메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 432-438

R1SVM: A randomised nonlinear approach to large-scale anomaly detection

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; MULTIOBJECTIVE OPTIMIZATION; SUPPORT VECTOR MACHINES;

EID: 84959524841     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (33)
  • 5
    • 0242288799 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
    • Cao, L. J.; Chua, K. S.; Chong, W. K.; Lee, H. P.; and Gu, Q. M. 2003. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1):321-336.
    • (2003) Neurocomputing , vol.55 , Issue.1 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 8
    • 0242288821 scopus 로고    scopus 로고
    • Finite Newton method for lagrangian support vector machine classification
    • Fung, G., and Mangasarian, O. L. 2003. Finite Newton method for Lagrangian Support Vector Machine classification. Neurocomputing 55(1):39-55.
    • (2003) Neurocomputing , vol.55 , Issue.1 , pp. 39-55
    • Fung, G.1    Mangasarian, O.L.2
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Platt, J. C. 1999. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods, 185-208.
    • (1999) Advances in Kernel Methods , pp. 185-208
    • Platt, J.C.1
  • 17
    • 78149297677 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • Rahimi, A., and Recht, B. 2009. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Advances in Neural Information Processing Systems (NIPS), 1313-1320.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , pp. 1313-1320
    • Rahimi, A.1    Recht, B.2
  • 22
    • 77957830692 scopus 로고    scopus 로고
    • EEG signal classification using PCA, ICA, LDA and support vector machines
    • Subasi, A., and Ismail Gursoy, M. 2010. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications 37(12):8659-8666.
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 8659-8666
    • Subasi, A.1    Ismail Gursoy, M.2
  • 24
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. M., and Duin, R. P. 2004. Support Vector Data Description. Machine Learning 54:45-66.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.1    Duin, R.P.2
  • 26
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S., and Koller, D. 2002. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research (JMLR) 2:45-66.
    • (2002) Journal of Machine Learning Research (JMLR) , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 33
    • 84866458840 scopus 로고    scopus 로고
    • A survey on unsupervised outlier detection in high-dimensional numerical data
    • Zimek, A.; Schubert, E.; and Kriegel, H.-P. 2012. A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining 5(5):363-387.
    • (2012) Statistical Analysis and Data Mining , vol.5 , Issue.5 , pp. 363-387
    • Zimek, A.1    Schubert, E.2    Kriegel, H.-P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.