-
1
-
-
0037352912
-
Factors influencing the length of hospital stay of patients with heart failure
-
Wright SP, Verouhis D, Gamble G, Swedberg K, Sharpe N, Doughty RN. Factors influencing the length of hospital stay of patients with heart failure. Eur J Heart Fail 2003;5(2):201-9.
-
(2003)
Eur J Heart Fail
, vol.5
, Issue.2
, pp. 201-209
-
-
Wright, S.P.1
Verouhis, D.2
Gamble, G.3
Swedberg, K.4
Sharpe, N.5
Doughty, R.N.6
-
2
-
-
84880069152
-
Using data mining to describe long hospital stays
-
Gomez V, Abasolo JE. Using data mining to describe long hospital stays. Paradigma 2009;3(1):1-10.
-
(2009)
Paradigma
, vol.3
, Issue.1
, pp. 1-10
-
-
Gomez, V.1
Abasolo, J.E.2
-
3
-
-
84880062188
-
Methods for analyzing hospital length of stay with application to inpatients dying in Southern Thailand
-
Lim A, Tongkumchum P. Methods for analyzing hospital length of stay with application to inpatients dying in Southern Thailand. Glob J Health Sci 2009;1(1):27-38.
-
(2009)
Glob J Health Sci
, vol.1
, Issue.1
, pp. 27-38
-
-
Lim, A.1
Tongkumchum, P.2
-
4
-
-
0036844470
-
Prediction of length of stay of first-ever ischemic stroke
-
Chang KC, Tseng MC, Weng HH, Lin YH, Liou CW, Tan TY. Prediction of length of stay of first-ever ischemic stroke. Stroke 2002;33(11):2670-4.
-
(2002)
Stroke
, vol.33
, Issue.11
, pp. 2670-2674
-
-
Chang, K.C.1
Tseng, M.C.2
Weng, H.H.3
Lin, Y.H.4
Liou, C.W.5
Tan, T.Y.6
-
5
-
-
84880081761
-
Using data mining to analyze patient discharge data for an urban hospital
-
2010 Jul 12-15; Las Vegas, NV
-
Jiang X, Qu X, Davis L. Using data mining to analyze patient discharge data for an urban hospital. In: Proceedings of the 2010 International Conference on Data Mining; 2010 Jul 12-15; Las Vegas, NV. p. 139-44.
-
(2010)
Proceedings of the International Conference on Data Mining
, pp. 139-144
-
-
Jiang, X.1
Qu, X.2
Davis, L.3
-
6
-
-
0036550136
-
Data mining to support simulation modeling of patient flow in hospitals
-
Isken MW, Rajagopalan B. Data mining to support simulation modeling of patient flow in hospitals. J Med Syst 2002;26(2):179-97.
-
(2002)
J Med Syst
, vol.26
, Issue.2
, pp. 179-197
-
-
Isken, M.W.1
Rajagopalan, B.2
-
7
-
-
79952263200
-
Predicting hospital length of stay with neural networks
-
In: Cook DJ, editor, May 18-20; Sanibel Island, FL. Menlo Park, CA: AAAI Press; 1998
-
Walczak S, Scorpio RJ, Pofahl WE. Predicting hospital length of stay with neural networks. In: Cook DJ, editor. Proceedings of the Eleventh International FLAIRS Conference; 1998 May 18-20; Sanibel Island, FL. Menlo Park, CA: AAAI Press; 1998. p. 333-7.
-
(1998)
Proceedings of the Eleventh International FLAIRS Conference
, pp. 333-337
-
-
Walczak, S.1
Scorpio, R.J.2
Pofahl, W.E.3
-
8
-
-
34447273327
-
The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors
-
Rowan M, Ryan T, Hegarty F, O'Hare N. The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors. Artif Intell Med 2007;40(3):211-21.
-
(2007)
Artif Intell Med
, vol.40
, Issue.3
, pp. 211-221
-
-
Rowan, M.1
Ryan, T.2
Hegarty, F.3
O'Hare, N.4
-
10
-
-
84880072122
-
Analysis of factors affecting length of stay in public hospitals in Lorestan Province, Iran
-
Arab M, Zarei A, Rahimi A, Rezaiean F, Akbari F. Analysis of factors affecting length of stay in public hospitals in Lorestan Province, Iran. Hakim Res J 2010;12(4):27-32.
-
(2010)
Hakim Res J
, vol.12
, Issue.4
, pp. 27-32
-
-
Arab, M.1
Zarei, A.2
Rahimi, A.3
Rezaiean, F.4
Akbari, F.5
-
11
-
-
0142250428
-
Predicting length of stay on an acute care medical psychiatric inpatient service
-
Blais MA, Matthews J, Lipkis-Orlando R, Lechner E, Jacobo M, Lincoln R, et al. Predicting length of stay on an acute care medical psychiatric inpatient service. Adm Policy Ment Health 2003;31(1):15-29.
-
(2003)
Adm Policy Ment Health
, vol.31
, Issue.1
, pp. 15-29
-
-
Blais, M.A.1
Matthews, J.2
Lipkis-Orlando, R.3
Lechner, E.4
Jacobo, M.5
Lincoln, R.6
-
12
-
-
0027032927
-
Use of a neural network as a pre dictive instrument for length of stay in the intensive care unit following cardiac surgery
-
Tu JV, Guerriere MR. Use of a neural network as a pre dictive instrument for length of stay in the intensive care unit following cardiac surgery. Proc Annu Symp Comput Appl Med Care 1992:666-72.
-
(1992)
Proc Annu Symp Comput Appl Med Care
, pp. 666-672
-
-
Tu, J.V.1
Guerriere, M.R.2
-
13
-
-
70349297483
-
Model-based prediction of length of stay for rehabilitating stroke patients
-
Lin CL, Lin PH, Chou LW, Lan SJ, Meng NH, Lo SF, et al. Model-based prediction of length of stay for rehabilitating stroke patients. J Formos Med Assoc 2009;108(8):653-62.
-
(2009)
J Formos Med Assoc
, vol.108
, Issue.8
, pp. 653-662
-
-
Lin, C.L.1
Lin, P.H.2
Chou, L.W.3
Lan, S.J.4
Meng, N.H.5
Lo, S.F.6
-
14
-
-
39049188271
-
Estimating patient's length of stay in the Emergency Department with an artificial neural network
-
Wrenn J, Jones I, Lanaghan K, Congdon CB, Aronsky D. Estimating patient's length of stay in the Emergency Department with an artificial neural network. AMIA Annu Symp Proc 2005;2005:1155.
-
(2005)
AMIA Annu Symp Proc
, vol.2005
, pp. 1155
-
-
Wrenn, J.1
Jones, I.2
Lanaghan, K.3
Congdon, C.B.4
Aronsky, D.5
-
15
-
-
0026560745
-
Predicting length of stay for patients with psychoses
-
Stoskopf C, Horn SD. Predicting length of stay for patients with psychoses. Health Serv Res 1992;26(6):743-66.
-
(1992)
Health Serv Res
, vol.26
, Issue.6
, pp. 743-766
-
-
Stoskopf, C.1
Horn, S.D.2
-
16
-
-
84880079578
-
Prediction of length of stay following elective percutaneous coronary intervention
-
Negassa A, Monrad ES. Prediction of length of stay following elective percutaneous coronary intervention. ISRN Surg 2011;2011:714935.
-
(2011)
ISRN Surg
, vol.2011
, pp. 714935
-
-
Negassa, A.1
Monrad, E.S.2
-
17
-
-
84856155329
-
Acute coronary syndrome prediction using data mining techniques: An application
-
Jilani TA, Yasin H, Yasin M, Ardil C. Acute coronary syndrome prediction using data mining techniques: an application. Int J Inf Math Sci 2009;5(4):295-9.
-
(2009)
Int J Inf Math Sci
, vol.5
, Issue.4
, pp. 295-299
-
-
Jilani, T.A.1
Yasin, H.2
Yasin, M.3
Ardil, C.4
-
18
-
-
46249093878
-
Healthcare data mining: Predicting inpatient length of stay
-
Sep 4-6; London, UK
-
Liu P, Lei L, Yin J, Zhang W, Naijun W, El-Darzi E. Healthcare data mining: predicting inpatient length of stay. In: Proceedings of the 3rd International IEEE Conference Intelligent Systems; 2006 Sep 4-6; London, UK. p. 832-7.
-
(2006)
Proceedings of the 3rd International IEEE Conference Intelligent Systems
, pp. 832-837
-
-
Liu, P.1
Lei, L.2
Yin, J.3
Zhang, W.4
Naijun, W.5
El-Darzi, E.6
-
19
-
-
78651281745
-
Identifying factors that impact patient length of stay metrics for healthcare providers with advanced analytics
-
Kudyba S, Gregorio T. Identifying factors that impact patient length of stay metrics for healthcare providers with advanced analytics. Health Informatics J 2010;16(4):235-45.
-
(2010)
Health Informatics J
, vol.16
, Issue.4
, pp. 235-245
-
-
Kudyba, S.1
Gregorio, T.2
-
20
-
-
84880048670
-
Analysis of heart diseases dataset using neural network approach
-
Rani KU. Analysis of heart diseases dataset using neural network approach. Int J Data Min Knowl Manag Process 2011;1(5):1-8.
-
(2011)
Int J Data Min Knowl Manag Process
, vol.1
, Issue.5
, pp. 1-8
-
-
Rani, K.U.1
-
22
-
-
84878720783
-
Application of support vector machine for prediction of medication adherence in heart failure patients
-
Son YJ, Kim HG, Kim EH, Choi S, Lee SK. Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc Inform Res 2010;16(4):253-9.
-
(2010)
Healthc Inform Res
, vol.16
, Issue.4
, pp. 253-259
-
-
Son, Y.J.1
Kim, H.G.2
Kim, E.H.3
Choi, S.4
Lee, S.K.5
-
25
-
-
79960319103
-
Overview on how data mining tools may support cardiovascular disease prediction
-
Sitar-Taut DA, Sitar-Taut AV. Overview on how data mining tools may support cardiovascular disease prediction. J Appl Comput Sci 2010;4(8):57-62.
-
(2010)
J Appl Comput Sci
, vol.4
, Issue.8
, pp. 57-62
-
-
Sitar-Taut, D.A.1
Sitar-Taut, A.V.2
-
26
-
-
9544249488
-
Coronary artery calcification: Pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group
-
Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation 1996;94(5):1175-92.
-
(1996)
Circulation
, vol.94
, Issue.5
, pp. 1175-1192
-
-
Wexler, L.1
Brundage, B.2
Crouse, J.3
Detrano, R.4
Fuster, V.5
Maddahi, J.6
-
27
-
-
79952971160
-
Prediction of hospital charges for the cancer patients with data mining techniques
-
Kang JO, Chung SH, Suh YM. Prediction of hospital charges for the cancer patients with data mining techniques. J Korean Soc Med Inform 2009;15(1):13-23.
-
(2009)
J Korean Soc Med Inform
, vol.15
, Issue.1
, pp. 13-23
-
-
Kang, J.O.1
Chung, S.H.2
Suh, Y.M.3
-
28
-
-
84880068089
-
-
0: 4. Handling missing and Clementine outliers values. Tehran, Iran: IUST
-
Yaghini M. Data mining SPSS Clementine 12.0: 4. Handling missing and Clementine outliers values. Tehran, Iran: IUST; 2010.
-
(2010)
Data mining SPSS Clementine 12
-
-
Yaghini, M.1
-
29
-
-
33748937391
-
Data mining and clinical data repositories: Insights from a 667,000 patient data set
-
Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, Miller WG, et al. Data mining and clinical data repositories: insights from a 667,000 patient data set. Comput Biol Med 2006;36(12):1351-77.
-
(2006)
Comput Biol Med
, vol.36
, Issue.12
, pp. 1351-1377
-
-
Mullins, I.M.1
Siadaty, M.S.2
Lyman, J.3
Scully, K.4
Garrett, C.T.5
Miller, W.G.6
-
30
-
-
84880060879
-
Revenue generation in hospital foundations: Neural network versus regression model recommendations
-
Malliaris ME, Pappas M. Revenue generation in hospital foundations: neural network versus regression model recommendations. Int J Manag Inf Syst 2011;15(1):59-66.
-
(2011)
Int J Manag Inf Syst
, vol.15
, Issue.1
, pp. 59-66
-
-
Malliaris, M.E.1
Pappas, M.2
-
31
-
-
34250805001
-
Prediction of length of stay for stroke patients
-
Appelros P. Prediction of length of stay for stroke patients. Acta Neurol Scand 2007;116(1):15-9.
-
(2007)
Acta Neurol Scand
, vol.116
, Issue.1
, pp. 15-19
-
-
Appelros, P.1
-
32
-
-
84874230954
-
Decision tree induction & clustering techniques in SAS Enterprise Miner, SPSS Clementine, and IBM Intelligent Miner: A comparative analysis
-
Ghoson AM. Decision tree induction & clustering techniques in SAS Enterprise Miner, SPSS Clementine, and IBM Intelligent Miner: a comparative analysis. Int J Manag Inf Syst 2010;14(3):57-70.
-
(2010)
Int J Manag Inf Syst
, vol.14
, Issue.3
, pp. 57-70
-
-
Ghoson, A.M.1
-
33
-
-
37249089420
-
Predictive data mining in clinical medicine: Current issues and guidelines
-
Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 2008;77(2):81-97.
-
(2008)
Int J Med Inform
, vol.77
, Issue.2
, pp. 81-97
-
-
Bellazzi, R.1
Zupan, B.2
-
34
-
-
1242337318
-
Resource utilisation, length of hospital stay, and pattern of investigation during acute medical hospital admission
-
McMullan R, Silke B, Bennett K, Callachand S. Resource utilisation, length of hospital stay, and pattern of investigation during acute medical hospital admission. Postgrad Med J 2004;80(939):23-6.
-
(2004)
Postgrad Med J
, vol.80
, Issue.939
, pp. 23-26
-
-
McMullan, R.1
Silke, B.2
Bennett, K.3
Callachand, S.4
-
35
-
-
84880048343
-
Factors affecting coronary artery patients hospital length of stay of Tabriz Madani hospital 2005-2006
-
Vahidi R, Kushavar H, Khodayari R. Factors affecting coronary artery patients hospital length of stay of Tabriz Madani hospital 2005-2006. J Health Adm 2006;9(25):63-8.
-
(2006)
J Health Adm
, vol.9
, Issue.25
, pp. 63-68
-
-
Vahidi, R.1
Kushavar, H.2
Khodayari, R.3
|