메뉴 건너뛰기




Volumn 19, Issue 2, 2013, Pages 121-129

Use of data mining techniques to determine and predict length of stay of cardiac patients

Author keywords

Coronary Artery Disease; Data Mining; Extract; Length of Stay; Patients

Indexed keywords


EID: 84880061591     PISSN: 20933681     EISSN: 2093369X     Source Type: Journal    
DOI: 10.4258/hir.2013.19.2.121     Document Type: Article
Times cited : (154)

References (35)
  • 2
    • 84880069152 scopus 로고    scopus 로고
    • Using data mining to describe long hospital stays
    • Gomez V, Abasolo JE. Using data mining to describe long hospital stays. Paradigma 2009;3(1):1-10.
    • (2009) Paradigma , vol.3 , Issue.1 , pp. 1-10
    • Gomez, V.1    Abasolo, J.E.2
  • 3
    • 84880062188 scopus 로고    scopus 로고
    • Methods for analyzing hospital length of stay with application to inpatients dying in Southern Thailand
    • Lim A, Tongkumchum P. Methods for analyzing hospital length of stay with application to inpatients dying in Southern Thailand. Glob J Health Sci 2009;1(1):27-38.
    • (2009) Glob J Health Sci , vol.1 , Issue.1 , pp. 27-38
    • Lim, A.1    Tongkumchum, P.2
  • 5
    • 84880081761 scopus 로고    scopus 로고
    • Using data mining to analyze patient discharge data for an urban hospital
    • 2010 Jul 12-15; Las Vegas, NV
    • Jiang X, Qu X, Davis L. Using data mining to analyze patient discharge data for an urban hospital. In: Proceedings of the 2010 International Conference on Data Mining; 2010 Jul 12-15; Las Vegas, NV. p. 139-44.
    • (2010) Proceedings of the International Conference on Data Mining , pp. 139-144
    • Jiang, X.1    Qu, X.2    Davis, L.3
  • 6
    • 0036550136 scopus 로고    scopus 로고
    • Data mining to support simulation modeling of patient flow in hospitals
    • Isken MW, Rajagopalan B. Data mining to support simulation modeling of patient flow in hospitals. J Med Syst 2002;26(2):179-97.
    • (2002) J Med Syst , vol.26 , Issue.2 , pp. 179-197
    • Isken, M.W.1    Rajagopalan, B.2
  • 7
    • 79952263200 scopus 로고    scopus 로고
    • Predicting hospital length of stay with neural networks
    • In: Cook DJ, editor, May 18-20; Sanibel Island, FL. Menlo Park, CA: AAAI Press; 1998
    • Walczak S, Scorpio RJ, Pofahl WE. Predicting hospital length of stay with neural networks. In: Cook DJ, editor. Proceedings of the Eleventh International FLAIRS Conference; 1998 May 18-20; Sanibel Island, FL. Menlo Park, CA: AAAI Press; 1998. p. 333-7.
    • (1998) Proceedings of the Eleventh International FLAIRS Conference , pp. 333-337
    • Walczak, S.1    Scorpio, R.J.2    Pofahl, W.E.3
  • 8
    • 34447273327 scopus 로고    scopus 로고
    • The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors
    • Rowan M, Ryan T, Hegarty F, O'Hare N. The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors. Artif Intell Med 2007;40(3):211-21.
    • (2007) Artif Intell Med , vol.40 , Issue.3 , pp. 211-221
    • Rowan, M.1    Ryan, T.2    Hegarty, F.3    O'Hare, N.4
  • 10
    • 84880072122 scopus 로고    scopus 로고
    • Analysis of factors affecting length of stay in public hospitals in Lorestan Province, Iran
    • Arab M, Zarei A, Rahimi A, Rezaiean F, Akbari F. Analysis of factors affecting length of stay in public hospitals in Lorestan Province, Iran. Hakim Res J 2010;12(4):27-32.
    • (2010) Hakim Res J , vol.12 , Issue.4 , pp. 27-32
    • Arab, M.1    Zarei, A.2    Rahimi, A.3    Rezaiean, F.4    Akbari, F.5
  • 12
    • 0027032927 scopus 로고
    • Use of a neural network as a pre dictive instrument for length of stay in the intensive care unit following cardiac surgery
    • Tu JV, Guerriere MR. Use of a neural network as a pre dictive instrument for length of stay in the intensive care unit following cardiac surgery. Proc Annu Symp Comput Appl Med Care 1992:666-72.
    • (1992) Proc Annu Symp Comput Appl Med Care , pp. 666-672
    • Tu, J.V.1    Guerriere, M.R.2
  • 13
    • 70349297483 scopus 로고    scopus 로고
    • Model-based prediction of length of stay for rehabilitating stroke patients
    • Lin CL, Lin PH, Chou LW, Lan SJ, Meng NH, Lo SF, et al. Model-based prediction of length of stay for rehabilitating stroke patients. J Formos Med Assoc 2009;108(8):653-62.
    • (2009) J Formos Med Assoc , vol.108 , Issue.8 , pp. 653-662
    • Lin, C.L.1    Lin, P.H.2    Chou, L.W.3    Lan, S.J.4    Meng, N.H.5    Lo, S.F.6
  • 14
    • 39049188271 scopus 로고    scopus 로고
    • Estimating patient's length of stay in the Emergency Department with an artificial neural network
    • Wrenn J, Jones I, Lanaghan K, Congdon CB, Aronsky D. Estimating patient's length of stay in the Emergency Department with an artificial neural network. AMIA Annu Symp Proc 2005;2005:1155.
    • (2005) AMIA Annu Symp Proc , vol.2005 , pp. 1155
    • Wrenn, J.1    Jones, I.2    Lanaghan, K.3    Congdon, C.B.4    Aronsky, D.5
  • 15
    • 0026560745 scopus 로고
    • Predicting length of stay for patients with psychoses
    • Stoskopf C, Horn SD. Predicting length of stay for patients with psychoses. Health Serv Res 1992;26(6):743-66.
    • (1992) Health Serv Res , vol.26 , Issue.6 , pp. 743-766
    • Stoskopf, C.1    Horn, S.D.2
  • 16
    • 84880079578 scopus 로고    scopus 로고
    • Prediction of length of stay following elective percutaneous coronary intervention
    • Negassa A, Monrad ES. Prediction of length of stay following elective percutaneous coronary intervention. ISRN Surg 2011;2011:714935.
    • (2011) ISRN Surg , vol.2011 , pp. 714935
    • Negassa, A.1    Monrad, E.S.2
  • 17
    • 84856155329 scopus 로고    scopus 로고
    • Acute coronary syndrome prediction using data mining techniques: An application
    • Jilani TA, Yasin H, Yasin M, Ardil C. Acute coronary syndrome prediction using data mining techniques: an application. Int J Inf Math Sci 2009;5(4):295-9.
    • (2009) Int J Inf Math Sci , vol.5 , Issue.4 , pp. 295-299
    • Jilani, T.A.1    Yasin, H.2    Yasin, M.3    Ardil, C.4
  • 19
    • 78651281745 scopus 로고    scopus 로고
    • Identifying factors that impact patient length of stay metrics for healthcare providers with advanced analytics
    • Kudyba S, Gregorio T. Identifying factors that impact patient length of stay metrics for healthcare providers with advanced analytics. Health Informatics J 2010;16(4):235-45.
    • (2010) Health Informatics J , vol.16 , Issue.4 , pp. 235-245
    • Kudyba, S.1    Gregorio, T.2
  • 20
    • 84880048670 scopus 로고    scopus 로고
    • Analysis of heart diseases dataset using neural network approach
    • Rani KU. Analysis of heart diseases dataset using neural network approach. Int J Data Min Knowl Manag Process 2011;1(5):1-8.
    • (2011) Int J Data Min Knowl Manag Process , vol.1 , Issue.5 , pp. 1-8
    • Rani, K.U.1
  • 22
    • 84878720783 scopus 로고    scopus 로고
    • Application of support vector machine for prediction of medication adherence in heart failure patients
    • Son YJ, Kim HG, Kim EH, Choi S, Lee SK. Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc Inform Res 2010;16(4):253-9.
    • (2010) Healthc Inform Res , vol.16 , Issue.4 , pp. 253-259
    • Son, Y.J.1    Kim, H.G.2    Kim, E.H.3    Choi, S.4    Lee, S.K.5
  • 25
    • 79960319103 scopus 로고    scopus 로고
    • Overview on how data mining tools may support cardiovascular disease prediction
    • Sitar-Taut DA, Sitar-Taut AV. Overview on how data mining tools may support cardiovascular disease prediction. J Appl Comput Sci 2010;4(8):57-62.
    • (2010) J Appl Comput Sci , vol.4 , Issue.8 , pp. 57-62
    • Sitar-Taut, D.A.1    Sitar-Taut, A.V.2
  • 26
    • 9544249488 scopus 로고    scopus 로고
    • Coronary artery calcification: Pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group
    • Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation 1996;94(5):1175-92.
    • (1996) Circulation , vol.94 , Issue.5 , pp. 1175-1192
    • Wexler, L.1    Brundage, B.2    Crouse, J.3    Detrano, R.4    Fuster, V.5    Maddahi, J.6
  • 27
    • 79952971160 scopus 로고    scopus 로고
    • Prediction of hospital charges for the cancer patients with data mining techniques
    • Kang JO, Chung SH, Suh YM. Prediction of hospital charges for the cancer patients with data mining techniques. J Korean Soc Med Inform 2009;15(1):13-23.
    • (2009) J Korean Soc Med Inform , vol.15 , Issue.1 , pp. 13-23
    • Kang, J.O.1    Chung, S.H.2    Suh, Y.M.3
  • 28
    • 84880068089 scopus 로고    scopus 로고
    • 0: 4. Handling missing and Clementine outliers values. Tehran, Iran: IUST
    • Yaghini M. Data mining SPSS Clementine 12.0: 4. Handling missing and Clementine outliers values. Tehran, Iran: IUST; 2010.
    • (2010) Data mining SPSS Clementine 12
    • Yaghini, M.1
  • 29
    • 33748937391 scopus 로고    scopus 로고
    • Data mining and clinical data repositories: Insights from a 667,000 patient data set
    • Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, Miller WG, et al. Data mining and clinical data repositories: insights from a 667,000 patient data set. Comput Biol Med 2006;36(12):1351-77.
    • (2006) Comput Biol Med , vol.36 , Issue.12 , pp. 1351-1377
    • Mullins, I.M.1    Siadaty, M.S.2    Lyman, J.3    Scully, K.4    Garrett, C.T.5    Miller, W.G.6
  • 30
    • 84880060879 scopus 로고    scopus 로고
    • Revenue generation in hospital foundations: Neural network versus regression model recommendations
    • Malliaris ME, Pappas M. Revenue generation in hospital foundations: neural network versus regression model recommendations. Int J Manag Inf Syst 2011;15(1):59-66.
    • (2011) Int J Manag Inf Syst , vol.15 , Issue.1 , pp. 59-66
    • Malliaris, M.E.1    Pappas, M.2
  • 31
    • 34250805001 scopus 로고    scopus 로고
    • Prediction of length of stay for stroke patients
    • Appelros P. Prediction of length of stay for stroke patients. Acta Neurol Scand 2007;116(1):15-9.
    • (2007) Acta Neurol Scand , vol.116 , Issue.1 , pp. 15-19
    • Appelros, P.1
  • 32
    • 84874230954 scopus 로고    scopus 로고
    • Decision tree induction & clustering techniques in SAS Enterprise Miner, SPSS Clementine, and IBM Intelligent Miner: A comparative analysis
    • Ghoson AM. Decision tree induction & clustering techniques in SAS Enterprise Miner, SPSS Clementine, and IBM Intelligent Miner: a comparative analysis. Int J Manag Inf Syst 2010;14(3):57-70.
    • (2010) Int J Manag Inf Syst , vol.14 , Issue.3 , pp. 57-70
    • Ghoson, A.M.1
  • 33
    • 37249089420 scopus 로고    scopus 로고
    • Predictive data mining in clinical medicine: Current issues and guidelines
    • Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 2008;77(2):81-97.
    • (2008) Int J Med Inform , vol.77 , Issue.2 , pp. 81-97
    • Bellazzi, R.1    Zupan, B.2
  • 34
    • 1242337318 scopus 로고    scopus 로고
    • Resource utilisation, length of hospital stay, and pattern of investigation during acute medical hospital admission
    • McMullan R, Silke B, Bennett K, Callachand S. Resource utilisation, length of hospital stay, and pattern of investigation during acute medical hospital admission. Postgrad Med J 2004;80(939):23-6.
    • (2004) Postgrad Med J , vol.80 , Issue.939 , pp. 23-26
    • McMullan, R.1    Silke, B.2    Bennett, K.3    Callachand, S.4
  • 35
    • 84880048343 scopus 로고    scopus 로고
    • Factors affecting coronary artery patients hospital length of stay of Tabriz Madani hospital 2005-2006
    • Vahidi R, Kushavar H, Khodayari R. Factors affecting coronary artery patients hospital length of stay of Tabriz Madani hospital 2005-2006. J Health Adm 2006;9(25):63-8.
    • (2006) J Health Adm , vol.9 , Issue.25 , pp. 63-68
    • Vahidi, R.1    Kushavar, H.2    Khodayari, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.