-
1
-
-
33846588964
-
Parsimonious additive models
-
Avalos, M., Grandvalet, Y., Ambroise, C.: Parsimonious additive models. Comput. Stat. Data. Anal. 51, 2851-2870 (2007).
-
(2007)
Comput. Stat. Data. Anal.
, vol.51
, pp. 2851-2870
-
-
Avalos, M.1
Grandvalet, Y.2
Ambroise, C.3
-
2
-
-
49749090429
-
Simultaneous selection of variables and smoothing parameters in structured additive regression models
-
Belitz, C., Lang, S.: Simultaneous selection of variables and smoothing parameters in structured additive regression models. Comput. Stat. Data. Anal. 53, 61-81 (2008).
-
(2008)
Comput. Stat. Data. Anal.
, vol.53
, pp. 61-81
-
-
Belitz, C.1
Lang, S.2
-
3
-
-
77953833620
-
-
Version 2. 1
-
Belitz, C., Brezger, A., Kneib, T., Lang, S, Umlauf, N.: BayesX-Software for Bayesian inference in structured additive regression models (2012). http://www. bayesx. org. Version 2. 1.
-
(2012)
BayesX-Software for Bayesian inference in structured additive regression models
-
-
Belitz, C.1
Brezger, A.2
Kneib, T.3
Lang, S.4
Umlauf, N.5
-
4
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting
-
Bühlmann, P., Hothorn, T.: Boosting algorithms: Regularization, prediction and model fitting. Stat. Sci. 22, 477-505 (2007).
-
(2007)
Stat. Sci.
, vol.22
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
5
-
-
0043245810
-
2 loss: regression and classification
-
2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324-339 (2003).
-
(2003)
J. Am. Stat. Assoc.
, vol.98
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
6
-
-
49549109589
-
Variable selection and model averaging in semiparametric overdispersed generalized linear models
-
Cottet, R., Kohn, R. J., Nott, D. J.: Variable selection and model averaging in semiparametric overdispersed generalized linear models. J. Am. Stat. Assoc. 103, 661-671 (2008).
-
(2008)
J. Am. Stat. Assoc.
, vol.103
, pp. 661-671
-
-
Cottet, R.1
Kohn, R.J.2
Nott, D.J.3
-
8
-
-
25444532788
-
Flexible smoothing using B-splines and penalized likelihood
-
Eilers, P. H. C., Marx, B. D.: Flexible smoothing using B-splines and penalized likelihood. Stat. Sci. 11, 89-121 (1996).
-
(1996)
Stat. Sci.
, vol.11
, pp. 89-121
-
-
Eilers, P.H.C.1
Marx, B.D.2
-
9
-
-
84884209803
-
-
Contributors, R package version 0. 1-0
-
Eugster, M. A., Hothorn, T. (Authors), Frick, H., Kondofersky, I., Kuehnle, O. S., Lindenlaub, C., Pfundstein, G., Speidel, M., Spindler, M., Straub, A., Wickler, F., Zink, K. (Contributors): hgam: High-dimensional additive modelling (2010) R package version 0. 1-0.
-
(2010)
Hgam: High-dimensional additive modelling
-
-
Eugster, M.A.1
Hothorn, T.2
Frick, H.3
Kondofersky, I.4
Kuehnle, O.S.5
Lindenlaub, C.6
Pfundstein, G.7
Speidel, M.8
Spindler, M.9
Straub, A.10
Wickler, F.11
Zink, K.12
-
11
-
-
77953326052
-
Bayesian regularization in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection
-
Fahrmeir, L., Kneib, T., Konrath, S.: Bayesian regularization in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection. Stat. Comput. 20, 203-219 (2010).
-
(2010)
Stat. Comput.
, vol.20
, pp. 203-219
-
-
Fahrmeir, L.1
Kneib, T.2
Konrath, S.3
-
12
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348-1360 (2001).
-
(2001)
J. Am. Stat. Assoc.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
14
-
-
84893179575
-
Variable selection via Gibbs sampling
-
George, E. I., McCulloch, R. E.: Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88, 881-889 (1993).
-
(1993)
J. Am. Stat. Assoc.
, vol.88
, pp. 881-889
-
-
George, E.I.1
McCulloch, R.E.2
-
15
-
-
0031526204
-
Approaches for Bayesian variable selection
-
George, E. I., McCulloch, R. E.: Approaches for Bayesian variable selection. Statistica Sinica 7, 339-374 (1997).
-
(1997)
Statistica Sinica
, vol.7
, pp. 339-374
-
-
George, E.I.1
McCulloch, R.E.2
-
16
-
-
67349234649
-
Alternative prior distributions for variable selection with very many more variables than observations
-
University of Kent
-
Griffin, J. E., Brown, P. J.: Alternative prior distributions for variable selection with very many more variables than observations. Technical Report UKC/IMS/05/08, IMS, University of Kent (2005).
-
(2005)
Technical Report UKC/IMS/05/08, IMS
-
-
Griffin, J.E.1
Brown, P.J.2
-
18
-
-
84881622205
-
-
R package version 2. 1-1
-
Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., Hofner, B.: mboost. Model-based boosting (2012). R package version 2. 1-1.
-
(2012)
Mboost. Model-based boosting
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
19
-
-
77955145935
-
Variable selection in nonparametric additive models
-
Huang, J., Horowitz, J. L., Wei, F.: Variable selection in nonparametric additive models. Ann. Stat. 38, 2282-2313 (2010).
-
(2010)
Ann. Stat.
, vol.38
, pp. 2282-2313
-
-
Huang, J.1
Horowitz, J.L.2
Wei, F.3
-
20
-
-
22944460748
-
Spike and slab variable selection: frequentist and Bayesian strategies
-
Ishwaran, H., Rao, J. S.: Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33(2), 730-773 (2005).
-
(2005)
Ann. Stat.
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
21
-
-
66949120727
-
Variable selection and model choice in geoadditive regression models
-
Kneib, T., Hothorn, T., Tutz, G.: Variable selection and model choice in geoadditive regression models. Biometrics 65, 626-634 (2009).
-
(2009)
Biometrics
, vol.65
, pp. 626-634
-
-
Kneib, T.1
Hothorn, T.2
Tutz, G.3
-
22
-
-
79952590314
-
High-dimensional structured additive regression models: Bayesian regularisation, smoothing and predictive performance
-
Kneib, T., Konrath, S., Fahrmeir, L.: High-dimensional structured additive regression models: Bayesian regularisation, smoothing and predictive performance. Appl. Stat. 60, 51-70 (2011).
-
(2011)
Appl. Stat.
, vol.60
, pp. 51-70
-
-
Kneib, T.1
Konrath, S.2
Fahrmeir, L.3
-
23
-
-
84938292491
-
Bayesian smoothing, shrinkage and variable selection in hazard regression
-
In: Becker, C., Fried, R., Kuhnt, S. (eds.)
-
Konrath, S., Kneib, T., Fahrmeir, L.: Bayesian smoothing, shrinkage and variable selection in hazard regression. In: Becker, C., Fried, R., Kuhnt, S. (eds.) Robustness and Complex Data Structures. Festschrift in Honour of Ursula Gather (2013).
-
(2013)
Robustness and Complex Data Structures. Festschrift in Honour of Ursula Gather
-
-
Konrath, S.1
Kneib, T.2
Fahrmeir, L.3
-
24
-
-
34547733991
-
Model selection in nonparametric hazard regression
-
Leng, C., Zhang, H. H.: Model selection in nonparametric hazard regression. Nonparametr. Stat. 18, 417-429 (2006).
-
(2006)
Nonparametr. Stat.
, vol.18
, pp. 417-429
-
-
Leng, C.1
Zhang, H.H.2
-
25
-
-
33847350805
-
Component selection and smoothing in multivariate nonparametric regression
-
Lin, Y., Zhang, H. H.: Component selection and smoothing in multivariate nonparametric regression. Ann. Stat. 34, 2272-2297 (2006).
-
(2006)
Ann. Stat.
, vol.34
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.H.2
-
26
-
-
79953654016
-
Practical variable selection for generalized additive models
-
Marra, G., Wood, S.: Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 55, 2372-2387 (2011).
-
(2011)
Comput. Stat. Data Anal.
, vol.55
, pp. 2372-2387
-
-
Marra, G.1
Wood, S.2
-
27
-
-
79956146364
-
-
MATLAB, The MathWorks Inc., Natick, Massachusetts
-
MATLAB. MATLAB version 7. 10. 0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010).
-
(2010)
MATLAB version 7. 10. 0 (R2010a)
-
-
-
29
-
-
37849035696
-
The group Lasso for logistic regression
-
Meier, L., van de Geer, S., Bühlmann, P.: The group Lasso for logistic regression. J. R. Stat. Soc. Ser. B 70, 53-71 (2008).
-
(2008)
J. R. Stat. Soc. Ser. B
, vol.70
, pp. 53-71
-
-
Meier, L.1
van de Geer, S.2
Bühlmann, P.3
-
30
-
-
73949083829
-
High-dimensional additive modeling
-
Meier, L., van der Geer, S., Bühlmann, P.: High-dimensional additive modeling. Ann. Stat. 37, 3779-3821 (2009).
-
(2009)
Ann. Stat.
, vol.37
, pp. 3779-3821
-
-
Meier, L.1
van der Geer, S.2
Bühlmann, P.3
-
31
-
-
69249230467
-
A review of Bayesian variable selection methods: what, how, and which?
-
O'Hara, R. B., Sillanpää, M. J.: A review of Bayesian variable selection methods: what, how, and which? Bayesian Anal. 4, 85-118 (2009).
-
(2009)
Bayesian Anal.
, vol.4
, pp. 85-118
-
-
O'Hara, R.B.1
Sillanpää, M.J.2
-
32
-
-
39149101409
-
Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models
-
Panagiotelis, A., Smith, M.: Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models. J. Econom. 143, 291-316 (2008).
-
(2008)
J. Econom.
, vol.143
, pp. 291-316
-
-
Panagiotelis, A.1
Smith, M.2
-
34
-
-
84858279402
-
Local shrinkage rules, Lévy processes and regularized regression
-
Polson, N. G., Scott, J. G.: Local shrinkage rules, Lévy processes and regularized regression. J. R. Stat. Soc. Ser. B 74(2), 287-311 (2012).
-
(2012)
J. R. Stat. Soc. Ser. B
, vol.74
, Issue.2
, pp. 287-311
-
-
Polson, N.G.1
Scott, J.G.2
-
35
-
-
84858341887
-
-
R Development Core Team. R: A Language and Environment for Statistical Computing
-
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011). http://www. R-project. org/.
-
(2011)
R Foundation for Statistical Computing, Vienna, Austria
-
-
-
36
-
-
78651289934
-
Variable selection using adaptive nonlinear interaction structures in high dimensions
-
Radchenko, P., James, G. M.: Variable selection using adaptive nonlinear interaction structures in high dimensions. J. Am. Stat. Assoc. 105, 1-13 (2010).
-
(2010)
J. Am. Stat. Assoc.
, vol.105
, pp. 1-13
-
-
Radchenko, P.1
James, G.M.2
-
37
-
-
70350092487
-
Sparse additive models
-
Ravikumar, P., Liu, H., Lafferty, J., Wasserman, L.: Sparse additive models. J. R. Stat. Soc. Ser. B 71, 1009-1030 (2009).
-
(2009)
J. R. Stat. Soc. Ser. B
, vol.71
, pp. 1009-1030
-
-
Ravikumar, P.1
Liu, H.2
Lafferty, J.3
Wasserman, L.4
-
38
-
-
65349194393
-
Variable selection in Bayesian smoothing spline ANOVA models: application to deterministic computer codes
-
Reich, B. J., Storlie, C. B., Bondell, H. D.: Variable selection in Bayesian smoothing spline ANOVA models: application to deterministic computer codes. Technometrics 51, 110 (2009).
-
(2009)
Technometrics
, vol.51
, pp. 110
-
-
Reich, B.J.1
Storlie, C.B.2
Bondell, H.D.3
-
41
-
-
84884210335
-
Mixtures of g-priors for generalised additive model selection with penalised splines
-
University of Zurich and University Bielefeld
-
Sabanés Bové, D., Held, L., Kauermann, G.: Mixtures of g-priors for generalised additive model selection with penalised splines. Technical report, University of Zurich and University Bielefeld (2011). http://arxiv. org/abs/1108. 3520.
-
(2011)
Technical report
-
-
Sabanés, B.D.1
Held, L.2
Kauermann, G.3
-
43
-
-
80052986293
-
SpikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized additive mixed models in R
-
9
-
Scheipl, F.: spikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized additive mixed models in R. Journal of Statistical Software, 43(14), 1-24, 9 (2011b). http://www. jstatsoft. org/v43/i14.
-
(2011)
Journal of Statistical Software
, vol.43
, Issue.14
, pp. 1-24
-
-
Scheipl, F.1
-
44
-
-
84871993172
-
Spike-and-slab priors for function selection in structured additive regression models
-
Scheipl, F., Fahrmeir, L., Kneib, T.: Spike-and-slab priors for function selection in structured additive regression models. J. Am. Stat. Assoc. 107(500), 1518-1532 (2012). http://arxiv. org/abs/1105. 5250.
-
(2012)
J. Am. Stat. Assoc.
, vol.107
, Issue.500
, pp. 1518-1532
-
-
Scheipl, F.1
Fahrmeir, L.2
Kneib, T.3
-
45
-
-
0000824232
-
Nonparametric regression using Bayesian variable selection
-
Smith, M., Kohn, R.: Nonparametric regression using Bayesian variable selection. J. Econometr. 75, 317-344 (1996).
-
(1996)
J. Econometr.
, vol.75
, pp. 317-344
-
-
Smith, M.1
Kohn, R.2
-
46
-
-
78650732213
-
Surface estimation, variable selection, and the nonparametric oracle property
-
Storlie, C., Bondell, H., Reich, B., Zhang, H. H.: Surface estimation, variable selection, and the nonparametric oracle property. Statistica Sinica 21(2), 679-705 (2011).
-
(2011)
Statistica Sinica
, vol.21
, Issue.2
, pp. 679-705
-
-
Storlie, C.1
Bondell, H.2
Reich, B.3
Zhang, H.H.4
-
47
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267-288 (1996).
-
(1996)
J. R. Stat. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
48
-
-
33845509035
-
Generalized additive modelling with implicit variable selection by likelihood based boosting
-
Tutz, G., Binder, H.: Generalized additive modelling with implicit variable selection by likelihood based boosting. Biometrics 62, 961-971 (2006).
-
(2006)
Biometrics
, vol.62
, pp. 961-971
-
-
Tutz, G.1
Binder, H.2
-
51
-
-
34547840186
-
Group SCAD regression analysis for microarray time course gene expression data
-
Wang, L., Chen, G., Li, H.: Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 23, 1486-1494 (2007).
-
(2007)
Bioinformatics
, vol.23
, pp. 1486-1494
-
-
Wang, L.1
Chen, G.2
Li, H.3
-
53
-
-
0036427356
-
Model selection in spline nonparametric regression
-
Wood, S., Kohn, R., Shively, T., Jiang, W.: Model selection in spline nonparametric regression. J. R. Stat. Soc. Ser. B 64, 119-139 (2002).
-
(2002)
J. R. Stat. Soc. Ser. B
, vol.64
, pp. 119-139
-
-
Wood, S.1
Kohn, R.2
Shively, T.3
Jiang, W.4
-
54
-
-
70349234037
-
Consistent variable selection in additive models
-
Xue, L.: Consistent variable selection in additive models. Statistica Sinica 19, 1281-1296 (2009).
-
(2009)
Statistica Sinica
, vol.19
, pp. 1281-1296
-
-
Xue, L.1
-
55
-
-
0037352633
-
Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
-
Yau, P., Kohn, R., Wood, S.: Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression. J. Comput. Graph. Stat. 12, 23-54 (2003).
-
(2003)
J. Comput. Graph. Stat.
, vol.12
, pp. 23-54
-
-
Yau, P.1
Kohn, R.2
Wood, S.3
-
56
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68, 49-67 (2006).
-
(2006)
J. R. Stat. Soc. Ser. B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
57
-
-
80054678826
-
Linear or nonlinear? automatic structure discovery for partially linear models
-
Zhang, H. H., Cheng, G., Liu, Y.: Linear or nonlinear? automatic structure discovery for partially linear models. J. Am. Stat. Assoc. 106(495), 1099-1112 (2011).
-
(2011)
J. Am. Stat. Assoc
, vol.106
, Issue.495
, pp. 1099-1112
-
-
Zhang, H.H.1
Cheng, G.2
Liu, Y.3
-
58
-
-
33750973351
-
Component selection and smoothing for nonparametric regression in exponential families
-
Zhang, H. H., Lin, Y.: Component selection and smoothing for nonparametric regression in exponential families. Statistica Sinica 16, 1021-1041 (2006).
-
(2006)
Statistica Sinica
, vol.16
, pp. 1021-1041
-
-
Zhang, H.H.1
Lin, Y.2
-
59
-
-
33846114377
-
The adaptive Lasso and its oracle properties
-
Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418-1429 (2006).
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
|