메뉴 건너뛰기




Volumn , Issue , 2015, Pages 101-106

Predicting the likelihood of heart failure with a multi level risk assessment using decision tree

Author keywords

data mining; decision tree; heart failure; prediction and classification

Indexed keywords

CARDIOLOGY; DATA MINING; DECISION TREES; FORECASTING; HEART; LEARNING SYSTEMS; PREDICTIVE ANALYTICS; RISK ASSESSMENT; TREES (MATHEMATICS);

EID: 84936854916     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/TAEECE.2015.7113608     Document Type: Conference Paper
Times cited : (58)

References (27)
  • 1
    • 49349107361 scopus 로고    scopus 로고
    • Accessed in: 5 March 2015
    • World Health Organization (WHO), "The top 10 causes of death, Fact sheet", Available at: http://www.who.int/mediacentre/factsheets/fs310/en/, Accessed in: 5 March 2015.
    • The Top 10 Causes of Death, Fact Sheet
  • 2
    • 84936856008 scopus 로고    scopus 로고
    • European Society of Cardiology Accessed in: 5 March 2015
    • European Society of Cardiology, "Heart failure: Preventing disease and death worldwide", Available at: http://www.escardio.org/communities/HFA/Documents/whfa-whitepaper.pdf, Accessed in: 5 March 2015.
    • Heart Failure: Preventing Disease and Death Worldwide
  • 5
    • 70449411775 scopus 로고    scopus 로고
    • Scottish Intercollegiate Guidelines Network (SIGN) Accessed in: 2 March 2015
    • Scottish Intercollegiate Guidelines Network (SIGN), "Management of chronic heart failure: A national clinical guideline", Available at: http://sign.ac.uk/pdf/sign97.pdf, Accessed in: 2 March 2015.
    • Management of Chronic Heart Failure: A National Clinical Guideline
  • 8
    • 84907019464 scopus 로고    scopus 로고
    • Machine learning, medical diagnosis, and biomedical engineering research commentary
    • K.R. Foster, R. Koprowski and J.D. Skufca, "Machine learning, medical diagnosis, and biomedical engineering research commentary", BioMedical Engineering OnLine, 2014.
    • (2014) BioMedical Engineering OnLine
    • Foster, K.R.1    Koprowski, R.2    Skufca, J.D.3
  • 12
    • 84936878745 scopus 로고    scopus 로고
    • Accessed in: 5 March 2015
    • World Health Organization (WHO), "Risk factor: Physical inactivity", Available at: http://www.who.int/cardiovascular-diseases/en/cvd-atlas- 08-physical- inactivity.pdf, Accessed in: 5 March 2015.
    • Risk Factor: Physical Inactivity
  • 13
    • 84916933997 scopus 로고    scopus 로고
    • Cleveland Clinic Foundation Accessed in: 7 March 2015
    • Cleveland Clinic Foundation, "Heart Disease Data Set ", Available at: http://archive.ics.uci.edu/ml/datasets/Heart+Disease, Accessed in: 7 March 2015.
    • Heart Disease Data Set
  • 16
    • 84901196007 scopus 로고    scopus 로고
    • Early prediction of heart diseases using data mining techniques
    • V. Chaurasia and S. Pal, "Early prediction of heart diseases using data mining techniques" Caribbean Journal of Science and Technology, vol.1, 208-217, 2013.
    • (2013) Caribbean Journal of Science and Technology , vol.1 , pp. 208-217
    • Chaurasia, V.1    Pal, S.2
  • 19
    • 84906062605 scopus 로고    scopus 로고
    • Integrating decision tree and k-means clustering with different initial centroid selection methods in the diagnosis of heart disease patients
    • M. Shouman, T. Turner and R. Stocker, "Integrating decision tree and k-means clustering with different initial centroid selection methods in the diagnosis of heart disease patients", Proceedings of the International Conference on Data Mining, 2012.
    • (2012) Proceedings of the International Conference on Data Mining
    • Shouman, M.1    Turner, T.2    Stocker, R.3
  • 21
    • 84884893460 scopus 로고    scopus 로고
    • Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability
    • P. Melillo, N.D. Luca, M. Bracale and L, Pecchia, "Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability", IEEE Journal of Biomedical and Health Informatics, vol. 17, issue 3, 2013.
    • (2013) IEEE Journal of Biomedical and Health Informatics , vol.17 , Issue.3
    • Melillo, P.1    Luca, N.D.2    Bracale, M.3    Pecchia, L.4
  • 24
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • S.B. Kotsiantis, "Supervised Machine Learning: A Review of Classification Techniques", Informatica 31, 249-268, 2007.
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.B.1
  • 25
    • 84883735736 scopus 로고    scopus 로고
    • Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry
    • F.R. Silva, V.G. Vidotti, F. Cremasco, M. Dias, E.S. Gomi, and V.P. Costa, "Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry", Arq. Bras. Oftalmol, vol. 76, no. 3, 2013.
    • (2013) Arq. Bras. Oftalmol , vol.76 , Issue.3
    • Silva, F.R.1    Vidotti, V.G.2    Cremasco, F.3    Dias, M.4    Gomi, E.S.5    Costa, V.P.6
  • 26
    • 84925629096 scopus 로고    scopus 로고
    • Accuracy, sensitivity and specificity measurement of various classification techniques on healthcare data
    • N. Gupta, A. Rawal, V.L. Narasimhan and S. Shiwani, "Accuracy, Sensitivity and Specificity Measurement of Various Classification Techniques on Healthcare Data", IOSR Journal of Computer Engineering (IOSR-JCE), vol. 11, issue 5, 2013.
    • (2013) IOSR Journal of Computer Engineering (IOSR-JCE) , vol.11 , Issue.5
    • Gupta, N.1    Rawal, A.2    Narasimhan, V.L.3    Shiwani, S.4
  • 27
    • 84882237125 scopus 로고    scopus 로고
    • Accessed in: 10 March 2015
    • C. Elkan, "Evaluating Classifiers", Available at: http://cseweb.ucsd.edu/~elkan/250Bwinter 2012/classifiereval.pdf, Accessed in: 10 March 2015.
    • Evaluating Classifiers
    • Elkan, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.