., Hoogendoorn S.P., Van Zuylen H.J. Accurate freeway travel time prediction with state-space neural networks under missing data. Transportation Research Part C 2005, 13(5-6):347-369.
    • (2005) Transportation Research Part C , vol.13 , Issue.5-6 , pp. 347-369
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 51
    • 7244251839 scopus 로고    scopus 로고
    • Identification of the components of wave spectra by the Hilbert Huang transform method
    • Veltcheva A.D., Soares C.G. Identification of the components of wave spectra by the Hilbert Huang transform method. Applied Ocean Research 2004, 26(1-2):1-12.
    • (2004) Applied Ocean Research , vol.26 , Issue.1-2 , pp. 1-12
    • Veltcheva, A.D.1    Soares, C.G.2
  • 52
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni E.I., Golia J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transport Reviews 2004, 24(5):533-557.
    • (2004) Transport Reviews , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golia, J.C.2    Karlaftis, M.G.3
  • 53
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transportation Research Part C 2005, 13(3):211-234.
    • (2005) Transportation Research Part C , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 54
    • 0003255680 scopus 로고
    • Alternative approaches to short term forecasting for use in driver information systems
    • Proceedings of the 12th International Symposium on Transportation and Traffic Theory, Berkeley, CA
    • Vythoulkas, P.C., 1993. Alternative approaches to short term forecasting for use in driver information systems. Proceedings of the 12th International Symposium on Transportation and Traffic Theory, Berkeley, CA, pp. 485-506.
    • (1993) , pp. 485-506
    • Vythoulkas, P.C.1
  • 55
    • 36849003408 scopus 로고    scopus 로고
    • Real-time freeway traffic state estimation based on extend Kalman filter: a case study
    • Wang Y., Papageorgiou M. Real-time freeway traffic state estimation based on extend Kalman filter: a case study. Transportation Science 2007, 42(2):167-181.
    • (2007) Transportation Science , vol.42 , Issue.2 , pp. 167-181
    • Wang, Y.1    Papageorgiou, M.2
  • 56
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
    • Williams B.M., Hoel L.A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. Journal of Transportation Engineering 2003, 129(6):664-672.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.6 , pp. 664-672
    • Williams, B.M.1    Hoel, L.A.2
  • 57
    • 0032207514 scopus 로고    scopus 로고
    • Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models
    • Williams B.M., Durvasula P.K., Brown D.E. Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transportation Research Record 1998, 1644:132-141.
    • (1998) Transportation Research Record , vol.1644 , pp. 132-141
    • Williams, B.M.1    Durvasula, P.K.2    Brown, D.E.3
  • 58
    • 0032004538 scopus 로고    scopus 로고
    • An aggregate demand model for intercity passenger travel in Sri Lanka
    • Wirasinghe S.C., Kumarage A.S. An aggregate demand model for intercity passenger travel in Sri Lanka. Transportation 1998, 25(1):77-98.
    • (1998) Transportation , vol.25 , Issue.1 , pp. 77-98
    • Wirasinghe, S.C.1    Kumarage, A.S.2
  • 59
    • 2542525254 scopus 로고    scopus 로고
    • A study of the characteristics of white noise using the empirical mode decomposition method
    • Wu Z., Huang N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of Royal Society of London. A 2004, 460:1597-1611.
    • (2004) Proceedings of Royal Society of London. A , vol.460 , pp. 1597-1611
    • Wu, Z.1    Huang, N.E.2
  • 60
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Wu Z., Huang N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis 2008, 1:1-41.
    • (2008) Advances in Adaptive Data Analysis , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 61
    • 56449112537 scopus 로고    scopus 로고
    • Short term traffic flow prediction using hybrid ARIMA and ANN models
    • Proceedings of Workshop on Power Electronics and Intelligent Transportation System
    • Zeng, D., Xu, J., Gu, J., Liu, L., Xu, G., 2008. Short term traffic flow prediction using hybrid ARIMA and ANN models. Proceedings of Workshop on Power Electronics and Intelligent Transportation System, pp. 621-625.
    • (2008) , pp. 621-625
    • Zeng, D.1    Xu, J.2    Gu, J.3    Liu, L.4    Xu, G.5
  • 62
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting 1998, 14(1):35-62.
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 63
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 64
    • 0034327468 scopus 로고    scopus 로고
    • Recursive prediction of traffic conditions with neural network models
    • Zhang H.M. Recursive prediction of traffic conditions with neural network models. Journal of Transportation Engineering 2000, 126(6):472-481.
    • (2000) Journal of Transportation Engineering , vol.126 , Issue.6 , pp. 472-481
    • Zhang, H.M.1
  • 65
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang G.P., Qi M. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 2005, 160(2):501-514.
    • (2005) European Journal of Operational Research , vol.160 , Issue.2 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2
  • 66
    • 39749128487 scopus 로고    scopus 로고
    • A new approach for crude oil price analysis based on empirical mode decomposition
    • Zhang X., Lai K.K., Wang S.-Y. A new approach for crude oil price analysis based on empirical mode decomposition. Energy Economics 2008, 30(3):905-918.
    • (2008) Energy Economics , vol.30 , Issue.3 , pp. 905-918
    • Zhang, X.1    Lai, K.K.2    Wang, S.-Y.3
  • 67
    • 49249101709 scopus 로고    scopus 로고
    • Short-term traffic flow forecasting using fuzzy logic system methods
    • Zhang Y., Ye Z. Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation Systems 2008, 12(3):102-112.
    • (2008) Journal of Intelligent Transportation Systems , vol.12 , Issue.3 , pp. 102-112
    • Zhang, Y.1    Ye, Z.2
  • 69
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • Zheng W.Z., Lee D.H., Shi Q.X. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. Journal of Transportation Engineering 2006, 132(2):114-121.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.Z.1    Lee, D.H.2    Shi, Q.X.3
  • 70
    • 84978914002 scopus 로고    scopus 로고
    • New travel demand models with back-propagation network, natural computation
    • Proceedings of the Third International Conference on Natural Computation, Haikou, China
    • Zhou, Q., Lu, H.-P., Wei, X., 2007. New travel demand models with back-propagation network, natural computation. Proceedings of the Third International Conference on Natural Computation, Haikou, China, pp. 311-317.
    • (2007) , pp. 311-317
    • Zhou, Q.1    Lu, H.-P.2    Wei, X.3
  • 71
    • 44349180344 scopus 로고    scopus 로고
    • Hybrid of EMD and SVMs for short-term load forecasting
    • Proceedings of IEEE International Conference on Control and Automation
    • Zhu, Z., Sun, Y., Li, H., 2007. Hybrid of EMD and SVMs for short-term load forecasting. Proceedings of IEEE International Conference on Control and Automation, pp. 1044-1047.
    • (2007) , pp. 1044-1047
    • Zhu, Z.1    Sun, Y.2    Li, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.