메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3302-3309

Patch to the future: Unsupervised visual prediction

Author keywords

Activity Forecasting; Prediction

Indexed keywords

PATTERN RECOGNITION;

EID: 84911380009     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.416     Document Type: Conference Paper
Times cited : (214)

References (35)
  • 1
    • 66149156441 scopus 로고    scopus 로고
    • The proactive brain: Memory for predictions
    • M. Bar. The proactive brain: memory for predictions. Philosophical Transactions of the Royal Society, 364(1521):1235-1243, 2009.
    • (2009) Philosophical Transactions of the Royal Society , vol.364 , Issue.1521 , pp. 1235-1243
    • Bar, M.1
  • 4
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013.
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 6
    • 84887348680 scopus 로고    scopus 로고
    • Learning collections of part models for object recognition
    • I. Endres, K. J. Shih, J. Jiaa, and D. Hoiem. Learning collections of part models for object recognition. In CVPR, 2013.
    • (2013) CVPR
    • Endres, I.1    Shih, K.J.2    Jiaa, J.3    Hoiem, D.4
  • 7
    • 51949101231 scopus 로고    scopus 로고
    • A dis-criminatively trained, multiscale, deformable part model
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-criminatively trained, multiscale, deformable part model. In CVPR, 2008.
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 8
    • 84911394491 scopus 로고    scopus 로고
    • Predicting object dynamics in scenes
    • D. Fouhey and C. L. Zitnick. Predicting object dynamics in scenes. In CVPR, 2014.
    • (2014) CVPR
    • Fouhey, D.1    Zitnick, C.L.2
  • 10
    • 78149319842 scopus 로고    scopus 로고
    • Blocks world revisited: Image understanding using qualitative geometry and mechanics
    • A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: image understanding using qualitative geometry and mechanics. In ECCV, 2010.
    • (2010) ECCV
    • Gupta, A.1    Efros, A.A.2    Hebert, M.3
  • 12
    • 70450202741 scopus 로고    scopus 로고
    • Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos
    • A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis. Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos. In CVPR, 2009.
    • (2009) CVPR
    • Gupta, A.1    Srinivasan, P.2    Shi, J.3    Davis, L.S.4
  • 14
    • 77953216235 scopus 로고    scopus 로고
    • Recovering the spatial layout of cluttered rooms
    • V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered rooms. In ICCV, 2009.
    • (2009) ICCV
    • Hedau, V.1    Hoiem, D.2    Forsyth, D.3
  • 15
    • 84867125147 scopus 로고    scopus 로고
    • Learning object arrangements in 3D scenes using human context
    • Y. Jiang, M. Lim, and A. Saxena. Learning object arrangements in 3D scenes using human context. In ICML, 2012.
    • (2012) ICML
    • Jiang, Y.1    Lim, M.2    Saxena, A.3
  • 16
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013.
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.3    Zisserman, A.4
  • 19
    • 84893770737 scopus 로고    scopus 로고
    • Anticipating human activities using object affordances for reactive robotic response
    • H. S. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive robotic response. In RSS, 2013.
    • (2013) RSS
    • Koppula, H.S.1    Saxena, A.2
  • 20
    • 79953049203 scopus 로고    scopus 로고
    • Sift flow: Dense correspondence across scenes and its applications
    • C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. PAMI, 2011.
    • (2011) PAMI
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 21
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 22
    • 0019647180 scopus 로고
    • An iterative image registration technique with an application to stereo vision
    • B. D. Lucas, T. Kanade, et al. An iterative image registration technique with an application to stereo vision. In IJCAI, 1981.
    • (1981) IJCAI
    • Lucas, B.D.1    Kanade, T.2
  • 24
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 2001.
    • (2001) IJCV
    • Oliva, A.1    Torralba, A.2
  • 25
    • 84856646751 scopus 로고    scopus 로고
    • Parsing video events with goal inference and intent prediction
    • M. Pei, Y. Jia, and S.-C. Zhu. Parsing video events with goal inference and intent prediction. In ICCV, 2011.
    • (2011) ICCV
    • Pei, M.1    Jia, Y.2    Zhu, S.-C.3
  • 26
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009.
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 27
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 81(1):2-23, 2009.
    • (2009) IJCV , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 28
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012.
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.A.3
  • 29
    • 80052902614 scopus 로고    scopus 로고
    • Event modeling and recognition using markov logic networks
    • S. D. Tran and L. S. Davis. Event modeling and recognition using markov logic networks. In ECCV, 2008.
    • (2008) ECCV
    • Tran, S.D.1    Davis, L.S.2
  • 30
    • 70450162128 scopus 로고    scopus 로고
    • Multi-cue onboard pedestrian detection
    • C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedestrian detection. In CVPR, 2009.
    • (2009) CVPR
    • Wojek, C.1    Walk, S.2    Schiele, B.3
  • 31
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object interaction activities. In CVPR, 2010.
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 32
    • 84880877295 scopus 로고    scopus 로고
    • Action recognition with exemplar based 2.5D graph matching
    • B. Yao and L. Fei-Fei. Action recognition with exemplar based 2.5D graph matching. In ECCV, 2012.
    • (2012) ECCV
    • Yao, B.1    Fei-Fei, L.2
  • 33
    • 84886833674 scopus 로고    scopus 로고
    • A data-driven approach for event prediction
    • J. Yuen and A. Torralba. A data-driven approach for event prediction. In ECCV, 2010.
    • (2010) ECCV
    • Yuen, J.1    Torralba, A.2
  • 34
    • 17844394480 scopus 로고    scopus 로고
    • Animals may not be stuck in time
    • T. R. Zentall. Animals may not be stuck in time. Learning and Motivation, 36(2):208-225, 2005.
    • (2005) Learning and Motivation , vol.36 , Issue.2 , pp. 208-225
    • Zentall, T.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.