메뉴 건너뛰기




Volumn 8, Issue 6, 2015, Pages 8916-8926

New algorithm of mortality risk prediction for cardiovascular patients admitted in intensive care unit

Author keywords

HRV; ICU; Linear and non linear analysis; MLP; Mortality prediction; SVM

Indexed keywords

ARTICLE; CARDIOVASCULAR DISEASE; CLASSIFICATION ALGORITHM; CLINICAL EVALUATION; DISEASE COURSE; HEART RATE VARIABILITY; HUMAN; INFORMATION PROCESSING; INTENSIVE CARE UNIT; MATHEMATICAL PHENOMENA; MORTALITY; PERCEPTRON; RISK ASSESSMENT; STATISTICAL ANALYSIS;

EID: 84938378747     PISSN: None     EISSN: 19405901     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (24)

References (38)
  • 1
    • 84875681778 scopus 로고    scopus 로고
    • Mortality Risk Assessment for ICU patients using Logistic Regression
    • [1] Deep Bera, Mithun Manjnath Nayak, Mortality Risk Assessment for ICU patients using Logistic Regression. Computing in Cardiology 2012; 39: 493-496.
    • (2012) Computing in Cardiology , vol.39 , pp. 493-496
    • Bera, D.1    Nayak, M.M.2
  • 3
    • 0027422556 scopus 로고
    • Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients
    • [3] Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA November 1993; 270: 2478-2486.
    • (1993) JAMA , vol.270 , pp. 2478-2486
    • Lemeshow, S.1    Teres, D.2    Klar, J.3    Avrunin, J.S.4    Gehlbach, S.H.5    Rapoport, J.6
  • 4
    • 0027132478 scopus 로고
    • A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study
    • [4] Le Gall J, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 1993 Dec; 270: 2957-2963.
    • (1993) JAMA , vol.270 , pp. 2957-2963
    • Le Gall, J.1    Lemeshow, S.2    Saulnier, F.3
  • 5
    • 84855441940 scopus 로고    scopus 로고
    • Severity Scoring in the Critically Ill: Part 1-Interpretation and Accuracy of Outcome Prediction Scoring Systems
    • [5] Breslow MJ, Badawi O. Severity Scoring in the Critically Ill: Part 1-Interpretation and Accuracy of Outcome Prediction Scoring Systems. Chest 2012 Jan; 141: 245-252.
    • (2012) Chest , vol.141 , pp. 245-252
    • Breslow, M.J.1    Badawi, O.2
  • 7
    • 33644858420 scopus 로고    scopus 로고
    • Mortality assessment in intensive care units via adverse events using artificial neural networks
    • [7] Silva A, Cortez P, Santos MF, Gomes L, Neves J. Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med 2006; 36: 223-234.
    • (2006) Artif Intell Med , vol.36 , pp. 223-234
    • Silva, A.1    Cortez, P.2    Santos, M.F.3    Gomes, L.4    Neves, J.5
  • 8
    • 84875680825 scopus 로고    scopus 로고
    • A Neural Network Model for Mortality Prediction in ICU
    • [8] Xia H, Brian J Daley, Petrie A, Zhao XP. A Neural Network Model for Mortality Prediction in ICU. Computing in Cardiology 2012; 39: 261-264.
    • (2012) Computing in Cardiology , vol.39 , pp. 261-264
    • Xia, H.1    Brian, J.2    Daley, P.A.3    Zhao, X.P.4
  • 9
    • 0032732069 scopus 로고    scopus 로고
    • A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural networks
    • [9] Wong L, Young J. A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural networks. Anaesthesia 1999; 54: 1048-54.
    • (1999) Anaesthesia , vol.54 , pp. 1048-1054
    • Wong, L.1    Young, J.2
  • 10
    • 0029592058 scopus 로고
    • Numeric processing of Lorenz plots of RR intervals from long-term ECGs, Comparison with time-domain measures of heart rate variability for risk stratification after myocardial infarction
    • Hnatkova K, Copie X, Staunton A, Malik M. Numeric processing of Lorenz plots of RR intervals from long-term ECGs, Comparison with time-domain measures of heart rate variability for risk stratification after myocardial infarction. J Electrocardiol 1995; 28 Suppl: 74-80.
    • (1995) J Electrocardiol , vol.28 , pp. 74-80
    • Hnatkova, K.1    Copie, X.2    Staunton, A.3    Malik, M.4
  • 11
    • 70350453924 scopus 로고    scopus 로고
    • Defining asymmetry in heart rate variability signals using a Poincaré plot
    • [11] Karmakar K, Khandoker AH, Gubbi J, Palaniswami M. Defining asymmetry in heart rate variability signals using a Poincaré plot. Physiol Meas 2009; 30: 1227-40.
    • (2009) Physiol Meas , vol.30 , pp. 1227-1240
    • Karmakar, K.1    Khandoker, A.H.2    Gubbi, J.3    Palaniswami, M.4
  • 12
    • 84938368030 scopus 로고    scopus 로고
    • http://physionet.org/mimic2.
  • 13
    • 84896257881 scopus 로고    scopus 로고
    • The Elimination of 50 Hz Power Line Interference from ECG Using a Variable Step Size LMS Adaptive Filtering Algorithm
    • [13] Wan H, Fu RS, Shi L. The Elimination of 50 Hz Power Line Interference from ECG Using a Variable Step Size LMS Adaptive Filtering Algorithm. Life Science Journal 2006; 3.
    • (2006) Life Science Journal , pp. 3
    • Wan, H.1    Fu, R.S.2    Shi, L.3
  • 14
    • 0021892137 scopus 로고
    • A Real-Time QRS Detection Algorithm
    • [14] Pan J, Tompkins WJ. A Real-Time QRS Detection Algorithm. IEEE Trans Biomed Eng 1985; 32: 230-6.
    • (1985) IEEE Trans Biomed Eng , vol.32 , pp. 230-236
    • Pan, J.1    Tompkins, W.J.2
  • 15
    • 0029988782 scopus 로고    scopus 로고
    • 1996 Heart rate variability: Standards of measurement, physiological interpretation and clinical use
    • [15] Task Force of the European Society of Cardiology and North American Society of Pacing and electrophysiology 1996 Heart rate variability: standards of measurement, physiological interpretation and clinical use Eur. Heart J 1996; 17: 354-81.
    • (1996) Eur. Heart J , vol.17 , pp. 354-381
  • 16
    • 7044253486 scopus 로고    scopus 로고
    • Comprehensive analysis of cardiac health using heart rate signals
    • [16] Acharya UR, Kannathal N, Krishnan SM. Comprehensive analysis of cardiac health using heart rate signals. Physiol Meas 2004; 25: 1139-1151.
    • (2004) Physiol Meas , vol.25 , pp. 1139-1151
    • Acharya, U.R.1    Kannathal, N.2    Krishnan, S.M.3
  • 17
    • 1542375476 scopus 로고    scopus 로고
    • Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability
    • [17] Tsipouras MG, Fotiadis DI. Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability. Comput Methods Programs Biomed 2004; 74: 95-108.
    • (2004) Comput Methods Programs Biomed , vol.74 , pp. 95-108
    • Tsipouras, M.G.1    Fotiadis, D.I.2
  • 20
    • 13144284941 scopus 로고    scopus 로고
    • Analysis of Cardiac Signals Using Spatial Filling Index and Time-Frequency Domain
    • [20] Faust O, Acharya UR, Krishnan SM, Min LC. Analysis of Cardiac Signals Using Spatial Filling Index and Time-Frequency Domain. Biomed Eng Online 2004; 10: 30.
    • (2004) Biomed Eng Online , vol.10 , pp. 30
    • Faust, O.1    Acharya, U.R.2    Krishnan, S.M.3    Min, L.C.4
  • 21
    • 85052720024 scopus 로고    scopus 로고
    • Nonlinear Biomedical Signal Processing, Dynamic analysis and Modeling
    • Akay M. “Nonlinear Biomedical Signal Processing, Dynamic analysis and Modeling.” IEEE Press on Biomedical Engineering, Vol 2.
    • IEEE Press on Biomedical Engineering , vol.2
    • Akay, M.1
  • 22
    • 50649103522 scopus 로고    scopus 로고
    • Chaotic invariants for human action recognition
    • [22] Ali S, Basharat A and Shah M. Chaotic invariants for human action recognition. ICCV 2007.
    • (2007) ICCV
    • Ali, S.1    Basharat, A.2    Shah, M.3
  • 23
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • [23] Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A 1986; 33: 1134-1140.
    • (1986) Phys Rev A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 24
    • 22544450176 scopus 로고    scopus 로고
    • Recurrence Plot and Recurrence Quantification Analysis Techniques for Detecting a Critical Regime. Examples from Financial Market Indices
    • [24] Fabretti A, Ausloos M. Recurrence Plot and Recurrence Quantification Analysis Techniques for Detecting a Critical Regime. Examples from Financial Market Indices. Int J Mod Phys 2005; 16: 671-706.
    • (2005) Int J Mod Phys , vol.16 , pp. 671-706
    • Fabretti, A.1    Ausloos, M.2
  • 25
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • [25] Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 1992; 45: 3403-3411.
    • (1992) Phys Rev A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.3
  • 26
    • 0001874436 scopus 로고    scopus 로고
    • [26] Cao LY, Physica D. 1997; 110: 43-50.
    • (1997) Physica D , vol.110 , pp. 43-50
    • Cao, L.Y.1
  • 27
    • 1842689607 scopus 로고    scopus 로고
    • Classification Of Galaxies Using Fractal Dimensions, American Astronomical Society, 196th AAS Meeting
    • [27] Thanki S, Rhee G, Lepp S. Classification Of Galaxies Using Fractal Dimensions, American Astronomical Society, 196th AAS Meeting. Bulletin of the American Astronomical Society 2000; 32: 717.
    • (2000) Bulletin of the American Astronomical Society , vol.32 , pp. 717
    • Thanki, S.1    Rhee, G.2    Lepp, S.3
  • 28
    • 0036933527 scopus 로고    scopus 로고
    • Heart rate variability analysis using correlation dimension and detrended fluctuation analysis
    • [28] Acharya RU, Lim CM, Joseph P. Heart rate variability analysis using correlation dimension and detrended fluctuation analysis. ITBM-RBM 2002; 23: 333-339.
    • (2002) ITBM-RBM , vol.23 , pp. 333-339
    • Acharya, R.U.1    Lim, C.M.2    Joseph, P.3
  • 30
    • 84900431107 scopus 로고    scopus 로고
    • Spline activated neural network for classifying cardiac arrhythmia
    • [30] Ganesh Kumar R and Kumaraswamy YS. Spline activated neural network for classifying cardiac arrhythmia. Journal of Computer Science 2014; 10: 1582-1590.
    • (2014) Journal of Computer Science , vol.10 , pp. 1582-1590
    • Ganesh Kumar, R.1    Kumaraswamy, Y.S.2
  • 31
    • 84855452697 scopus 로고    scopus 로고
    • Feed Forward Neural Networks: An Introduction
    • Sandberg IW, editors. New York, I SBN-10: 0471349119: John Wiley and Sons;
    • [31] Haykin S. Feed Forward Neural Networks: An Introduction. In: Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives, Sandberg IW, editors. New York, I SBN-10: 0471349119: John Wiley and Sons; 2001. pp. 1-16.
    • (2001) In: Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives , pp. 1-16
    • Haykin, S.1
  • 32
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with Support Vector Machines: Learning with many relevant features
    • Nédellec C and Rouveirol S, editors. Heidelberg, Berlin; Springer; 1998
    • [32] Joachims T. Text categorization with Support Vector Machines: Learning with many relevant features, Machine Learning: ECML-98. In: Nédellec C and Rouveirol S, editors. Heidelberg, Berlin; Springer; 1998. Vol. 1398. pp. 137-142.
    • Machine Learning: ECML-98 , vol.1398 , pp. 137-142
    • Joachims, T.1
  • 36
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • [36] Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manage 2009; 45: 427-437.
    • (2009) Inf Process Manage , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 37
    • 80355132660 scopus 로고    scopus 로고
    • Nonlinear Heart Rate Variability features for real-life stress detection. Case study: Students under stress due to university examination
    • [37] Melillo P, Bracale M and Pecchia L. Nonlinear Heart Rate Variability features for real-life stress detection. Case study: students under stress due to university examination. BioMedical Engineering On Line 2011; 10: 96.
    • (2011) Biomedical Engineering on Line , vol.10 , pp. 96
    • Melillo, P.1    Bracale, M.2    Pecchia, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.