-
1
-
-
84967261240
-
High-fat diets and β-cell dysfunction: molecular aspects
-
D. Mauricio Elsevier/Academic Press San Diego
-
[1] Collares-Buzato, C.B., High-fat diets and β-cell dysfunction: molecular aspects. Mauricio, D., (eds.) Molecular Nutrition and Diabetes, 2015, Elsevier/Academic Press, San Diego, 115–130.
-
(2015)
Molecular Nutrition and Diabetes
, pp. 115-130
-
-
Collares-Buzato, C.B.1
-
2
-
-
57649210751
-
Regulation of beta cell replication
-
[2] Lee, Y.C., Nielsen, J.H., Regulation of beta cell replication. Mol. Cell. Endocrinol. 297 (2009), 18–27.
-
(2009)
Mol. Cell. Endocrinol.
, vol.297
, pp. 18-27
-
-
Lee, Y.C.1
Nielsen, J.H.2
-
3
-
-
33745863033
-
Islet beta cell failure in type 2 diabetes
-
[3] Prentki, M., Nolan, C.J., Islet beta cell failure in type 2 diabetes. J. Clin. Investig. 116 (2006), 1802–1812.
-
(2006)
J. Clin. Investig.
, vol.116
, pp. 1802-1812
-
-
Prentki, M.1
Nolan, C.J.2
-
4
-
-
84991201445
-
Influence of gender and time diet exposure on endocrine pancreas remodeling in response to high fat diet-induced metabolic disturbances in mice
-
[4] Oliveira, R.B., Maschio, D.A., Carvalho, C.P.F., Collares-Buzato, C.B., Influence of gender and time diet exposure on endocrine pancreas remodeling in response to high fat diet-induced metabolic disturbances in mice. Ann. Anat. 200 (2015), 88–97.
-
(2015)
Ann. Anat.
, vol.200
, pp. 88-97
-
-
Oliveira, R.B.1
Maschio, D.A.2
Carvalho, C.P.F.3
Collares-Buzato, C.B.4
-
5
-
-
84925517486
-
Recent progress in studies of factors that elicit pancreatic β-cell expansion
-
[5] Li, Q., Lail, Z.-Q., Recent progress in studies of factors that elicit pancreatic β-cell expansion. Protein Cell 6 (2015), 81–87.
-
(2015)
Protein Cell
, vol.6
, pp. 81-87
-
-
Li, Q.1
Lail, Z.-Q.2
-
6
-
-
84894462021
-
Insulin resistance compensation: not just a matter of beta-cells?
-
[6] Montanya, E., Insulin resistance compensation: not just a matter of beta-cells?. Diabetes 63 (2014), 832–834.
-
(2014)
Diabetes
, vol.63
, pp. 832-834
-
-
Montanya, E.1
-
7
-
-
51249114496
-
The WNT signalling pathway and diabetes mellitus
-
[7] Jin, T., The WNT signalling pathway and diabetes mellitus. Diabetologia 51 (2008), 1771–1780.
-
(2008)
Diabetologia
, vol.51
, pp. 1771-1780
-
-
Jin, T.1
-
8
-
-
45849093670
-
The what, where, when and how of Wnt/beta-catenin signaling in pancreas development
-
[8] Murtaugh, L.C., The what, where, when and how of Wnt/beta-catenin signaling in pancreas development. Organogenesis 4 (2008), 81–86.
-
(2008)
Organogenesis
, vol.4
, pp. 81-86
-
-
Murtaugh, L.C.1
-
9
-
-
67650230896
-
Wnt/β-catenin signaling: components, mechanisms, and diseases
-
[9] MacDonald, B.T., Tamai, K., He, X., Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17 (2009), 9–26.
-
(2009)
Dev. Cell
, vol.17
, pp. 9-26
-
-
MacDonald, B.T.1
Tamai, K.2
He, X.3
-
10
-
-
55649098154
-
Wnt signalling: relevance to β-cell biology and diabetes
-
[10] Welters, H.J., Kulkarni, R.N., Wnt signalling: relevance to β-cell biology and diabetes. Trends Endocrinol. Metab. 19 (2008), 349–355.
-
(2008)
Trends Endocrinol. Metab.
, vol.19
, pp. 349-355
-
-
Welters, H.J.1
Kulkarni, R.N.2
-
11
-
-
84877687941
-
Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 beta cells via activation of IRS2/PI3K signaling
-
[11] Gui, S., Yuan, G., Wang, L., et al. Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 beta cells via activation of IRS2/PI3K signaling. J. Cell. Biochem. 114 (2013), 1488–1497.
-
(2013)
J. Cell. Biochem.
, vol.114
, pp. 1488-1497
-
-
Gui, S.1
Yuan, G.2
Wang, L.3
-
12
-
-
34547516561
-
Wnt signaling regulated pancreatic beta cell proliferation
-
[12] Rulifson, I.C., Karnik, S.K., Heiser, P.W., et al. Wnt signaling regulated pancreatic beta cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 6247–6252.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 6247-6252
-
-
Rulifson, I.C.1
Karnik, S.K.2
Heiser, P.W.3
-
13
-
-
36649015410
-
Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules
-
[13] Schinner, S., Ülgen, F., Papewalis, C., et al. Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia 51 (2008), 147–154.
-
(2008)
Diabetologia
, vol.51
, pp. 147-154
-
-
Schinner, S.1
Ülgen, F.2
Papewalis, C.3
-
14
-
-
84871596296
-
Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand
-
[14] Boj, S.F., van El, J.H., Huch, M., et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151 (2012), 1595–1607.
-
(2012)
Cell
, vol.151
, pp. 1595-1607
-
-
Boj, S.F.1
van El, J.H.2
Huch, M.3
-
15
-
-
74949116364
-
Neonatal growth and regeneration of β-cells are regulated by the Wnt/β-catenin signaling in normal and diabetic rats
-
[15] Figeac, F.B.U., Faro, M., Chelali, N., et al. Neonatal growth and regeneration of β-cells are regulated by the Wnt/β-catenin signaling in normal and diabetic rats. Am. J. Physiol. Endocrinol. Metabol. 298 (2009), 245–256.
-
(2009)
Am. J. Physiol. Endocrinol. Metabol.
, vol.298
, pp. 245-256
-
-
Figeac, F.B.U.1
Faro, M.2
Chelali, N.3
-
16
-
-
84924320471
-
Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass
-
[16] Mitchell, R.K., Mondragon, A., Chen, L., et al. Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Hum. Mol. Genet. 5 (2015), 1390–1399.
-
(2015)
Hum. Mol. Genet.
, vol.5
, pp. 1390-1399
-
-
Mitchell, R.K.1
Mondragon, A.2
Chen, L.3
-
17
-
-
84903984828
-
Impaired compensatory beta-cell function and growth in response to high-fat diet in LDL receptor knockout mice
-
[17] Oliveira, R.B., Carvalho, C.P.F., Polo, C.C., et al. Impaired compensatory beta-cell function and growth in response to high-fat diet in LDL receptor knockout mice. Int. J. Exp. Path 95 (2014), 296–308.
-
(2014)
Int. J. Exp. Path
, vol.95
, pp. 296-308
-
-
Oliveira, R.B.1
Carvalho, C.P.F.2
Polo, C.C.3
-
18
-
-
33646554465
-
Histomorphology and ultrastructure of pancreatic islet tissue during in vivo maturation of rat pancreas
-
[18] Carvalho, C.P.F., Martins, J.C., da Cunha, D.A., et al. Histomorphology and ultrastructure of pancreatic islet tissue during in vivo maturation of rat pancreas. Ann. Anat. 188 (2006), 221–234.
-
(2006)
Ann. Anat.
, vol.188
, pp. 221-234
-
-
Carvalho, C.P.F.1
Martins, J.C.2
da Cunha, D.A.3
-
19
-
-
84863657669
-
Impaired β-cell-β-cell coupling mediated by Cx36 gap junctions in prediabetic mice
-
[19] Carvalho, C.P.F., Oliveira, R.B., Britan, A., et al. Impaired β-cell-β-cell coupling mediated by Cx36 gap junctions in prediabetic mice. Am. J. Physiol. Endocrinol. Metab. 303 (2012), 144–151.
-
(2012)
Am. J. Physiol. Endocrinol. Metab.
, vol.303
, pp. 144-151
-
-
Carvalho, C.P.F.1
Oliveira, R.B.2
Britan, A.3
-
20
-
-
84961665569
-
Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules in diabetic mice after prolonged high fat diet
-
[20] Falcão, V.T.F.L., Maschio, D.A., de Fontes, C.C., et al. Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules in diabetic mice after prolonged high fat diet. Histochem. Cell. Biol. 146 (2016), 13–31.
-
(2016)
Histochem. Cell. Biol.
, vol.146
, pp. 13-31
-
-
Falcão, V.T.F.L.1
Maschio, D.A.2
de Fontes, C.C.3
-
21
-
-
64149097786
-
The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments
-
[21] Bustin, S.A., Benes, V., Garson, J.A., et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55 (2009), 611–622.
-
(2009)
Clin. Chem.
, vol.55
, pp. 611-622
-
-
Bustin, S.A.1
Benes, V.2
Garson, J.A.3
-
22
-
-
85007591728
-
Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus
-
[22] Lee, J., Kim, K., Yu, S.W., Kim, E.-K., Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus. Mol. Brain 9 (2016), 1–24.
-
(2016)
Mol. Brain
, vol.9
, pp. 1-24
-
-
Lee, J.1
Kim, K.2
Yu, S.W.3
Kim, E.-K.4
-
23
-
-
12944320856
-
Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice
-
[23] Sone, H., Kagawa, Y., Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetol 48 (2005), 58–67.
-
(2005)
Diabetol
, vol.48
, pp. 58-67
-
-
Sone, H.1
Kagawa, Y.2
-
24
-
-
67649277380
-
Stem cell therapy to treat diabetes mellitus
-
[24] Liew, C.G., Andrews, P.W., Stem cell therapy to treat diabetes mellitus. Rev Diabet. Stud. 5 (2008), 203–219.
-
(2008)
Rev Diabet. Stud.
, vol.5
, pp. 203-219
-
-
Liew, C.G.1
Andrews, P.W.2
-
25
-
-
33845881411
-
Mechanisms linking obesity to insulin resistance and type 2 diabetes
-
[25] Kahn, S.E., Hull, R.L., Utzschneider, K.M., Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 14 (2006), 840–846.
-
(2006)
Nature
, vol.14
, pp. 840-846
-
-
Kahn, S.E.1
Hull, R.L.2
Utzschneider, K.M.3
-
26
-
-
85013072367
-
Apoptosis in pancreatic β-islet cells in type 2 diabetes
-
[26] Tomita, T., Apoptosis in pancreatic β-islet cells in type 2 diabetes. Bosn. J. Basic Med. 3 (2016), 162–179.
-
(2016)
Bosn. J. Basic Med.
, vol.3
, pp. 162-179
-
-
Tomita, T.1
-
27
-
-
33746808398
-
Wnt/beta-catenin signaling in development and disease
-
[27] Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell 127 (2006), 469–480.
-
(2006)
Cell
, vol.127
, pp. 469-480
-
-
Clevers, H.1
-
28
-
-
84960406240
-
AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth
-
[28] Hu, B.R., Fairey, A.S., Madhav, A., et al. AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth. Prostate 76 (2016), 597–608.
-
(2016)
Prostate
, vol.76
, pp. 597-608
-
-
Hu, B.R.1
Fairey, A.S.2
Madhav, A.3
-
29
-
-
0037422571
-
Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion
-
[29] Fujino, T., Asabab, H., Kang, M.J., et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 229–234.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 229-234
-
-
Fujino, T.1
Asabab, H.2
Kang, M.J.3
-
30
-
-
84867031940
-
Importance of β-Catenin in glucose and energy homeostasis
-
[30] Elghazi, L., Gould, A.P., Weiss, A.J., et al. Importance of β-Catenin in glucose and energy homeostasis. Sci. Rep., 2, 2012, 693.
-
(2012)
Sci. Rep.
, vol.2
, pp. 693
-
-
Elghazi, L.1
Gould, A.P.2
Weiss, A.J.3
-
31
-
-
84873345249
-
TCF7L2 and diabetes: a tale of two tissues, and of two species
-
[31] McCarthy, M.I., Rorsman, P., Gloyn, A.L., TCF7L2 and diabetes: a tale of two tissues, and of two species. Cell Metabol. 17 (2013), 157–159.
-
(2013)
Cell Metabol.
, vol.17
, pp. 157-159
-
-
McCarthy, M.I.1
Rorsman, P.2
Gloyn, A.L.3
-
32
-
-
77953945417
-
Wnt signaling in pancreatic islets
-
M.S. Islam Springer New York
-
[32] Liu, Z., Habener, J.F., Wnt signaling in pancreatic islets. Islam, M.S., (eds.) The Islets of Langerhans, vol. 654, 2010, Springer, New York, 391–419.
-
(2010)
The Islets of Langerhans
, vol.654
, pp. 391-419
-
-
Liu, Z.1
Habener, J.F.2
-
33
-
-
84922344426
-
Mouse insulin cells expressing an inducible RIPCre transgene are functionally impaired
-
[33] Teitelman, G., Kedees, M., Mouse insulin cells expressing an inducible RIPCre transgene are functionally impaired. J. Biol. Chem. 290 (2015), 3647–3653.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 3647-3653
-
-
Teitelman, G.1
Kedees, M.2
-
34
-
-
84859603974
-
The orphan receptor TR3 suppresses intestinal tumorigenesis in mice by downregulating Wnt signaling
-
[34] Chen, H.-Z., Liu, Q.-F., Li, L., et al. The orphan receptor TR3 suppresses intestinal tumorigenesis in mice by downregulating Wnt signaling. Gut 61 (2012), 714–724.
-
(2012)
Gut
, vol.61
, pp. 714-724
-
-
Chen, H.-Z.1
Liu, Q.-F.2
Li, L.3
-
35
-
-
84975831736
-
Transcription Factor 7-like 2 mediates canonical Wnt/β-catenin signaling and c-Myc upregulation in heart failure
-
pii: e003010. doi: 10.1161/CIRCHEARTFAILURE.116.003010
-
[35] Hou, N., Ye, B., Li, X., et al. Transcription Factor 7-like 2 mediates canonical Wnt/β-catenin signaling and c-Myc upregulation in heart failure. Circ. Heart Fail., 9, 2016 pii: e003010. doi: 10.1161/CIRCHEARTFAILURE.116.003010.
-
(2016)
Circ. Heart Fail.
, vol.9
-
-
Hou, N.1
Ye, B.2
Li, X.3
-
36
-
-
84887617189
-
Wnt/β-catenin signaling may be involved with the maturation, but not the differentiation, of insulin-producing cells
-
[36] Shi, Q., Luo, S., Jia, H., Wnt/β-catenin signaling may be involved with the maturation, but not the differentiation, of insulin-producing cells. Biomed. Pharmacother. 67 (2013), 745–750.
-
(2013)
Biomed. Pharmacother.
, vol.67
, pp. 745-750
-
-
Shi, Q.1
Luo, S.2
Jia, H.3
-
37
-
-
84876969224
-
AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development
-
[37] Zhang, J., Shemezis, J.R., McQuinn, E.R., et al. AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development. Neural Dev. 8 (2013), 7–23 http://www.neuraldevelopment.com/content/8/1/7.
-
(2013)
Neural Dev.
, vol.8
, pp. 7-23
-
-
Zhang, J.1
Shemezis, J.R.2
McQuinn, E.R.3
-
38
-
-
43749120731
-
Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation
-
[38] Liu, Z., Habener, J.F., Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 283 (2008), 8723–8735.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 8723-8735
-
-
Liu, Z.1
Habener, J.F.2
-
39
-
-
77957132311
-
Insulin treatment and high-fat diet feeding reduces the expression of three Tcf genes in rodent pancreas
-
[39] Columbus, J., Chiang, Y., Shao, W., et al. Insulin treatment and high-fat diet feeding reduces the expression of three Tcf genes in rodent pancreas. J. Endocrinol. 207 (2010), 77–86.
-
(2010)
J. Endocrinol.
, vol.207
, pp. 77-86
-
-
Columbus, J.1
Chiang, Y.2
Shao, W.3
|