메뉴 건너뛰기




Volumn 33, Issue , 2015, Pages 231-238

Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques

Author keywords

Artificial neural network; Cardiotocogram; Decision trees; k Nearest neighbor and Random Forest; Radial basis functions; Support vector machines

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DECISION TREES; HEART; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; OBSTETRICS; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84928987803     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.04.038     Document Type: Article
Times cited : (99)

References (53)
  • 1
    • 59649119146 scopus 로고    scopus 로고
    • Comparison of short term variability indexes in cardiotocographic fetal monitoring
    • M. Cesarelli, M. Romano, and P. Bifulco Comparison of short term variability indexes in cardiotocographic fetal monitoring Comput. Biol. Med. 39 2009 106 118
    • (2009) Comput. Biol. Med. , vol.39 , pp. 106-118
    • Cesarelli, M.1    Romano, M.2    Bifulco, P.3
  • 4
    • 10644248939 scopus 로고    scopus 로고
    • Prediction of neonatal state by computer analysis of fetal heart rate tracings: The antepartum arm of the SisPorto® multicentre validation study
    • D. Ayres-de-Campos, C. Costa-Santos, J. Bernardes, and S.M.V.S. Group Prediction of neonatal state by computer analysis of fetal heart rate tracings: the antepartum arm of the SisPorto® multicentre validation study Eur. J. Obstet. Gynecol. Reprod. Biol. 118 2005 52 60
    • (2005) Eur. J. Obstet. Gynecol. Reprod. Biol. , vol.118 , pp. 52-60
    • Ayres-De-Campos, D.1    Costa-Santos, C.2    Bernardes, J.3
  • 5
    • 0018928795 scopus 로고
    • Analysis of heart rate and beat-to-beat variability: Interval difference index
    • H.P. van Geijn, H.W. Jongsma, J. de Haan, and T.K. Eskes Analysis of heart rate and beat-to-beat variability: Interval difference index Am. J. Obstet. Gynecol. 138 1980 246 252
    • (1980) Am. J. Obstet. Gynecol. , vol.138 , pp. 246-252
    • Van Geijn, H.P.1    Jongsma, H.W.2    De Haan, J.3    Eskes, T.K.4
  • 7
    • 33846019672 scopus 로고    scopus 로고
    • Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
    • Springer
    • M. Sokolova, N. Japkowicz, and S. Szpakowicz Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation AI 2006: Advances in Artificial Intelligence 2006 Springer 1015 1021
    • (2006) AI 2006: Advances in Artificial Intelligence , pp. 1015-1021
    • Sokolova, M.1    Japkowicz, N.2    Szpakowicz, S.3
  • 12
    • 0001407765 scopus 로고
    • Logistic regression
    • North-Holland New York
    • J. Anderson Logistic regression Handbook of Statistics 1982 North-Holland New York 169 191
    • (1982) Handbook of Statistics , pp. 169-191
    • Anderson, J.1
  • 17
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • Clarendon Press Oxford
    • M.J.D. Powell Radial basis functions for multivariable interpolation: a review Algorithms for Approximation 1987 Clarendon Press Oxford 143 167
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 18
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio, and F. Girosi Networks for approximation and learning Proc. IEEE 78 1990 1481 1497
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 19
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • F. Girosi, and T. Poggio Networks and the best approximation property Biol. Cybern. 63 1990 169 176
    • (1990) Biol. Cybern. , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 21
  • 26
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 1995 273 297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 31
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • J.R. Quinlan Improved use of continuous attributes in C4.5 J. Artif. Intell. Res. 1996 77 90
    • (1996) J. Artif. Intell. Res. , pp. 77-90
    • Quinlan, J.R.1
  • 32
  • 33
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 2001 5 32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 36
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S.L. Salzberg On comparing classifiers: pitfalls to avoid and a recommended approach Data Min. Knowl. Discov. 2007 317 328
    • (2007) Data Min. Knowl. Discov. , pp. 317-328
    • Salzberg, S.L.1
  • 38
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S.L. Salzberg On comparing classifiers: pitfalls to avoid and a recommended approach Data Min. Knowl. Discov. 1 1997 317 328
    • (1997) Data Min. Knowl. Discov. , vol.1 , pp. 317-328
    • Salzberg, S.L.1
  • 40
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • B.R. Bakshi Multiscale PCA with application to multivariate statistical process monitoring AIChE J. 44 1998 1596 1610
    • (1998) AIChE J. , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 41
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
    • M.H. Zweig, and G. Campbell Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine Clin. Chem. 39 1993 561 577
    • (1993) Clin. Chem. , vol.39 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2
  • 42
    • 84885594500 scopus 로고    scopus 로고
    • Fetal distress prediction using discriminant analysis, decision tree, and artificial neural network
    • M.-L. Huang Fetal distress prediction using discriminant analysis, decision tree, and artificial neural network J. Biomed. Sci. Eng. 05 2012 526 533
    • (2012) J. Biomed. Sci. Eng. , vol.5 , pp. 526-533
    • Huang, M.-L.1
  • 43
    • 78651482192 scopus 로고    scopus 로고
    • Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine
    • N. Krupa, M. Ali, E. Zahedi, S. Ahmed, and F.M. Hassan Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine Biomed. Eng. Online 10 2011 6
    • (2011) Biomed. Eng. Online , vol.10 , pp. 6
    • Krupa, N.1    Ali, M.2    Zahedi, E.3    Ahmed, S.4    Hassan, F.M.5
  • 44
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • C.A. Micchelli Interpolation of scattered data: distance matrices and conditionally positive definite functions Constr. Approxim. 1986 11 22
    • (1986) Constr. Approxim. , pp. 11-22
    • Micchelli, C.A.1
  • 46
    • 84863090874 scopus 로고    scopus 로고
    • Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia
    • R. Czabanski, J. Jezewski, A. Matonia, and M. Jezewski Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia Expert Syst. Appl. 39 2012 11846 11860
    • (2012) Expert Syst. Appl. , vol.39 , pp. 11846-11860
    • Czabanski, R.1    Jezewski, J.2    Matonia, A.3    Jezewski, M.4
  • 47
    • 33646338651 scopus 로고    scopus 로고
    • Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines
    • G. Georgoulas, D. Stylios, and P. Groumpos Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines, IEEE Trans. Biomed. Eng. 53 2006 875 884
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , pp. 875-884
    • Georgoulas, G.1    Stylios, D.2    Groumpos, P.3
  • 49
    • 84878987274 scopus 로고    scopus 로고
    • Classification of CTG data using neural network based machine learning
    • C. Sundar, M. Chitradevi, and G. Geetharamani Classification of CTG data using neural network based machine learning Int. J. Comput. Appl. 47 2012 19 25
    • (2012) Int. J. Comput. Appl. , vol.47 , pp. 19-25
    • Sundar, C.1    Chitradevi, M.2    Geetharamani, G.3
  • 50
    • 84878968176 scopus 로고    scopus 로고
    • An analysis on the performance of K-means clustering algorithm for cardiotocogram data clustering
    • C. Sundar An analysis on the performance of K-means clustering algorithm for cardiotocogram data clustering Int. J. Comput. Sci. Appl. 2 2012 11 20
    • (2012) Int. J. Comput. Sci. Appl. , vol.2 , pp. 11-20
    • Sundar, C.1
  • 51
    • 84885925293 scopus 로고    scopus 로고
    • Prediction of fetal state from the cardiotocogram recordings using adaptive neuro-fuzzy inference systems
    • H. Ocak, and H. Ertunc Prediction of fetal state from the cardiotocogram recordings using adaptive neuro-fuzzy inference systems Neural Comput. Appl. 23 2013 1583 1589
    • (2013) Neural Comput. Appl. , vol.23 , pp. 1583-1589
    • Ocak, H.1    Ertunc, H.2
  • 52
    • 84872108571 scopus 로고    scopus 로고
    • A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being
    • H. Ocak A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being J. Med. Syst. 37 2013 9913
    • (2013) J. Med. Syst. , vol.37 , pp. 9913
    • Ocak, H.1
  • 53
    • 84888869975 scopus 로고    scopus 로고
    • Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree
    • E. Yilmaz, and C. Kilikcier Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree Comput. Math. Methods Med. 2013 2013 487179
    • (2013) Comput. Math. Methods Med. , vol.2013 , pp. 487179
    • Yilmaz, E.1    Kilikcier, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.