메뉴 건너뛰기




Volumn 34, Issue 2, 2015, Pages 513-533

Effect of Multiscale PCA De-noising in ECG Beat Classification for Diagnosis of Cardiovascular Diseases

Author keywords

AR modeling; k Nearest neighbor (k NN); Multilayer perceptron (MLP); Radial basis function networks (RBFN); Simple logistic; Support vector machines (SVM)

Indexed keywords

AUDIO SYSTEMS; CARDIOLOGY; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DISEASES; ELECTROCARDIOGRAPHY; EXTRACTION; FEATURE EXTRACTION; FUNCTIONS; MOTION COMPENSATION; MULTILAYER NEURAL NETWORKS; MULTILAYERS; NEAREST NEIGHBOR SEARCH; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84922265438     PISSN: 0278081X     EISSN: 15315878     Source Type: Journal    
DOI: 10.1007/s00034-014-9864-8     Document Type: Article
Times cited : (111)

References (66)
  • 1
    • 33644765907 scopus 로고    scopus 로고
    • A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems
    • N. Acır, A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Syst. Appl. 31, 150–158 (2006)
    • (2006) Expert Syst. Appl. , vol.31 , pp. 150-158
    • Acır, N.1
  • 2
    • 0342854378 scopus 로고    scopus 로고
    • ECG noise filtering using wavelets with soft-thresholding methods
    • P.M. Agante, J.P. Marques de Sa, ECG noise filtering using wavelets with soft-thresholding methods. Comput. Cardiol. 26, 535–538 (1999)
    • (1999) Comput. Cardiol. , vol.26 , pp. 535-538
    • Agante, P.M.1    Marques de Sa, J.P.2
  • 3
    • 77649311409 scopus 로고    scopus 로고
    • Arrhythmia beat classification using pruned fuzzy k-nearest neighbor classifier soft computing and pattern recognition, in SOCPAR ’09
    • M. Arif, M. U. Akram, and F. A. Afsar. Arrhythmia beat classification using pruned fuzzy k-nearest neighbor classifier soft computing and pattern recognition, in SOCPAR ’09, International Conference, 2009, pp. 37–42
    • (2009) International Conference , pp. 37-42
    • Arif, M.1    Akram, M.U.2    Afsar, F.A.3
  • 4
    • 84868132240 scopus 로고    scopus 로고
    • Pruned fuzzy K-nearest neighbor classifier for beat classification
    • M. Arif, M.U. Akram, F.A.A. Minhas, Pruned fuzzy K-nearest neighbor classifier for beat classification. J. Biomed. Sci. Eng. 3(4), 380–389 (2010)
    • (2010) J. Biomed. Sci. Eng , vol.3 , Issue.4 , pp. 380-389
    • Arif, M.1    Akram, M.U.2    Minhas, F.A.A.3
  • 5
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • B.M. Asl, S.K. Setarehdan, M. Mohebbi, Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44, 51–64 (2008)
    • (2008) Artif. Intell. Med. , vol.44 , pp. 51-64
    • Asl, B.M.1    Setarehdan, S.K.2    Mohebbi, M.3
  • 6
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • B.R. Bakshi, Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 44(7), 1596–1610 (1998)
    • (1998) AIChE J. , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 8
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers. in Fifth annual workshop on computational learning theory
    • B. E. Boser and I. M. Guyon. A training algorithm for optimal margin classifiers. in Fifth annual workshop on computational learning theory, Pittsburgh: ACM, 1992
    • (1992) Pittsburgh: ACM
    • Boser, B.E.1    Guyon, I.M.2
  • 9
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ECG morphology and heartbeat interval features
    • P. de Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.7 , pp. 1196-1206
    • de Chazal, P.1    O’Dwyer, M.2    Reilly, R.B.3
  • 10
    • 18744365789 scopus 로고    scopus 로고
    • Premature ventricular contraction classification by the Kth nearest neighbors rule
    • I. Christov, I. Jekova, G. Bortolan, Premature ventricular contraction classification by the Kth nearest neighbors rule. Physiol. Meas. 26, 123–130 (2005)
    • (2005) Physiol. Meas. , vol.26 , pp. 123-130
    • Christov, I.1    Jekova, I.2    Bortolan, G.3
  • 12
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • D. Donoho, I. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1223 (1995)
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 1200-1223
    • Donoho, D.1    Johnstone, I.2
  • 14
    • 78449259555 scopus 로고    scopus 로고
    • Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification
    • S. Dutta, A. Chatterjee, S. Munshi, Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Med. Eng. Phys. 32, 1161–1169 (2010)
    • (2010) Med. Eng. Phys. , vol.32 , pp. 1161-1169
    • Dutta, S.1    Chatterjee, A.2    Munshi, S.3
  • 15
    • 77956374534 scopus 로고    scopus 로고
    • A patient-adaptive profiling scheme for ECG beat classification
    • M. Faezipour et al., A patient-adaptive profiling scheme for ECG beat classification. IEEE Trans. Inf. Technol. Biomed. 14(5), 1153–1165 (2010)
    • (2010) IEEE Trans. Inf. Technol. Biomed. , vol.14 , Issue.5 , pp. 1153-1165
    • Faezipour, M.1
  • 19
    • 84897244459 scopus 로고    scopus 로고
    • Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders
    • E. Gokgoz, A. Subasi, Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders. J. Med. Syst. 38(4), 1–10 (2014)
    • (2014) J. Med. Syst. , vol.38 , Issue.4 , pp. 1-10
    • Gokgoz, E.1    Subasi, A.2
  • 20
    • 84867324988 scopus 로고    scopus 로고
    • Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network
    • H. Gothwal, S. Kedawat, R. Kumar, Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network. Biomed. Sci. Eng. 4, 289–296 (2011)
    • (2011) Biomed. Sci. Eng. , vol.4 , pp. 289-296
    • Gothwal, H.1    Kedawat, S.2    Kumar, R.3
  • 21
    • 0029325603 scopus 로고
    • On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor
    • S. Goto, M. Nakamura, K. Uosaki, On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor. IEEE Trans. Signal Process. 43, 1519–1522 (1995)
    • (1995) IEEE Trans. Signal Process. , vol.43 , pp. 1519-1522
    • Goto, S.1    Nakamura, M.2    Uosaki, K.3
  • 23
    • 38149072227 scopus 로고    scopus 로고
    • Assessment and comparison of different methods for heartbeat classification
    • I. Jekova, G. Bortolan, I. Christov, Assessment and comparison of different methods for heartbeat classification. Med. Eng. Phys. 30, 248–257 (2008)
    • (2008) Med. Eng. Phys. , vol.30 , pp. 248-257
    • Jekova, I.1    Bortolan, G.2    Christov, I.3
  • 24
    • 71849103054 scopus 로고    scopus 로고
    • Wavelet denoising for multi-lead high resolution ECG signals
    • M. Kania, M. Fereniec, R. Maniewski, Wavelet denoising for multi-lead high resolution ECG signals. Meas. Sci. Rev. 7(2), 30–33 (2007)
    • (2007) Meas. Sci. Rev. , vol.7 , Issue.2 , pp. 30-33
    • Kania, M.1    Fereniec, M.2    Maniewski, R.3
  • 26
    • 77956651195 scopus 로고    scopus 로고
    • Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features
    • A. Khazaee, A. Ebrahimzadeh, Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomed. Signal Process. Control 5, 252–263 (2010)
    • (2010) Biomed. Signal Process. Control , vol.5 , pp. 252-263
    • Khazaee, A.1    Ebrahimzadeh, A.2
  • 27
    • 78650712943 scopus 로고    scopus 로고
    • Personalized long-term ECG classification: a systematic approach
    • S. Kiranyaz, T. Ince, J. Pulkkinen, M. Gabbouj, Personalized long-term ECG classification: a systematic approach. Expert Syst. Appl. 38(4), 3220–3226 (2011)
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 3220-3226
    • Kiranyaz, S.1    Ince, T.2    Pulkkinen, J.3    Gabbouj, M.4
  • 29
    • 78650611734 scopus 로고    scopus 로고
    • A multi-stage automatic arrhythmia recognition and classification system
    • Y. Kutlu, K. Damla, A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 41, 37–45 (2011)
    • (2011) Comput. Biol. Med. , vol.41 , pp. 37-45
    • Kutlu, Y.1    Damla, K.2
  • 31
    • 0028960610 scopus 로고
    • Detection of ECG characteristic points using wavelet transforms
    • C. Li, C. Zheng, C.F. Tai, Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)
    • (1995) IEEE Trans. Biomed. Eng. , vol.42 , Issue.1 , pp. 21-28
    • Li, C.1    Zheng, C.2    Tai, C.F.3
  • 32
    • 84861813983 scopus 로고    scopus 로고
    • Application of principal component analysis to ECG signals for automated diagnosis of cardiac health
    • R.J. Martis, U.R. Acharya, K.M. Mandana, A.K. Ray, C. Chakraborty, Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39, 11792–11800 (2012)
    • (2012) Expert Syst. Appl. , vol.39 , pp. 11792-11800
    • Martis, R.J.1    Acharya, U.R.2    Mandana, K.M.3    Ray, A.K.4    Chakraborty, C.5
  • 33
    • 51749123574 scopus 로고    scopus 로고
    • Classification of ECG signals with support vector machine and particle swarm optimization III
    • F. Melgani, B. Yakoub, Classification of ECG signals with support vector machine and particle swarm optimization III. IEEE Trans. Inf. Technol. Biomed. 12, 667–677 (2008)
    • (2008) IEEE Trans. Inf. Technol. Biomed. , vol.12 , pp. 667-677
    • Melgani, F.1    Yakoub, B.2
  • 34
    • 84922252890 scopus 로고    scopus 로고
    • MIT-BIH Arrhythmia Database Directory. [Online]. (2014)
    • MIT-BIH Arrhythmia Database Directory. [Online]. http://www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm (2014)
  • 36
    • 0032584974 scopus 로고    scopus 로고
    • Spectral analysis methods for neurological signals
    • J. Muthuswamy, N.V. Thakor, Spectral analysis methods for neurological signals. J. Neurosci. Methods 83, 1–14 (1998)
    • (1998) J. Neurosci. Methods , vol.83 , pp. 1-14
    • Muthuswamy, J.1    Thakor, N.V.2
  • 38
    • 32644482767 scopus 로고    scopus 로고
    • A fuzzy clustering neural network architecture for classification of ECG arrhythmias
    • Y. Özbay, R. Ceylan, B. Karlik, A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2006)
    • (2006) Comput. Biol. Med. , vol.36 , pp. 376-388
    • Özbay, Y.1    Ceylan, R.2    Karlik, B.3
  • 39
    • 77956617529 scopus 로고    scopus 로고
    • Integration of type-2 fuzzy clustering and wavelet transform in a neural network based ECG classifier
    • Y. Özbay, R. Ceylan, B. Karlik, Integration of type-2 fuzzy clustering and wavelet transform in a neural network based ECG classifier. Expert Syst. Appl. 38, 1004–1010 (2011)
    • (2011) Expert Syst. Appl. , vol.38 , pp. 1004-1010
    • Özbay, Y.1    Ceylan, R.2    Karlik, B.3
  • 40
    • 0021892137 scopus 로고
    • A real-time QRS detection algorithm
    • J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME–32(3), 230–236 (1985)
    • (1985) IEEE Trans. Biomed. Eng. , vol.BME–32 , Issue.3 , pp. 230-236
    • Pan, J.1    Tompkins, W.J.2
  • 41
    • 0030025924 scopus 로고    scopus 로고
    • A review of parametric modelling techniques for EEG analysis
    • J. Pardey, S. Roberts, L. Tarassenko, A review of parametric modelling techniques for EEG analysis. Med. Eng. Phys. 18(1), 2–11 (1996)
    • (1996) Med. Eng. Phys. , vol.18 , Issue.1 , pp. 2-11
    • Pardey, J.1    Roberts, S.2    Tarassenko, L.3
  • 42
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio, F. Girosi, Networks for approximation and learning. Proc. IEEE 78(9), 1481–1497 (1990)
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 43
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation
    • Mason JC, Cox MG, (eds), Clarendon Press, Oxford:
    • M.J.D. Powell, Radial basis functions for multivariable interpolation, in Algorithms for Approximation, ed. by J.C. Mason, M.G. Cox (Clarendon Press, Oxford, 1987)
    • (1987) Algorithms for Approximation
    • Powell, M.J.D.1
  • 45
    • 33646824356 scopus 로고    scopus 로고
    • Evolving RBF Neural Networks for Pattern Classification
    • Z. Qin, J. Chen, Y. Liu, J. Lu, Evolving RBF Neural Networks for Pattern Classification. Lecture Notes in Computer Science vol. 3801, pp. 957–964 (2005)
    • (2005) Lecture Notes in Computer Science , vol.3801 , pp. 957-964
    • Qin, Z.1    Chen, J.2    Liu, Y.3    Lu, J.4
  • 47
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • R. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, R.1
  • 48
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • S.L. Salzberg, On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1(3), 317–328 (2007)
    • (2007) Data Min. Knowl. Discov. , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.L.1
  • 49
    • 77950345052 scopus 로고    scopus 로고
    • Robust detection of premature ventricular contractions using a wave-based bayesian framework
    • O. Sayadi, M.B. Shamsollahi, G.D. Clifford, Robust detection of premature ventricular contractions using a wave-based bayesian framework. IEEE Trans. Biomed. Eng. 57(2), 353–362 (2010)
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.2 , pp. 353-362
    • Sayadi, O.1    Shamsollahi, M.B.2    Clifford, G.D.3
  • 51
    • 84862808925 scopus 로고    scopus 로고
    • Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines
    • C.P. Shen et al., Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines. Expert Syst. Appl. 39, 7845–7852 (2012)
    • (2012) Expert Syst. Appl. , vol.39 , pp. 7845-7852
    • Shen, C.P.1
  • 52
    • 28844500635 scopus 로고    scopus 로고
    • Support vector machine based arrhythmia classification using reduced features
    • M.H. Song, J. Lee, K.J. Cho, K.J. Lee, S.K. Yoo, Support vector machine based arrhythmia classification using reduced features. Int. J. Control Automat. Syst. 3(4), 571–579 (2005)
    • (2005) Int. J. Control Automat. Syst. , vol.3 , Issue.4 , pp. 571-579
    • Song, M.H.1    Lee, J.2    Cho, K.J.3    Lee, K.J.4    Yoo, S.K.5
  • 53
    • 29744467968 scopus 로고    scopus 로고
    • Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection
    • A. Subasi, E. Erçelebi, A. Alkan, E. Koklukaya, Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection. Comput. Biol. Med. 36, 195–208 (2006)
    • (2006) Comput. Biol. Med. , vol.36 , pp. 195-208
    • Subasi, A.1    Erçelebi, E.2    Alkan, A.3    Koklukaya, E.4
  • 58
    • 0025779484 scopus 로고
    • Atrial fibrillation as an independent risk factor for stroke: the Framingham study
    • P.A. Wolf, R.D. Abbott, W.B. Kannel, Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22(8), 983–988 (1991)
    • (1991) Stroke , vol.22 , Issue.8 , pp. 983-988
    • Wolf, P.A.1    Abbott, R.D.2    Kannel, W.B.3
  • 59
    • 77957849775 scopus 로고    scopus 로고
    • A novel fuzzy c-means method for classifying heartbeat cases from ECG signals
    • Y.-C. Yeh, W.-J. Wang, C.W. Chiou, A novel fuzzy c-means method for classifying heartbeat cases from ECG signals. Measurement 43, 1542–1555 (2010)
    • (2010) Measurement , vol.43 , pp. 1542-1555
    • Yeh, Y.-C.1    Wang, W.-J.2    Chiou, C.W.3
  • 61
    • 38649095183 scopus 로고    scopus 로고
    • Integration of independent component analysis and neural networks for ECG beat classification
    • S.-N. Yu, K.-T. Chou, Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34, 2841–2846 (2008)
    • (2008) Expert Syst. Appl. , vol.34 , pp. 2841-2846
    • Yu, S.-N.1    Chou, K.-T.2
  • 62
    • 77954309290 scopus 로고    scopus 로고
    • Classification of the electrocardiogram signals using supervised classifiers and efficient features
    • A.E. Zadeh, A. Khazaee, V. Ranaee, Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Program Biomed. 99, 179–194 (2010)
    • (2010) Comput. Methods Program Biomed. , vol.99 , pp. 179-194
    • Zadeh, A.E.1    Khazaee, A.2    Ranaee, V.3
  • 63
    • 33846903584 scopus 로고    scopus 로고
    • D. Zhang. Wavelet approach for ECG baseline wander correction and noise reduction. in IEEE Engineering in Medicine and Biology Society, 2005, pp. 1212–1215
    • D. Zhang. Wavelet approach for ECG baseline wander correction and noise reduction. in IEEE Engineering in Medicine and Biology Society, 2005, pp. 1212–1215
  • 64
    • 33746924828 scopus 로고    scopus 로고
    • Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response
    • R. Zhang, G. McAllister, B. Scotney, S. McClean, G. Houston, Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response. IEEE Trans. Info. Tech. Biomed 10(3), 458–467 (2006)
    • (2006) IEEE Trans. Info. Tech. Biomed , vol.10 , Issue.3 , pp. 458-467
    • Zhang, R.1    McAllister, G.2    Scotney, B.3    McClean, S.4    Houston, G.5
  • 66
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
    • M.H. Zweig, G. Campbell, Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993)
    • (1993) Clin. Chem. , vol.39 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.