-
2
-
-
79952183860
-
A database and evaluation methodology for optical flow
-
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92(1), 1-31 (2011)
-
(2011)
IJCV
, vol.92
, Issue.1
, pp. 1-31
-
-
Baker, S.1
Scharstein, D.2
Lewis, J.3
Roth, S.4
Black, M.J.5
Szeliski, R.6
-
4
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV (2015)
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
5
-
-
84973904859
-
Flownet: Learning optical flow with convolutional networks
-
Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional networks. In: ICCV (2015)
-
(2015)
ICCV
-
-
Dosovitskiy, A.1
Fischer, P.2
Ilg, E.3
Hausser, P.4
Hazirbas, C.5
Golkov, V.6
Van Der Smagt, P.7
Cremers, D.8
Brox, T.9
-
6
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)
-
(2015)
ICCV
-
-
Eigen, D.1
Fergus, R.2
-
7
-
-
84911394491
-
Predicting object dynamics in scenes
-
Fouhey, D., Zitnick, C.L.: Predicting object dynamics in scenes. In: CVPR (2014)
-
(2014)
CVPR
-
-
Fouhey, D.1
Zitnick, C.L.2
-
8
-
-
85029359197
-
Fast R-CNN
-
Girshick, R.: Fast R-CNN. In: ICCV (2015)
-
(2015)
ICCV
-
-
Girshick, R.1
-
9
-
-
84961136088
-
-
Gorban, A., Idrees, H., Jiang, Y.G., Roshan Zamir, A., Laptev, I., Shah, M., Sukthankar, R.: THUMOS challenge: action recognition with a large number of classes (2015). http://www.thumos.info/
-
(2015)
THUMOS Challenge: Action Recognition with a Large Number of Classes
-
-
Gorban, A.1
Idrees, H.2
Jiang, Y.G.3
Roshan Zamir, A.4
Laptev, I.5
Shah, M.6
Sukthankar, R.7
-
10
-
-
84983208884
-
DRAW: A recurrent neural network for image generation
-
Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: DRAW: a recurrent neural network for image generation. In: ICML (2015)
-
(2015)
ICML
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.4
Wierstra, D.5
-
11
-
-
84897108420
-
Max-margin early event detectors
-
Hoai, M., De la Torre, F.: Max-margin early event detectors. IJCV 107(2), 191-202 (2014)
-
(2014)
IJCV
, vol.107
, Issue.2
, pp. 191-202
-
-
Hoai, M.1
De La Torre, F.2
-
12
-
-
84906334196
-
Action-reaction: Forecasting the dynamics of human interaction
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Huang, D.-A., Kitani, K.M.: Action-reaction: forecasting the dynamics of human interaction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 489-504. Springer, Heidelberg (2014) .doi:10.1007/978-3-319-10584-0_32
-
(2014)
ECCV 2014. LNCS
, vol.8695
, pp. 489-504
-
-
Huang, D.-A.1
Kitani, K.M.2
-
13
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: NIPS (2014)
-
(2014)
NIPS
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
14
-
-
85083952489
-
Auto-encoding variational Bayes
-
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
15
-
-
84867863926
-
Activity forecasting
-
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
-
Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201-214. Springer, Heidelberg (2012) .doi:10.1007/978-3-642-33765-9_15
-
(2012)
ECCV 2012. LNCS
, vol.7575
, pp. 201-214
-
-
Kitani, K.M.1
Ziebart, B.D.2
Bagnell, J.A.3
Hebert, M.4
-
16
-
-
84893770737
-
Anticipating human activities using object affordances for reactive robotic response
-
Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. In: RSS (2013)
-
(2013)
RSS
-
-
Koppula, H.S.1
Saxena, A.2
-
17
-
-
85083952350
-
Data-dependent initializations of convolutional neural networks
-
Krähenbühl, P., Doersch, C., Donahue, J., Darrell, T.: Data-dependent initializations of convolutional neural networks. ICLR (2016)
-
(2016)
ICLR
-
-
Krähenbühl, P.1
Doersch, C.2
Donahue, J.3
Darrell, T.4
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
84965156877
-
Deep convolutional inverse graphics network
-
Kulkarni, T., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional inverse graphics network. In: NIPS (2015)
-
(2015)
NIPS
-
-
Kulkarni, T.1
Whitney, W.F.2
Kohli, P.3
Tenenbaum, J.4
-
20
-
-
84906490435
-
A hierarchical representation for future action prediction
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Lan, T., Chen, T.-C., Savarese, S.: A hierarchical representation for future action prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 689-704. Springer, Heidelberg (2014) .doi:10.1007/978-3-319-10578-9_45
-
(2014)
ECCV 2014. LNCS
, vol.8691
, pp. 689-704
-
-
Lan, T.1
Chen, T.-C.2
Savarese, S.3
-
21
-
-
79953049203
-
Sift flow: Dense correspondence across scenes and its applications
-
Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. PAMI 33(5), 978-994 (2011)
-
(2011)
PAMI
, vol.33
, Issue.5
, pp. 978-994
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
22
-
-
84986275832
-
Newtonian image understanding: Unfolding the dynamics of objects in static images
-
Mottaghi, R., Bagherinezhad, H., Rastegari, M., Farhadi, A.: Newtonian image understanding: unfolding the dynamics of objects in static images. In: CVPR (2016)
-
(2016)
CVPR
-
-
Mottaghi, R.1
Bagherinezhad, H.2
Rastegari, M.3
Farhadi, A.4
-
23
-
-
84906491151
-
Déjà Vu: Motion prediction in static images
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Pintea, S.L., Gemert, J.C., Smeulders, A.W.M.: Déjà Vu: motion prediction in static images. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 172-187. Springer, Heidelberg (2014) .doi:10.1007/978-3-319-10578-9_12
-
(2014)
ECCV 2014. LNCS
, vol.8691
, pp. 172-187
-
-
Pintea, S.L.1
Gemert, J.C.2
Smeulders, A.W.M.3
-
24
-
-
84965108042
-
-
arXiv preprint, arXiv:1412.6604
-
Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint (2014). arXiv:1412.6604
-
(2014)
Video (Language) Modeling: A Baseline for Generative Models of Natural Videos
-
-
Ranzato, M.1
Szlam, A.2
Bruna, J.3
Mathieu, M.4
Collobert, R.5
Chopra, S.6
-
25
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)
-
(2014)
ICML
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
26
-
-
84969835291
-
Markov chain monte carlo and variational inference: Bridging the gap
-
Salimans, T., Kingma, D., Welling, M.: Markov chain monte carlo and variational inference: bridging the gap. In: ICML (2015)
-
(2015)
ICML
-
-
Salimans, T.1
Kingma, D.2
Welling, M.3
-
28
-
-
84969544782
-
Unsupervised learning of video representations using LSTMs
-
Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML (2015)
-
(2015)
ICML
-
-
Srivastava, N.1
Mansimov, E.2
Salakhutdinov, R.3
-
29
-
-
84990057054
-
Anticipating the future by watching unlabeled video
-
Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating the future by watching unlabeled video. In: CVPR (2016)
-
(2016)
CVPR
-
-
Vondrick, C.1
Pirsiavash, H.2
Torralba, A.3
-
30
-
-
84911380009
-
Patch to the future: Unsupervised visual prediction
-
Walker, J., Gupta, A., Hebert, M.: Patch to the future: unsupervised visual prediction. In: CVPR (2014)
-
(2014)
CVPR
-
-
Walker, J.1
Gupta, A.2
Hebert, M.3
-
31
-
-
84973880490
-
Dense optical flow prediction from a static image
-
Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static image. In: ICCV (2015)
-
(2015)
ICCV
-
-
Walker, J.1
Gupta, A.2
Hebert, M.3
-
32
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: ICCV (2015)
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
33
-
-
78149325735
-
A data-driven approach for event prediction
-
Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
-
Yuen, J., Torralba, A.: A data-driven approach for event prediction. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 707-720. Springer, Heidelberg (2010) .doi:10.1007/978-3-642-15552-9_51
-
(2010)
ECCV 2010. LNCS
, vol.6312
, pp. 707-720
-
-
Yuen, J.1
Torralba, A.2
|