메뉴 건너뛰기




Volumn 34, Issue , 2013, Pages 89-107

Dynamic data-driven local traffic state estimation and prediction

Author keywords

Classification; Clustering; Data driven approaches; Local speed prediction; Locally weighted regression; Markov process; Neural network; Traffic state prediction

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATION THEORY; FORECASTING; HIGHWAY TRAFFIC CONTROL; MARKOV PROCESSES; NEURAL NETWORKS; STATE ESTIMATION; STREET TRAFFIC CONTROL; SUPERCONDUCTING MATERIALS;

EID: 84880355786     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2013.05.012     Document Type: Article
Times cited : (139)

References (75)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19(6):716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 3
    • 33847109719 scopus 로고    scopus 로고
    • Estimation of traffic dynamics models with machine learning methods
    • (Washington, DC)
    • Antoniou C., Koutsopoulos H.N. Estimation of traffic dynamics models with machine learning methods. Transportation Research Record 2006, 1965:103-111. (Washington, DC).
    • (2006) Transportation Research Record , vol.1965 , pp. 103-111
    • Antoniou, C.1    Koutsopoulos, H.N.2
  • 4
    • 84880394865 scopus 로고    scopus 로고
    • 2006b. A comparison of machine learning methods for speed estimation. In: Proceedings of the 11th IFAC Symposium on Control in Transportation Systems, Delft, The Netherlands, August 29-31,
    • Antoniou, C., Koutsopoulos, H.N., 2006b. A comparison of machine learning methods for speed estimation. In: Proceedings of the 11th IFAC Symposium on Control in Transportation Systems, Delft, The Netherlands, August 29-31, 2006.
    • (2006)
    • Antoniou, C.1    Koutsopoulos, H.N.2
  • 5
    • 80255138359 scopus 로고    scopus 로고
    • A synthesis of emerging data collection technologies and their impact on traffic management applications
    • Antoniou C., Balakrishna R., Koutsopoulos H.N. A synthesis of emerging data collection technologies and their impact on traffic management applications. European Transport Research Review 2011, 3(3):139-148.
    • (2011) European Transport Research Review , vol.3 , Issue.3 , pp. 139-148
    • Antoniou, C.1    Balakrishna, R.2    Koutsopoulos, H.N.3
  • 7
    • 84880357705 scopus 로고    scopus 로고
    • Categorizing freeway flow conditions using clustering methods. In: Proceedings of the 89th Annual Meeting of the Transportation Research Board, Washington, DC.
    • Azimi, M., Zhang, Y., 2010. Categorizing freeway flow conditions using clustering methods. In: Proceedings of the 89th Annual Meeting of the Transportation Research Board, Washington, DC.
    • (2010)
    • Azimi, M.1    Zhang, Y.2
  • 8
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J.D., Raftery A.E. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 9
    • 9144255295 scopus 로고    scopus 로고
    • Real-time simulation of traffic demand-supply interactions within DynaMIT
    • Kluwer Academic Publishers, Boston/Dordrecht/London, (Miscellenea in Honor of Michael Florian), M. Gendreau, P. Marcotte (Eds.)
    • Ben-Akiva M., Bierlaire M., Koutsopoulos H.N., Mishalani R. Real-time simulation of traffic demand-supply interactions within DynaMIT. Transportation and Network Analysis: Current Trends 2002, 19-36. Kluwer Academic Publishers, Boston/Dordrecht/London, (Miscellenea in Honor of Michael Florian). M. Gendreau, P. Marcotte (Eds.).
    • (2002) Transportation and Network Analysis: Current Trends , pp. 19-36
    • Ben-Akiva, M.1    Bierlaire, M.2    Koutsopoulos, H.N.3    Mishalani, R.4
  • 11
    • 85042555546 scopus 로고
    • Bayesian cluster analysis
    • Binder D.A. Bayesian cluster analysis. Biometrika 1978, 65:31-38.
    • (1978) Biometrika , vol.65 , pp. 31-38
    • Binder, D.A.1
  • 13
    • 0009957751 scopus 로고    scopus 로고
    • Probabilistic aspects in classification
    • Springer-Verlag, New York, C. Hayashi, K. Yajima, H.H. Bock, N. Oshumi, Y. Tanaka, Y. Baba (Eds.)
    • Bock H.H. Probabilistic aspects in classification. Data Science, Classification and Related Methods 1998, 3-21. Springer-Verlag, New York. C. Hayashi, K. Yajima, H.H. Bock, N. Oshumi, Y. Tanaka, Y. Baba (Eds.).
    • (1998) Data Science, Classification and Related Methods , pp. 3-21
    • Bock, H.H.1
  • 15
    • 0002607026 scopus 로고
    • Bayesian classification (AutoClass): theory and results
    • AAAI Press, U. Fayyad, G. Piatesky-Shapiro, P. Smyth, R. Uthurusamy (Eds.)
    • Cheeseman P., Stutz J. Bayesian classification (AutoClass): theory and results. Advances in Knowledge Discovery and Data Mining 1995, 153-180. AAAI Press. U. Fayyad, G. Piatesky-Shapiro, P. Smyth, R. Uthurusamy (Eds.).
    • (1995) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 17
  • 18
    • 45549110576 scopus 로고
    • Regression by local fitting: methods, properties and computational algorithms
    • Cleveland W.S., Devlin S.J., Grosse E. Regression by local fitting: methods, properties and computational algorithms. Journal of Econometrics 1988, 37:87-114.
    • (1988) Journal of Econometrics , vol.37 , pp. 87-114
    • Cleveland, W.S.1    Devlin, S.J.2    Grosse, E.3
  • 19
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day N.E. Estimating the components of a mixture of normal distributions. Biometrika 1969, 56:463-474.
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.E.1
  • 22
    • 84859981806 scopus 로고    scopus 로고
    • Regime-based short-term multivariate traffic condition forecasting algorithm
    • Dunne S., Ghosh B. Regime-based short-term multivariate traffic condition forecasting algorithm. Journal of Transportation Engineering 2012, 138(4):455-466.
    • (2012) Journal of Transportation Engineering , vol.138 , Issue.4 , pp. 455-466
    • Dunne, S.1    Ghosh, B.2
  • 23
    • 0003083208 scopus 로고
    • Following and steady-state theory for non-congested traffic
    • Edie L.C. Following and steady-state theory for non-congested traffic. Operations Research 1961, 9:66-76.
    • (1961) Operations Research , vol.9 , pp. 66-76
    • Edie, L.C.1
  • 25
    • 84880369026 scopus 로고    scopus 로고
    • Modelling beyond Regression Functions: An Application of Multimodal Regression to Speed-Flow Data. SFB Discussion Paper 395.
    • Einbeck, J., Tutz, G., 2004. Modelling beyond Regression Functions: An Application of Multimodal Regression to Speed-Flow Data. SFB Discussion Paper 395.
    • (2004)
    • Einbeck, J.1    Tutz, G.2
  • 26
    • 3843147237 scopus 로고    scopus 로고
    • Data-driven aggregative schemes for multisource estimation fusion: a road travel time application
    • SPIE, Bellingham, WA, B.V. Dasarathy (Ed.) Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2004
    • El Faouzi N.-E. Data-driven aggregative schemes for multisource estimation fusion: a road travel time application. Proceedings of SPIE 2004, vol. 5434:351-359. SPIE, Bellingham, WA. B.V. Dasarathy (Ed.).
    • (2004) Proceedings of SPIE , vol.5434 , pp. 351-359
    • El Faouzi, N.-E.1
  • 27
    • 33747368275 scopus 로고    scopus 로고
    • Classifiers and distance-based evidential fusion for road travel time estimation. In: Dasarathy, Belur V. (Ed.), Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2006. Proceedings of SPIE, 6242
    • El Faouzi, N.-E., Lefevre, E., 2006. Classifiers and distance-based evidential fusion for road travel time estimation. In: Dasarathy, Belur V. (Ed.), Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2006. Proceedings of SPIE, vol. 6242.
    • (2006)
    • El Faouzi, N.-E.1    Lefevre, E.2
  • 28
    • 76149085548 scopus 로고    scopus 로고
    • Improving travel time estimates from inductive loop and toll collection data with Dempster-Shafer data fusion
    • El Faouzi N.-E., Klein L.A., Mouzon O.D. Improving travel time estimates from inductive loop and toll collection data with Dempster-Shafer data fusion. Transportation Research Record 2009, 2129:73-80.
    • (2009) Transportation Research Record , vol.2129 , pp. 73-80
    • El Faouzi, N.-E.1    Klein, L.A.2    Mouzon, O.D.3
  • 29
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C., Raftery A.E. How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal 1998, 41:578-588.
    • (1998) The Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 30
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C., Raftery A.E. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 2002, 97(458):611-631.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 32
    • 33645781054 scopus 로고    scopus 로고
    • Prediction of arrival profiles and queue lengths along signalized arterials using a Markov decision process
    • Geroliminis N., Skabardonis A. Prediction of arrival profiles and queue lengths along signalized arterials using a Markov decision process. Transportation Research Record 2005, 1934:116-124.
    • (2005) Transportation Research Record , vol.1934 , pp. 116-124
    • Geroliminis, N.1    Skabardonis, A.2
  • 33
    • 84880395728 scopus 로고    scopus 로고
    • Traffic stream characteristics. In: (Ed.), Monograph of Traffic Flow Theory. (accessed 05.11.06).
    • Hall, F.L., 1997. Traffic stream characteristics. In: Gartner, N.H., Messer, C.J., Rathi, A.K. (Ed.), Monograph of Traffic Flow Theory. (accessed 05.11.06). http://www.tfhrc.gov/its/tft/tft.htm.
    • (1997)
    • Hall, F.L.1    Gartner, N.H.2    Messer, C.J.3    Rathi, A.K.4
  • 35
    • 42449149512 scopus 로고    scopus 로고
    • The principles of calibrating traffic microsimulation models
    • Hollander Y., Liu R. The principles of calibrating traffic microsimulation models. Transportation 2008, 35:347-362.
    • (2008) Transportation , vol.35 , pp. 347-362
    • Hollander, Y.1    Liu, R.2
  • 36
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: differences, similarities and some insights
    • Karlaftis M.G., Vlahogianni E.I. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transportation Research Part C 2011, 19:387-399.
    • (2011) Transportation Research Part C , vol.19 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 38
    • 0037169449 scopus 로고    scopus 로고
    • A microscopic model for phase transitions in traffic flow
    • Kerner B.S., Klenov S.L. A microscopic model for phase transitions in traffic flow. Journal of Physics A 2002, 35(3):31-43.
    • (2002) Journal of Physics A , vol.35 , Issue.3 , pp. 31-43
    • Kerner, B.S.1    Klenov, S.L.2
  • 39
    • 33846546622 scopus 로고    scopus 로고
    • Predicting urban arterial travel time with state-space neural networks and Kalman filters
    • Liu H., Van Zuylen H., Van Lint H., Salomons M. Predicting urban arterial travel time with state-space neural networks and Kalman filters. Transportation Research Record 2006, 99-108.
    • (2006) Transportation Research Record , pp. 99-108
    • Liu, H.1    Van Zuylen, H.2    Van Lint, H.3    Salomons, M.4
  • 41
    • 0013316758 scopus 로고    scopus 로고
    • Dynamic network traffic assignment and simulation methodology for advanced system management applications
    • Mahmassani H.S. Dynamic network traffic assignment and simulation methodology for advanced system management applications. Networks and Spatial Economics 2001, 1(3):267-292.
    • (2001) Networks and Spatial Economics , vol.1 , Issue.3 , pp. 267-292
    • Mahmassani, H.S.1
  • 42
    • 84880389859 scopus 로고
    • Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Reprinted in Appendix B of: R. Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains. John Wiley and Sons.
    • Markov, A.A., 1971. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Reprinted in Appendix B of: R. Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains. John Wiley and Sons.
    • (1971)
    • Markov, A.A.1
  • 44
    • 84880364419 scopus 로고
    • Non-integer Car-Following Models. Highway Research Board, Record 199, Washington, DC,
    • May, A.D., Keller, H.E.M., 1967. Non-integer Car-Following Models. Highway Research Board, Record 199, Washington, DC, pp. 19-32.
    • (1967) , pp. 19-32
    • May, A.D.1    Keller, H.E.M.2
  • 47
    • 0021644144 scopus 로고
    • Fitting straight lines to point patterns
    • Murtagh F., Raftery A.E. Fitting straight lines to point patterns. Pattern Recognition 1984, 17:479-483.
    • (1984) Pattern Recognition , vol.17 , pp. 479-483
    • Murtagh, F.1    Raftery, A.E.2
  • 48
  • 50
    • 84880351782 scopus 로고    scopus 로고
    • R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed 06.01.12).
    • R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed 06.01.12). http://www.R-project.org.
  • 55
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 1978, 6(2):461-464.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 56
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • Scott A.J., Symons M.J. Clustering methods based on likelihood ratio criteria. Biometrics 1971, 27:387-397.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 57
    • 34247520213 scopus 로고    scopus 로고
    • Hidden Markov modeling and macroscopic traffic filtering supporting location-based services
    • Stamoulakatos T.S., Sykas E.D. Hidden Markov modeling and macroscopic traffic filtering supporting location-based services. Wireless Communications and Mobile Computing 2007, 7(4):415-429.
    • (2007) Wireless Communications and Mobile Computing , vol.7 , Issue.4 , pp. 415-429
    • Stamoulakatos, T.S.1    Sykas, E.D.2
  • 59
    • 85029852862 scopus 로고    scopus 로고
    • Use of local linear regression model for short term traffic forecasting, Transportation Research Record 1836 (Washington, DC).
    • Sun, H., Liu, H., Xiao, H., He, R., Ran, B., 2003. Use of local linear regression model for short term traffic forecasting, Transportation Research Record 1836 (Washington, DC).
    • (2003)
    • Sun, H.1    Liu, H.2    Xiao, H.3    He, R.4    Ran, B.5
  • 65
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • van Lint J.W.C. Accurate freeway travel time prediction with state-space neural networks under missing data. Transportation Research Part C: Emerging Technologies 2005, 13:347-369.
    • (2005) Transportation Research Part C: Emerging Technologies , vol.13 , pp. 347-369
    • van Lint, J.W.C.1
  • 69
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transportation Research Part C 2005, 13(3):211-234.
    • (2005) Transportation Research Part C , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 72
    • 33748429561 scopus 로고    scopus 로고
    • RENAISSANCE - a unified macroscopic model-based approach to real-time freeway network traffic surveillance
    • Wang Y., Papageorgiou M., Messmer A. RENAISSANCE - a unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transportation Research Part C: Emerging Technologies 2006, 14:190-212.
    • (2006) Transportation Research Part C: Emerging Technologies , vol.14 , pp. 190-212
    • Wang, Y.1    Papageorgiou, M.2    Messmer, A.3
  • 73
    • 84880345737 scopus 로고    scopus 로고
    • The classification of car-following behavior in urban expressway based on fuzzy clustering analysis. In: Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington, DC.
    • Wang, L., Rong, J., Liu, X., 2005. The classification of car-following behavior in urban expressway based on fuzzy clustering analysis. In: Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington, DC.
    • (2005)
    • Wang, L.1    Rong, J.2    Liu, X.3
  • 74
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • Wolfe J.H. Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research 1970, 5:329-350.
    • (1970) Multivariate Behavioral Research , vol.5 , pp. 329-350
    • Wolfe, J.H.1
  • 75
    • 39849084754 scopus 로고    scopus 로고
    • Travel time estimation on a freeway using discrete time Markov chains
    • Yeon J., Elefteriadou L., Lawphongpanich S. Travel time estimation on a freeway using discrete time Markov chains. Transportation Research Part B 2008, 42(2008):325-338.
    • (2008) Transportation Research Part B , vol.42 , Issue.2008 , pp. 325-338
    • Yeon, J.1    Elefteriadou, L.2    Lawphongpanich, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.