메뉴 건너뛰기




Volumn , Issue , 2016, Pages 198-206

R1STM: One-class support tensor machine with randomised kernel

Author keywords

[No Author keywords available]

Indexed keywords

SIGNAL DETECTION; TENSORS; VECTOR SPACES;

EID: 84991671447     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (23)
  • 2
    • 33745869085 scopus 로고    scopus 로고
    • Random projection, margins, kernels, and feature-selection
    • Avrim Blum. Random projection, margins, kernels, and feature-selection. In Subspace, Latent Structure and Feature Selection, pages 52-68. 2006.
    • (2006) Subspace, Latent Structure and Feature Selection , pp. 52-68
    • Blum, A.1
  • 4
    • 34249753618 scopus 로고
    • Support-vector networks
    • Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 84878311477 scopus 로고    scopus 로고
    • A linear support higher-order tensor machine for classification
    • Zhifeng Hao, Lifang He, Bingqian Chen, and Xiaowei Yang. A linear support higher-order tensor machine for classification. IEEE Transactions on Image Processing, 22(7):2911-2920, 2013.
    • (2013) IEEE Transactions on Image Processing , vol.22 , Issue.7 , pp. 2911-2920
    • Hao, Z.1    He, L.2    Chen, B.3    Yang, X.4
  • 10
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM Review, 51(3):455-500, 2009.
    • (2009) SIAM Review , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 11
    • 79951678921 scopus 로고    scopus 로고
    • Tensor-based locally maximum margin classifier for image and video classification
    • Yang Liu, Yan Liu, and Keith CC Chan. Tensor-based locally maximum margin classifier for image and video classification. Computer Vision and Image Understanding, 115(3):300-309, 2011.
    • (2011) Computer Vision and Image Understanding , vol.115 , Issue.3 , pp. 300-309
    • Liu, Y.1    Liu, Y.2    Chan, K.C.C.3
  • 14
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • John C Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods, pages 185-208, 1999.
    • (1999) Advances in Kernel Methods , pp. 185-208
    • John, C.1    Platt2
  • 16
    • 78149297677 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Advances in Neural Information Processing Systems (NIPS), 2009.
    • (2009) Advances in Neural Information Processing Systems (NIPS
    • Rahimi, A.1    Recht, B.2
  • 19
    • 80051813167 scopus 로고    scopus 로고
    • A kernel-based framework to tensorial data analysis
    • Marco Signoretto, Lieven De Lathauwer, and Johan AK Suykens. A kernel-based framework to tensorial data analysis. Neural Networks, 24(8):861-874, 2011.
    • (2011) Neural Networks , vol.24 , Issue.8 , pp. 861-874
    • Signoretto, M.1    De Lathauwer, L.2    Suykens, J.A.K.3
  • 23
    • 34547544292 scopus 로고    scopus 로고
    • New least squares support vector machines based on matrix patterns
    • Zhe Wang and Songcan Chen. New least squares support vector machines based on matrix patterns. Neural Processing Letters, 26(l):41-56, 2007.
    • (2007) Neural Processing Letters , vol.26 , Issue.1 , pp. 41-56
    • Wang, Z.1    Chen, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.