메뉴 건너뛰기




Volumn 26, Issue 1-2, 2016, Pages 1-14

A unified framework of constrained regression

Author keywords

Bivariate constraints; Cyclic constraints; Functional gradient descent boosting; Generalized additive models; Monotonic constraints; Periodic effects

Indexed keywords


EID: 84953350942     PISSN: 09603174     EISSN: 15731375     Source Type: Journal    
DOI: 10.1007/s11222-014-9520-y     Document Type: Article
Times cited : (34)

References (45)
  • 2
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: regularization, prediction and model fitting
    • Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting. Stat. Sci. 22, 477–505 (2007)
    • (2007) Stat. Sci. , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 3
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the L(Formula presented.) loss: regression and classification
    • Bühlmann, P., Yu, B.: Boosting with the L(Formula presented.) loss: regression and classification. J. Am. Stat. Assoc. 98, 324–339 (2003)
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 5
    • 33846090365 scopus 로고    scopus 로고
    • A simple nonparametric estimator of a strictly monotone regression function
    • Dette, H., Neumeyer, N., Pilz, K.F.: A simple nonparametric estimator of a strictly monotone regression function. Bernoulli 12, 469–490 (2006)
    • (2006) Bernoulli , vol.12 , pp. 469-490
    • Dette, H.1    Neumeyer, N.2    Pilz, K.F.3
  • 6
    • 70450171127 scopus 로고    scopus 로고
    • Isotone optimization in R: pool-adjacent-violators algorithm (PAVA) and active set methods
    • de Leeuw, J., Hornik, K., Mair, P.: Isotone optimization in R: pool-adjacent-violators algorithm (PAVA) and active set methods. J. Stat. Softw. 32, 5 (2009)
    • (2009) J. Stat. Softw. , vol.32 , pp. 5
    • de Leeuw, J.1    Hornik, K.2    Mair, P.3
  • 7
    • 32444440300 scopus 로고    scopus 로고
    • Unimodal smoothing
    • Eilers, P.H.C.: Unimodal smoothing. J. Chemom. 19, 317–328 (2005)
    • (2005) J. Chemom. , vol.19 , pp. 317-328
    • Eilers, P.H.C.1
  • 8
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • (with discussion)
    • Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11, 89–121 (1996). (with discussion)
    • (1996) Stat. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 10
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression: a Bayesian perspective
    • Fahrmeir, L., Kneib, T., Lang, S.: Penalized structured additive regression: a Bayesian perspective. Stat. Sin. 14, 731–761 (2004)
    • (2004) Stat. Sin. , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 11
    • 84859817260 scopus 로고    scopus 로고
    • LASSO isotone for high-dimensional additive isotonic regression
    • Fang, Z., Meinshausen, N.: LASSO isotone for high-dimensional additive isotonic regression. J. Comput. Gr. Stat. 21, 72–91 (2012)
    • (2012) J. Comput. Gr. Stat. , vol.21 , pp. 72-91
    • Fang, Z.1    Meinshausen, N.2
  • 12
    • 79960127235 scopus 로고    scopus 로고
    • Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
    • Fenske, N., Kneib, T., Hothorn, T.: Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J. Am. Stat. Assoc. 106, 494–510 (2011)
    • (2011) J. Am. Stat. Assoc. , vol.106 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 13
    • 84953348752 scopus 로고
    • Dual and primal-dual methods for solving strictly convex quadratic programs. Numer. Anal
    • Springer-Verlag, Berlin
    • Goldfarb, D., Idnani, A.: Dual and primal-dual methods for solving strictly convex quadratic programs. Numer. Anal., pp. 226–239. Springer-Verlag, Berlin (1982)
    • (1982) pp , vol.226-239
    • Goldfarb, D.1    Idnani, A.2
  • 14
    • 0020826623 scopus 로고
    • A numerically stable dual method for solving strictly convex quadratic programs
    • Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 27, 1–33 (1983)
    • (1983) Math. Program. , vol.27 , pp. 1-33
    • Goldfarb, D.1    Idnani, A.2
  • 16
    • 84953369130 scopus 로고    scopus 로고
    • Boosting in structured additive models. PhD thesis, LMU München
    • Hofner,B.: Boosting in structured additive models. PhD thesis, LMU München, http://nbn-resolving.de/urn:nbn:de:bvb:19-138053, Verlag Dr. Hut, München (2011)
    • (2011) Verlag Dr. Hut, München
  • 17
    • 80053581322 scopus 로고    scopus 로고
    • A framework for unbiased model selection based on boosting
    • Hofner, B., Hothorn, T., Kneib, T., Schmid, M.: A framework for unbiased model selection based on boosting. J. Comput. Gr. Stat. 20, 956–971 (2011a)
    • (2011) J. Comput. Gr. Stat. , vol.20 , pp. 956-971
    • Hofner, B.1    Hothorn, T.2    Kneib, T.3    Schmid, M.4
  • 18
    • 80053616945 scopus 로고    scopus 로고
    • Monotonicity-constrained species distribution models
    • Hofner, B., Müller, J., Hothorn, T.: Monotonicity-constrained species distribution models. Ecology 92, 1895–1901 (2011b)
    • (2011) Ecology , vol.92 , pp. 1895-1901
    • Hofner, B.1    Müller, J.2    Hothorn, T.3
  • 19
    • 84878621391 scopus 로고    scopus 로고
    • Variable selection and model choice in structured survival models
    • Hofner, B., Hothorn, T., Kneib, T.: Variable selection and model choice in structured survival models. Comput. Stat. 28, 1079–1101 (2013)
    • (2013) Comput. Stat. , vol.28 , pp. 1079-1101
    • Hofner, B.1    Hothorn, T.2    Kneib, T.3
  • 20
    • 84953360514 scopus 로고    scopus 로고
    • Controlling false discoveries in high-dimensional situations: Boosting with stability selection
    • Hofner, B., Boccuto, L., Göker, M.: Controlling false discoveries in high-dimensional situations: Boosting with stability selection, unpublished manuscript (2014a)
    • (2014) unpublished manuscript
    • Hofner, B.1    Boccuto, L.2    Göker, M.3
  • 21
    • 84893967115 scopus 로고    scopus 로고
    • Model-based boosting in R: a hands-on tutorial using the R package mboost
    • Hofner, B., Mayr, A., Robinzonov, N., Schmid, M.: Model-based boosting in R: a hands-on tutorial using the R package mboost. Comput. Stat. 29, 3–35 (2014b)
    • (2014) Comput. Stat. , vol.29 , pp. 3-35
    • Hofner, B.1    Mayr, A.2    Robinzonov, N.3    Schmid, M.4
  • 22
    • 84953366363 scopus 로고    scopus 로고
    • Hofner, B., Mayr, A., Schmid, M.: gamboostLSS: An R package for model building and variable selection in the GAMLSS framework, , (2014c)
    • Hofner, B., Mayr, A., Schmid, M.: gamboostLSS: An R package for model building and variable selection in the GAMLSS framework, http://arxiv.org/abs/1407.1774, arXiv:1407.1774 (2014c)
  • 24
    • 84857129539 scopus 로고    scopus 로고
    • Large-scale model-based assessment of deer-vehicle collision risk
    • Hothorn, T., Brandl, R., Müller, J.: Large-scale model-based assessment of deer-vehicle collision risk. PLOS One 7(2), e29,510 (2012)
    • (2012) PLOS One , vol.7 , Issue.2 , pp. 510
    • Hothorn, T.1    Brandl, R.2    Müller, J.3
  • 25
    • 84953347870 scopus 로고    scopus 로고
    • mboost: Model-Based Boosting.
    • Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B.: mboost: Model-Based Boosting. http://CRAN.R-project.org/package=mboost, R package version 2.4-0 (2014a)
    • (2014) R package version 2.4-0
  • 27
    • 66949120727 scopus 로고    scopus 로고
    • Variable selection and model choice in geoadditive regression models
    • Kneib, T., Hothorn, T., Tutz, G.: Variable selection and model choice in geoadditive regression models. Biometrics 65, 626–634 (2009)
    • (2009) Biometrics , vol.65 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 28
    • 78649434657 scopus 로고    scopus 로고
    • Simultaneous confidence bands for penalized spline estimators
    • Krivobokova, T., Kneib, T., Claeskens, G.: Simultaneous confidence bands for penalized spline estimators. J. Am. Stat. Assoc. 105, 852–863 (2010)
    • (2010) J. Am. Stat. Assoc , vol.105 , pp. 852-863
    • Krivobokova, T.1    Kneib, T.2    Claeskens, G.3
  • 29
    • 84859815011 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape for high-dimensional data: a flexible approach based on boosting
    • Mayr, A., Fenske, N., Hofner, B., Kneib, T., Schmid, M.: Generalized additive models for location, scale and shape for high-dimensional data: a flexible approach based on boosting. J. Royal Stat. Soc. Ser. C Appl. Stat. 61, 403–427 (2012)
    • (2012) J. Royal Stat. Soc. Ser. C Appl. Stat. , vol.61 , pp. 403-427
    • Mayr, A.1    Fenske, N.2    Hofner, B.3    Kneib, T.4    Schmid, M.5
  • 31
    • 84953352892 scopus 로고    scopus 로고
    • Pya, N.: scam: Shape constrained additive models. , R package version 1.1-7 (2014)
    • Pya, N.: scam: Shape constrained additive models. http://CRAN.R-project.org/package=scam, R package version 1.1-7 (2014)
  • 32
    • 84894277295 scopus 로고    scopus 로고
    • Pya, N., Wood, S.N.: Shape constrained additive models. Stat. Comput. pp 1–17, (2014)
    • Pya, N., Wood, S.N.: Shape constrained additive models. Stat. Comput. pp 1–17,doi:10.1007/s11222-013-9448-7 (2014)
  • 33
    • 84953357906 scopus 로고    scopus 로고
    • R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, , R version 3.1.1
    • R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/, R version 3.1.1
  • 34
    • 18544382833 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape
    • (with discussion)
    • Rigby, R.A., Stasinopoulos, D.M.: Generalized additive models for location, scale and shape. J. Royal Stat. Soc. Ser. C Appl. Stat. 54, 507–554 (2005). (with discussion)
    • (2005) J. Royal Stat. Soc. Ser. C Appl. Stat. , vol.54 , pp. 507-554
    • Rigby, R.A.1    Stasinopoulos, D.M.2
  • 36
    • 55549110371 scopus 로고    scopus 로고
    • Boosting additive models using component-wise P-splines
    • Schmid, M., Hothorn, T.: Boosting additive models using component-wise P-splines. Comput. Stat. Data Anal. 53, 298–311 (2008)
    • (2008) Comput. Stat. Data Anal. , vol.53 , pp. 298-311
    • Schmid, M.1    Hothorn, T.2
  • 38
    • 84871371181 scopus 로고    scopus 로고
    • Variable selection with error control: another look at stability selection
    • Shah, R.D., Samworth, R.J.: Variable selection with error control: another look at stability selection. J. Royal Stat. Soc. Ser. B Stat. Methodol. 75, 55–80 (2013)
    • (2013) J. Royal Stat. Soc. Ser. B Stat. Methodol. , vol.75 , pp. 55-80
    • Shah, R.D.1    Samworth, R.J.2
  • 39
    • 84856711914 scopus 로고    scopus 로고
    • Geoadditive expectile regression
    • Sobotka, F., Kneib, T.: Geoadditive expectile regression. Comput. Stat. Data Anal. 56, 755–767 (2012)
    • (2012) Comput. Stat. Data Anal. , vol.56 , pp. 755-767
    • Sobotka, F.1    Kneib, T.2
  • 40
    • 84953349166 scopus 로고    scopus 로고
    • Modelling flow in gas transmission networks using shape-constrained expectile regression
    • Sobotka, F., Mirkov, R., Hofner, B., Eilers, P., Kneib, T.: Modelling flow in gas transmission networks using shape-constrained expectile regression, unpublished manuscript (2014)
    • (2014) unpublished manuscript
    • Sobotka, F.1    Mirkov, R.2    Hofner, B.3    Eilers, P.4    Kneib, T.5
  • 41
    • 84885736136 scopus 로고    scopus 로고
    • Activity patterns of European roe deer (Capreolus capreolus) are strongly influenced by individual behaviour
    • Stache, A., Heller, E., Hothorn, T., Heurich, M.: Activity patterns of European roe deer (Capreolus capreolus) are strongly influenced by individual behaviour. Folia Zool. 62, 67–75 (2013)
    • (2013) Folia Zool. , vol.62 , pp. 67-75
    • Stache, A.1    Heller, E.2    Hothorn, T.3    Heurich, M.4
  • 43
    • 33645690420 scopus 로고    scopus 로고
    • Low-rank scale-invariant tensor product smooths for generalized additive mixed models
    • Wood, S.N.: Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62, 1025–1036 (2006b)
    • (2006) Biometrics , vol.62 , pp. 1025-1036
    • Wood, S.N.1
  • 44
    • 42149179133 scopus 로고    scopus 로고
    • Fast stable direct fitting and smoothness selection for generalized additive models
    • Wood, S.N.: Fast stable direct fitting and smoothness selection for generalized additive models. J. Royal Stat. Soc. Ser. B Stat. Methodol. 70, 495–518 (2008)
    • (2008) J. Royal Stat. Soc. Ser. B Stat. Methodol. , vol.70 , pp. 495-518
    • Wood, S.N.1
  • 45
    • 84953366260 scopus 로고    scopus 로고
    • Wood, S.N.: mgcv: GAMs with GCV/AIC/REML smoothness estimation and GAMMs by PQL. , (2010). R package version 1.7-2
    • Wood, S.N.: mgcv: GAMs with GCV/AIC/REML smoothness estimation and GAMMs by PQL. http://CRAN.R-project.org/package=mgcv, (2010). R package version 1.7-2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.