메뉴 건너뛰기




Volumn 34, Issue , 2013, Pages 108-120

Efficient missing data imputing for traffic flow by considering temporal and spatial dependence

Author keywords

Kernel probabilistic principle component analysis (KPPCA); Missing data; Probabilistic principle component analysis (PPCA); Temporal and spatial dependence; Traffic flow

Indexed keywords

DATA FUSION;

EID: 84880340417     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2013.05.008     Document Type: Article
Times cited : (267)

References (51)
  • 1
    • 0018729076 scopus 로고
    • Analysis of freeway traffic time-series data by using Box-Jenkins techniques
    • Ahmed M.S., Cook A.R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Record 1979, 722:1-9.
    • (1979) Transportation Research Record , vol.722 , pp. 1-9
    • Ahmed, M.S.1    Cook, A.R.2
  • 9
    • 84869869112 scopus 로고    scopus 로고
    • Non-parametric regression for space-time forecasting under missing data
    • Haworth J., Cheng T. Non-parametric regression for space-time forecasting under missing data. Computers, Environment and Urban Systems 2012, 36(6):538-550.
    • (2012) Computers, Environment and Urban Systems , vol.36 , Issue.6 , pp. 538-550
    • Haworth, J.1    Cheng, T.2
  • 10
    • 58149310770 scopus 로고    scopus 로고
    • Automatic PCA dimension selection for high dimensional data and small sample sizes
    • Hoyle D.C. Automatic PCA dimension selection for high dimensional data and small sample sizes. Journal of Machine Learning Research 2008, 9:2733-2759.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2733-2759
    • Hoyle, D.C.1
  • 11
    • 77956916974 scopus 로고    scopus 로고
    • Practical approaches to principal component analysis in the presence of missing values
    • Ilin A., Raiko T. Practical approaches to principal component analysis in the presence of missing values. Journal of Machine Learning Research 2010, 11:1957-2000.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1957-2000
    • Ilin, A.1    Raiko, T.2
  • 12
    • 59349121003 scopus 로고    scopus 로고
    • Robust PCA based abnormal traffic flow pattern isolation and loop detector fault detection
    • Jin X., Zhang Y., Li L., Hu J. Robust PCA based abnormal traffic flow pattern isolation and loop detector fault detection. Tsinghua Science and Technology 2008, 13(6):829-835.
    • (2008) Tsinghua Science and Technology , vol.13 , Issue.6 , pp. 829-835
    • Jin, X.1    Zhang, Y.2    Li, L.3    Hu, J.4
  • 13
    • 2142812984 scopus 로고    scopus 로고
    • Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches
    • Kamarianakis Y., Prastacos P. Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches. Transportation Research Record 2003, 1857:74-84.
    • (2003) Transportation Research Record , vol.1857 , pp. 74-84
    • Kamarianakis, Y.1    Prastacos, P.2
  • 14
    • 84865143932 scopus 로고    scopus 로고
    • Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO
    • Kamarianakis Y., Shen W., Wynter L. Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO. Applied Stochastic Models in Business and Industry 2012, 28(4):297-315.
    • (2012) Applied Stochastic Models in Business and Industry , vol.28 , Issue.4 , pp. 297-315
    • Kamarianakis, Y.1    Shen, W.2    Wynter, L.3
  • 16
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: differences, similarities and some insights
    • Karlaftis M.G., Vlahogianni E.I. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transportation Research Part C: Emerging Technologies 2011, 19(3):387-399.
    • (2011) Transportation Research Part C: Emerging Technologies , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 17
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • Lawrence N. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research 2005, 6:1783-1816.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.1
  • 18
    • 84887344332 scopus 로고    scopus 로고
    • Comparison on PPCA, KPPCA and MPPCA based missing data imputing for traffic flow. In: Proceedings of International Conference on Transportation Information and Safety (in press).
    • Li, Y., Li, Z., Li, L., Zhang, Y., 2013. Comparison on PPCA, KPPCA and MPPCA based missing data imputing for traffic flow. In: Proceedings of International Conference on Transportation Information and Safety (in press).
    • (2013)
    • Li, Y.1    Li, Z.2    Li, L.3    Zhang, Y.4
  • 21
  • 22
    • 78650443114 scopus 로고    scopus 로고
    • Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model. In: Proceedings of IEEE Conference on Intelligent Transportation Systems,
    • Min, X., Hu, J., Zhang, Z., 2010. Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model. In: Proceedings of IEEE Conference on Intelligent Transportation Systems, pp. 1535-1540.
    • (2010) , pp. 1535-1540
    • Min, X.1    Hu, J.2    Zhang, Z.3
  • 23
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993, 6(4):525-533.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-533
    • Moller, M.F.1
  • 24
    • 33646433966 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo multiple imputation using Bayesian Networks for incomplete intelligent transportation systems data
    • Ni D., Leonard J.D. Markov Chain Monte Carlo multiple imputation using Bayesian Networks for incomplete intelligent transportation systems data. Transportation Research Record 2005, 1935:57-67.
    • (2005) Transportation Research Record , vol.1935 , pp. 57-67
    • Ni, D.1    Leonard, J.D.2
  • 25
    • 28944453700 scopus 로고    scopus 로고
    • Multiple imputation scheme for overcoming the missing values and variability issues in ITS data
    • Ni D., Leonard J.D., Guin A., Feng C. Multiple imputation scheme for overcoming the missing values and variability issues in ITS data. ASCE Journal of Transportation Engineering 2005, 131(12):931-938.
    • (2005) ASCE Journal of Transportation Engineering , vol.131 , Issue.12 , pp. 931-938
    • Ni, D.1    Leonard, J.D.2    Guin, A.3    Feng, C.4
  • 26
    • 84880363372 scopus 로고    scopus 로고
    • PeMS, California Performance Measurement System.
    • PeMS, California Performance Measurement System. http://pems.eecs.berkeley.edu.
  • 27
    • 70349166727 scopus 로고    scopus 로고
    • PPCA-based missing data imputation for traffic flow volume: a systematical approach
    • Qu L., Li L., Zhang Y., Hu J. PPCA-based missing data imputation for traffic flow volume: a systematical approach. IEEE Transactions on Intelligent Transportation Systems 2009, 10(3):512-522.
    • (2009) IEEE Transactions on Intelligent Transportation Systems , vol.10 , Issue.3 , pp. 512-522
    • Qu, L.1    Li, L.2    Zhang, Y.3    Hu, J.4
  • 28
    • 84866843145 scopus 로고    scopus 로고
    • Distributed maximum likelihood estimation for flow and speed density prediction in distributed traffic detectors with Gaussian mixture model assumption
    • Ramezani A., Moshiri B., Abdulhai B., Kian A.R. Distributed maximum likelihood estimation for flow and speed density prediction in distributed traffic detectors with Gaussian mixture model assumption. IET Intelligent Transport Systems 2010, 6(2):215-222.
    • (2010) IET Intelligent Transport Systems , vol.6 , Issue.2 , pp. 215-222
    • Ramezani, A.1    Moshiri, B.2    Abdulhai, B.3    Kian, A.R.4
  • 29
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis S., Ghahramani Z. A unifying review of linear Gaussian models. Neural Computation 1999, 11(2):305-345.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 34
    • 1642365673 scopus 로고    scopus 로고
    • Exploring imputation techniques for missing data in transportation management systems
    • Smith B.L., Scherer W.T., Conklin J.H. Exploring imputation techniques for missing data in transportation management systems. Transportation Research Record 2003, 1836:132-142.
    • (2003) Transportation Research Record , vol.1836 , pp. 132-142
    • Smith, B.L.1    Scherer, W.T.2    Conklin, J.H.3
  • 36
    • 33748777697 scopus 로고    scopus 로고
    • Methodology for processing archived ITS data for reliability analysis in urban networks
    • Stathopoulos A., Tsekeris T. Methodology for processing archived ITS data for reliability analysis in urban networks. IEE Proceedings of Intelligent Transportation Systems 2006, 153(1):105-112.
    • (2006) IEE Proceedings of Intelligent Transportation Systems , vol.153 , Issue.1 , pp. 105-112
    • Stathopoulos, A.1    Tsekeris, T.2
  • 37
    • 79958135902 scopus 로고    scopus 로고
    • Variational inference for infinite mixtures of Gaussian processes with applications to traffic flow prediction
    • Sun S., Xu M. Variational inference for infinite mixtures of Gaussian processes with applications to traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 2011, 12(2):466-475.
    • (2011) IEEE Transactions on Intelligent Transportation Systems , vol.12 , Issue.2 , pp. 466-475
    • Sun, S.1    Xu, M.2
  • 39
    • 84880387876 scopus 로고    scopus 로고
    • Network-Scale Traffic Modeling and Forecasting with Graphical Lasso and Neural Networks
    • Sun S., Huang R., Gao Y. Network-Scale Traffic Modeling and Forecasting with Graphical Lasso and Neural Networks. Journal of Transportation Engineering 2012, 138(11):1358-1367.
    • (2012) Journal of Transportation Engineering , vol.138 , Issue.11 , pp. 1358-1367
    • Sun, S.1    Huang, R.2    Gao, Y.3
  • 42
    • 0034432788 scopus 로고    scopus 로고
    • Archived intelligent transportation system data quality: preliminary analyses of San Antonio TransGuide data
    • Turner S., Albert L., Gajewski B., Eisele W. Archived intelligent transportation system data quality: preliminary analyses of San Antonio TransGuide data. Transportation Research Record 2000, 1719:77-84.
    • (2000) Transportation Research Record , vol.1719 , pp. 77-84
    • Turner, S.1    Albert, L.2    Gajewski, B.3    Eisele, W.4
  • 44
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transportation Reviews 2004, 24(5):533-557.
    • (2004) Transportation Reviews , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 46
    • 0035563672 scopus 로고    scopus 로고
    • Multivariate vehicular traffic flow prediction evaluation of ARIMAX modeling
    • Williams B.M. Multivariate vehicular traffic flow prediction evaluation of ARIMAX modeling. Transportation Research Record 2001, 1776:194-200.
    • (2001) Transportation Research Record , vol.1776 , pp. 194-200
    • Williams, B.M.1
  • 47
  • 49
    • 4544254645 scopus 로고    scopus 로고
    • Estimation of missing traffic counts using factor, genetic, neural, and regression techniques
    • Zhong M., Lingras P., Sharma S. Estimation of missing traffic counts using factor, genetic, neural, and regression techniques. Transportation Research Part C: Emerging Technologies 2004, 12(2):139-166.
    • (2004) Transportation Research Part C: Emerging Technologies , vol.12 , Issue.2 , pp. 139-166
    • Zhong, M.1    Lingras, P.2    Sharma, S.3
  • 50
    • 3242756135 scopus 로고    scopus 로고
    • Genetically designed models for accurate imputations of missing traffic counts
    • Zhong M., Sharma S., Lingras P. Genetically designed models for accurate imputations of missing traffic counts. Transportation Research Record 2004, 1879:71-79.
    • (2004) Transportation Research Record , vol.1879 , pp. 71-79
    • Zhong, M.1    Sharma, S.2    Lingras, P.3
  • 51
    • 33645038382 scopus 로고    scopus 로고
    • Assessing robustness of imputation models based on data from different jurisdictions: examples of Alberta and Saskatchewan, Canada
    • Zhong M., Sharma S., Liu Z. Assessing robustness of imputation models based on data from different jurisdictions: examples of Alberta and Saskatchewan, Canada. Transportation Research Record 2005, 1917:116-126.
    • (2005) Transportation Research Record , vol.1917 , pp. 116-126
    • Zhong, M.1    Sharma, S.2    Liu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.