메뉴 건너뛰기




Volumn 39, Issue 3, 2011, Pages 996-1011

High efficient system for automatic classification of the electrocardiogram beats

Author keywords

ECG beat classification; Feature selection; Genetic algorithm; Parameter optimization; Support vector machine; Wavelet transform

Indexed keywords

AUTOMATIC CLASSIFICATION; BEAT CLASSIFICATION; CLINICAL DIAGNOSIS; CONSTANT PARAMETERS; EFFICIENT SYSTEMS; ELECTROCARDIOGRAM SIGNAL; FEATURE SELECTION; HEART ARRHYTHMIAS; HEART DISEASE; HYBRID INTELLIGENT SYSTEM; KERNEL PARAMETER; MAIN MODULE; MORPHOLOGICAL CHARACTERISTIC; MORPHOLOGICAL FEATURES; MULTI-CLASS SUPPORT VECTOR MACHINES; OPTIMIZATION MODULE; PARAMETER OPTIMIZATION; RECOGNITION SYSTEMS; SVM CLASSIFICATION; TIMING INTERVAL; TRIAL-AND-ERROR METHOD; WAVELET FILTERS;

EID: 79951554559     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-010-0229-6     Document Type: Article
Times cited : (31)

References (31)
  • 1
    • 54849380800 scopus 로고    scopus 로고
    • Automatic identification of cardiac health using modeling techniques: A comparative study
    • 10.1016/j.ins.2008.08.006
    • UR Acharya M Sankaranarayanan J Nayak C Xiang T Tamura 2008 Automatic identification of cardiac health using modeling techniques: a comparative study Inform. Sci. 178 4571 4582 10.1016/j.ins.2008.08.006
    • (2008) Inform. Sci. , vol.178 , pp. 4571-4582
    • Acharya, U.R.1    Sankaranarayanan, M.2    Nayak, J.3    Xiang, C.4    Tamura, T.5
  • 2
    • 33746630271 scopus 로고    scopus 로고
    • ECG signal analysis through hidden Markov models
    • DOI 10.1109/TBME.2006.877103, 1658148
    • RV Andreao B Dorizzi J Boudy 2006 ECG signal analysis through hidden Markov models IEEE Trans. Biomed. Eng. 53 1541 1549 10.1109/TBME.2006.877103 16916088 (Pubitemid 44150265)
    • (2006) IEEE Transactions on Biomedical Engineering , vol.53 , Issue.8 , pp. 1541-1549
    • Andreao, R.V.1    Dorizzi, B.2    Boudy, J.3
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • DOI 10.1023/A:1009715923555
    • C Burges 1998 A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discov. 2 121 167 10.1023/A:1009715923555 (Pubitemid 128126769)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-168
    • Burges, C.J.C.1
  • 5
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ECG morphology and heartbeat interval features
    • DOI 10.1109/TBME.2004.827359
    • P Chazal M O'Dwyer RB Reilly 2004 Automatic classification of heartbeats using ECG morphology and heartbeat interval features IEEE Trans. Biomed. Eng. 51 1196 1206 10.1109/TBME.2004.827359 15248536 (Pubitemid 38787925)
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.7 , pp. 1196-1206
    • De Chazal, P.1    O'Dwyer, M.2    Reilly, R.B.3
  • 7
    • 33845864226 scopus 로고    scopus 로고
    • A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features
    • DOI 10.1109/TBME.2006.883802, 17
    • F de Chazal RB Reilly 2006 A patient adapting heart beat classifier using ECG morphology and heartbeat interval features IEEE Trans. Biomed. Eng. 53 2535 2543 10.1109/TBME.2006.883802 17153211 (Pubitemid 46019541)
    • (2006) IEEE Transactions on Biomedical Engineering , vol.53 , Issue.12 , pp. 2535-2543
    • De Chazal, P.1    Reilly, R.B.2
  • 8
    • 71849109586 scopus 로고    scopus 로고
    • Detection of premature ventricular contractions using MLP neural networks: A comparative study
    • 10.1016/j.measurement.2009.07.002
    • A Ebrahimzadeh A Khazaee 2009 Detection of premature ventricular contractions using MLP neural networks: a comparative study Measurement 43 1 103 112 10.1016/j.measurement.2009.07.002
    • (2009) Measurement , vol.43 , Issue.1 , pp. 103-112
    • Ebrahimzadeh, A.1    Khazaee, A.2
  • 9
    • 77954309290 scopus 로고    scopus 로고
    • Classification of the electrocardiogram signals using supervised classifiers and efficient features
    • 10.1016/j.cmpb.2010.04.013
    • A Ebrahimzadeh A Khazaee V Ranaee 2010 Classification of the electrocardiogram signals using supervised classifiers and efficient features Comput. Methods Programs Biomed. 99 179 194 10.1016/j.cmpb.2010.04.013
    • (2010) Comput. Methods Programs Biomed. , vol.99 , pp. 179-194
    • Ebrahimzadeh, A.1    Khazaee, A.2    Ranaee, V.3
  • 10
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machines
    • DOI 10.1023/A:1012427100071
    • WC Hsu CJ Lin 2002 A simple decomposition method for support vector machine Mach. Learn. 46 219 314 10.1023/A:1012427100071 (Pubitemid 34129973)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 291-314
    • Hsu, C.-W.1    Lin, C.-J.2
  • 11
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimizationfor support vector machines
    • DOI 10.1016/j.eswa.2005.09.024, PII S0957417405002083
    • C Huang C Wang 2006 A GA-based feature selection and parameters optimization for support vector machines Expert Syst. Appl. 31 231 240 10.1016/j.eswa.2005.09.024 (Pubitemid 44294444)
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 12
    • 67649208265 scopus 로고    scopus 로고
    • A generic and robust system for automated patient-specific classification of electrocardiogram signals
    • 10.1109/TBME.2009.2013934 19203885
    • T Ince S Kiranyaz M Gabbouj 2009 A generic and robust system for automated patient-specific classification of electrocardiogram signals IEEE Trans. Biomed. Eng. 56 1415 1426 10.1109/TBME.2009.2013934 19203885
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , pp. 1415-1426
    • Ince, T.1    Kiranyaz, S.2    Gabbouj, M.3
  • 13
    • 67649619218 scopus 로고    scopus 로고
    • A two-stage mechanism for registration and classification of ECG using Gaussian mixture model
    • 10.1016/j.patcog.2009.02.008
    • R JoyMartis C Chakraborty AK Ray 2009 A two-stage mechanism for registration and classification of ECG using Gaussian mixture model Pattern Recognit. 42 2979 2988 10.1016/j.patcog.2009.02.008
    • (2009) Pattern Recognit. , vol.42 , pp. 2979-2988
    • Joymartis, R.1    Chakraborty, C.2    Ray, A.K.3
  • 14
    • 27644465212 scopus 로고    scopus 로고
    • A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques
    • DOI 10.1109/TBME.2005.856281
    • L Khadra AS Al-Fahoum S Binajjaj 2005 A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques IEEE Trans. Biomed. Eng. 52 1840 1845 10.1109/TBME.2005.856281 16285387 (Pubitemid 41578804)
    • (2005) IEEE Transactions on Biomedical Engineering , vol.52 , Issue.11 , pp. 1840-1845
    • Khadra, L.1    Al-Fahoum, A.S.2    Binajjaj, S.3
  • 15
    • 0033918208 scopus 로고    scopus 로고
    • Clustering ECG complexes using hermite functions and self-organizing maps
    • DOI 10.1109/10.846677, PII S0018929400051223
    • M Lagerholm C Peterson G Braccini L Edenbrandt L Sornmo 2000 Clustering ECG complexes using Hermite functions and self-organizing maps IEEE Trans. Biomed. Eng. 47 839 847 10.1109/10.846677 (Pubitemid 30421818)
    • (2000) IEEE Transactions on Biomedical Engineering , vol.47 , Issue.7 , pp. 838-848
    • Lagerholm, M.1    Peterson, G.2
  • 16
    • 37649021468 scopus 로고    scopus 로고
    • Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier
    • 10.1016/j.camwa.2007.04.035
    • CH Lin 2008 Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier Comput. Math. Appl. 55 680 690 10.1016/j.camwa.2007.04.035
    • (2008) Comput. Math. Appl. , vol.55 , pp. 680-690
    • Lin, C.H.1
  • 22
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability
    • 10.1016/j.artmed.2008.04.007
    • B Mohammadzadeh Asl SK Setarehdan M Mohebbi 2008 Support vector machine-based arrhythmia classification using reduced features of heart rate variability Artif. Intell. Med. 44 51 64 10.1016/j.artmed.2008.04.007
    • (2008) Artif. Intell. Med. , vol.44 , pp. 51-64
    • Mohammadzadeh Asl, B.1    Setarehdan, S.K.2    Mohebbi, M.3
  • 23
    • 0034953193 scopus 로고    scopus 로고
    • The impact of the MIT-BIH arrhythmia database
    • DOI 10.1109/51.932724
    • GB Moody RG Mark 2001 The impact of the MIT/BIH arrhythmia database IEEE Eng. Med. Biol. Mag. 20 3 45 50 1:STN:280:DC%2BD38%2FhvFaitw%3D%3D 10.1109/51.932724 11446209 (Pubitemid 32606302)
    • (2001) IEEE Engineering in Medicine and Biology Magazine , vol.20 , Issue.3 , pp. 45-50
    • Moody, G.B.1    Mark, R.G.2
  • 25
    • 72149084655 scopus 로고    scopus 로고
    • VT and VF classification using trajectory analysis
    • doi:10.1016/j.na.2008.10.015
    • Sarvestani, R. R., R. Boostani, and M. Roopaei. VT and VF classification using trajectory analysis. Nonlinear Anal. 2008. doi: 10.1016/j.na.2008.10.015.
    • (2008) Nonlinear Anal
    • Sarvestani, R.R.1    Boostani, R.2    Roopaei, M.3
  • 26
    • 2942746358 scopus 로고    scopus 로고
    • Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG
    • DOI 10.1109/TBME.2004.824131
    • LY Shyu YH Wu WC Hu 2004 Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG IEEE Trans. Biomed. Eng. 51 1269 1273 10.1109/TBME.2004.824131 15248543 (Pubitemid 38787932)
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.7 , pp. 1269-1273
    • Shyu, L.-Y.1    Wu, Y.-H.2    Hu, W.3
  • 28
    • 54049114256 scopus 로고    scopus 로고
    • Support vector machines for detection of electrocardiographic changes in partial epileptic
    • 10.1016/j.engappai.2008.03.012
    • ED Ubeyli 2008 Support vector machines for detection of electrocardiographic changes in partial epileptic Eng. Appl. Artif. Intell. 21 1196 1203 10.1016/j.engappai.2008.03.012
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , pp. 1196-1203
    • Ubeyli, E.D.1
  • 30
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • DOI 10.1016/j.eswa.2005.12.008, PII S0957417405003490
    • C Wu G Tzeng Y Goo W Fang 2007 A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy Expert Syst. Appl. 32 397 408 10.1016/j.eswa.2005.12.008 (Pubitemid 44754927)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4
  • 31
    • 56349170342 scopus 로고    scopus 로고
    • Selection of significant for ECG beat classification
    • 10.1016/j.eswa.2007.12.016
    • SN Yu KT Chou 2009 Selection of significant for ECG beat classification Expert Syst. Appl. 36 2088 2096 10.1016/j.eswa.2007.12.016
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2088-2096
    • Yu, S.N.1    Chou, K.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.